This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
spla-tam.github.io

Nikhil Keetha!, Jay Karhade!, Krishna Murthy Jatavallabhula?, Gengshan Yang!,
Sebastian Scherer!, Deva Ramanan!, and Jonathon Luiten!

leMUu

ATE RMSE
SplaTAM: 0.6 cm
SOTA Baselines:

MIT
Ground
Truth
Train
View
SplaTAM
PSNR: 27.4 dB Depth L1: 0.9 cm
Ground
Truth
. SplaTAM
Rendering:
400 FPS

Figure 1. SplaTAM enables precise camera tracking and high-fidelity reconstruction for dense simultaneous localization and mapping
(SLAM) in challenging real-world scenarios. SplaTAM achieves this by online optimization of an explicit volumetric representation,
3D Gaussian Splatting [14], using differentiable rendering. Left: We showcase the high-fidelity 3D Gaussian Map along with the train
(SLAM-input) & novel view camera frustums. It can be noticed that SplaTAM achieves sub-cm localization despite the large motion
between subsequent cameras in the texture-less environment. This is particularly challenging for state-of-the-art baselines leading to the
failure of tracking. Right: SplaTAM enables photo-realistic rendering of both train & novel views at 400 FPS for a resolution of 876 x 584.

Abstract

Dense simultaneous localization and mapping (SLAM)
is crucial for robotics and augmented reality applications.
However, current methods are often hampered by the non-
volumetric or implicit way they represent a scene. This
work introduces SplaTAM, an approach that, for the first
time, leverages explicit volumetric representations, i.e., 3D
Gaussians, to enable high-fidelity reconstruction from a sin-
gle unposed RGB-D camera, surpassing the capabilities of
existing methods. SplaTAM employs a simple online track-
ing and mapping system tailored to the underlying Gaus-
sian representation. It utilizes a silhouette mask to elegantly
capture the presence of scene density. This combination en-
ables several benefits over prior representations, including
fast rendering and dense optimization, quickly determin-
ing if areas have been previously mapped, and structured
map expansion by adding more Gaussians. Extensive ex-
periments show that SplaTAM achieves up to 2Xx superior
performance in camera pose estimation, map construction,
and novel-view synthesis over existing methods, paving the
way for more immersive high-fidelity SLAM applications.

1. Introduction

Visual simultaneous localization and mapping (SLAM)—
the task of estimating the pose of a vision sensor (such as
a depth camera) and a map of the environment—is an es-
sential capability for vision or robotic systems to operate
in previously unseen 3D environments. For the past three
decades, SLAM research has extensively centered around
the question of map representation —resulting in a variety of
sparse [2, 3,7,23], dense [4, 6, 8, 13, 15, 25, 26, 34, 42, 43],
and neural scene representations [21, 29, 30, 37, 46, 55].
Map representation is a fundamental choice that dramati-
cally impacts the design of every processing block within
the SLAM system, as well as of the downstream tasks that
depend on the outputs of SLAM.

In terms of dense visual SLAM, the most successful
handcrafted representations are points, surfels/flats, and
signed distance fields. While systems based on such map
representations have matured to production level over the
past years, there are still significant shortcomings that need
to be addressed. Tracking explicit representations relies
crucially on the availability of rich 3D geometric fea-

21357

tures and high-framerate captures. Furthermore, these ap-
proaches only reliably explain the observed parts of the
scene; many applications, such as mixed reality and high-
fidelity 3D capture, require techniques that can also ex-
plain/synthesize unobserved/novel camera viewpoints [32].

The shortcomings of handcrafted representations, com-
bined with the emergence of radiance field representa-
tions [21] for high-quality image synthesis, have fueled a
recent class of methods that attempt to encode the scene into
the weight space of a neural network. These radiance-field-
based SLAM algorithms [30, 54] benefit from high-fidelity
global maps and image reconstruction losses that capture
dense photometric information via differentiable rendering.
However, current methods use implicit neural representa-
tions to model the volumetric radiance fields, which causes
a number of issues in the SLAM setting - they are compu-
tationally inefficient, not easy to edit, do not model spatial
geometry explicitly, and suffer from catastrophic forgetting.

In this context, we explore the question, “How can
one use an explicit volumetric representation to design
a SLAM solution?” Specifically, we use a radiance field
based on 3D Gaussians [14] to Splat (Render), Track, and
Map for SLAM. We believe that this representation has the
following benefits over existing map representations:

 Fast rendering and rich optimization: Gaussian Splat-
ting can be rendered at speeds up to 400 FPS, making it
significantly faster to visualize and optimize than implicit
alternatives. The key enabling factor for fast optimization
is the rasterization of 3D primitives. We introduce several
simple modifications that make splatting even faster for
SLAM, including the removal of view-dependent appear-
ance and the use of isotropic Gaussians. Furthermore,
this allows us to use dense photometric loss for SLAM in
real-time, in contrast to traditional & implicit map repre-
sentations that rely respectively on sparse 3D geometric
features or pixel-sampling to maintain efficiency.

» Maps with explicit spatial extent: The spatial frontier of
the existing map can be easily controlled by adding Gaus-
sians only in parts of the scene that have been observed
in the past. Given a new image frame, this allows one to
efficiently identify which portions of the scene are new
content (outside the map’s spatial frontier) by rendering a
silhouette. This is crucial for camera tracking as we only
want to compare mapped areas of the scene to new im-
ages. However, this is difficult for implicit map represen-
tations, as the network is subject to global changes during
gradient-based optimization for the unmapped space.

* Explicit map: We can arbitrarily increase the map ca-
pacity by simply adding more Gaussians. Furthermore,
this explicit volumetric representation enables us to edit
parts of the scene, while still allowing photo-realistic ren-
dering. Implicit approaches cannot easily increase their
capacity or edit their represented scene.

* Direct gradient flow to parameters: As the scene is rep-
resented by Gaussians with physical 3D locations, colors,
and sizes, there is a direct, almost linear (projective) gra-
dient flow between the parameters and the rendering. Be-
cause camera motion can be thought of as keeping the
camera still and moving the scene, we also have a direct
gradient into the camera parameters, which enables fast
optimization. Neural-based representations don’t have
this as the gradient needs to flow through (potentially
many) non-linear neural network layers.

Given all of the above advantages, an explicit volumet-
ric representation is a natural way for efficiently inferring
a high-fidelity spatial map while simultaneously estimat-
ing camera motion, as is also visible from Fig. 1. We
show across all our experiments on simulated and real data
that our approach, SplaTAM, achieves state-of-the-art re-
sults compared to all previous approaches for camera pose
estimation, map estimation, and novel-view synthesis.

2. Related Work

In this section, we briefly review various approaches to
dense SLAM, with a particular emphasis on recent ap-
proaches that leverage implicit representations encoded in
overfit neural networks for tracking and mapping. For a
more detailed review of traditional SLAM methods, we re-
fer the interested reader to this excellent survey [2].
Traditional approaches to dense SLAM have explored
a variety of explicit representations, including 2.5D im-
ages [15, 34], (truncated) signed-distance functions [6, 25,
26, 42], gaussian mixture models [9, 10] and circular sur-
fels [13, 33, 43]. Of particular relevance to this work is
surfels, which are colored circular surface elements and
can be optimized in real-time from RGB-D image inputs
as shown in [13, 33, 43]. While the aforementioned SLAM
approaches do not assume the visibility function to be dif-
ferentiable, there exist modern differentiable rasterizers that
enable gradient flow through depth discontinuities [50].
However, since 2D surfels are discontinuous, they need
careful regularization to prevent holes [33, 50]. In this work,
we use volumetric (as opposed to surface-only) scene repre-
sentations in the form of 3D Gaussians, enabling easy con-
tinuous optimization for fast and accurate SLAM.
Pretrained neural network representations have been in-
tegrated with traditional SLAM techniques, largely focus-
ing on predicting depth from RGB images. These ap-
proaches range from directly integrating depth predictions
from a neural network into SLAM [38], to learning a varia-
tional autoencoder that decodes compact optimizable latent
codes to depth maps [1, 52], to approaches that simultane-
ously learn to predict a depth cost volume and tracking [53].
Implicit scene representations: iMAP [37] first performed
both tracking and mapping using neural implicit represen-
tations. To improve scalability, NICE-SLAM [54] proposed

21358

Gaussian Map G;_¢

(1) Camera Tracking E;_1 — E;

Render(G;_q,E;_1)

(Sil > 2) * Render(G,—1,E")

Gaussian Splats Incoming Frame F,

(3) Map Update G,

(Sil > 2) = F, E, = argmin||(Sil > A) * (Render(G,_1,E') — F)|l1
=

(2) Gaussian Densification Gf

Render(G',E,)

Render(G;_4,E;)

t
G, = argmin Z ||[Render(G',Ey) — Filly Current Frame F,
¢ =

(Densify Mask) = F, G¢ = Densify (G,_1, Fy, Ey, Sil)

Figure 2. Overview of SplaTAM. Top-Left: The input to our approach at each timestep is the current RGB-D frame and the 3D Gaussian
Map Representation that we have built representing all of the scene seen so far. Top-Right: Step (1) estimates the camera pose for the new
image, using silhouette-guided differentiable rendering. Bottom-Right: Step (2) increases the map capacity by adding new Gaussians based
on the rendered silhouette and input depth. Bottom-Left: Step (3) updates the underlying Gaussian map with differentiable rendering.

the use of hierarchical multi-feature grids. On similar lines,
iSDF [28] used implicit representations to efficiently com-
pute signed-distances, compared to [25, 27]. Following this,
a number of works [11, 18, 19, 22, 29, 31, 41, 51, 55], have
recently advanced implicit-based SLAM through a number
of ways - by reducing catastrophic forgetting via continual
learning(experience replay), capturing semantics, incorpo-
rating uncertainty, employing efficient resolution hash-grids
and encodings, and using improved losses. More recently,
Point-SLAM [30], proposes an alternative route, similar to
[45] by using neural point clouds and performing volumet-
ric rendering with feature interpolation, offering better 3-D
reconstruction, especially for robotics. However, like other
implicit representations, volumetric ray sampling greatly
limits its efficiency, thereby resorting to optimization over a
sparse set of pixels as opposed to per-pixel dense photomet-
ric error. Instead, SplaTAM’s explicit volumetric radiance
model leverages fast rasterization, enabling complete use of
per-pixel dense photometric errors.

3D Gaussian Splatting: Recently, 3D Gaussians have
emerged as a promising 3D scene representation [14, 16,
17, 40], in particular with the ability to differentiably render
them extremely quickly via splatting [14]. This approach
has also been extended to model dynamic scenes [20, 44,
47, 48] with dense 6-DOF motion [20]. Such approaches
for both static and dynamic scenes require that each input
frame has an accurately known 6-DOF camera pose, in or-
der to successfully optimize the representation. For the first
time our approach removes this constraint, simultaneously

estimating the camera poses while also fitting the underly-
ing Gaussian representation.

3. Method

SplaTAM is the first dense RGB-D SLAM solution to use
3D Gaussian Splatting [14]. By modeling the world as a
collection of 3D Gaussians which can be rendered into high-
fidelity color and depth images, we are able to directly use
differentiable-rendering and gradient-based-optimization to
optimize both the camera pose for each frame and an under-
lying volumetric discretized map of the world.

Gaussian Map Representation. We represent the under-
lying map of the scene as a set of 3D Gaussians. We made
a number of simplifications to the representation proposed
in [14], by using only view-independent color and forcing
Gaussians to be isotropic. This implies each Gaussian is
parameterized by only 8 values: three for its RGB color ¢,
three for its center position g € R?, one for its radius r and
one for its opacity o € [0,1]. Each Gaussian influences a
point in 3D space x € R? according to the standard (unnor-
malized) Gaussian equation weighted by its opacity:

2
F(X) = oexp (—”""'))

2r2

Differentiable Rendering via Splatting. The core of our
approach is the ability to render high-fidelity color, depth,
and silhouette images from our underlying Gaussian Map

21359

into any possible camera reference frame in a differentiable
way. This differentiable rendering allows us to directly cal-
culate the gradients in the underlying scene representation
(Gaussians) and camera parameters with respect to the er-
ror between the renders and provided RGB-D frames, and
update both the Gaussians and camera parameters to mini-
mize this error, thus fitting both accurate camera poses and
an accurate volumetric representation of the world.
Gaussian Splatting [14] renders an RGB image as fol-
lows: Given a collection of 3D Gaussians and camera pose,
first sort all Gaussians from front-to-back. RGB images can
then be efficiently rendered by alpha-compositing the splat-
ted 2D projection of each Gaussian in order in pixel space.
The rendered color of pixel p = (u,v) can be written as:

i—1
Zszz)Tt =1i0)),)

j=1

where f;(p) is computed as in Eq. (1) but with g and r of
the splatted 2D Gaussians in pixel-space:

Ep o Jr

2D
=K =i
l"' d? r d?

where d = (E,n);. (3)

Here, K is the (known) camera intrinsic matrix, E; is the
extrinsic matrix capturing the rotation and translation of the
camera at frame ¢, f is the (known) focal length, and d is
the depth of the i Gaussian in camera coordinates.

We propose to similarly differentiably render depth:

Zdﬁ

which can be compared against the input depth map and
return gradients with respect to the 3D map.

We also render a silhouette image to determine visibility
—e.g. if a pixel contains information from the current map:

i—1

) [T —=ri(p 4)

j=1

i—1
Zﬁ)T fi(p). 5)

Jj=1

SLAM System. We build a SLAM system from our
Gaussian representation and differentiable renderer. We be-
gin with a brief overview and then describe each module in
detail. Assume we have an existing map (represented via a
set of 3D Gaussians) that has been fitted from a set of cam-
era frames 1 to t. Given a new RGB-D frame ¢ + 1, our
SLAM system performs the following steps (see Fig. 2):
(1) Camera Tracking. We minimize the image and depth
reconstruction error of the RGB-D frame with respect
to camera pose parameters for ¢ 4 1, but only evaluate
errors over pixels within the visible silhouette.
(2) Gaussian Densification. We add new Gaussians to the
map based on the rendered silhouette and input depth.

(3) Map Update. Given the camera poses from frame 1 to
t + 1, we update the parameters of all the Gaussians in
the scene by minimizing the RGB and depth errors over
all images up to 7+ 1. In practice, to keep the batch size
manageable, a selected subset of keyframes that overlap
with the most recent frame are optimized.

Initialization. For the first frame, the tracking step is
skipped, and the camera pose is set to identity. In the den-
sification step, since the rendered silhouette is empty, all
pixels are used to initialize new Gaussians. Specifically, for
each pixel, we add a new Gaussian with the color of that
pixel, the center at the location of the unprojection of that
pixel depth, an opacity of 0.5, and a radius equal to having
a one-pixel radius upon projection into the 2D image given
by dividing the depth by the focal length:

=20 ©)

Camera Tracking. Camera Tracking aims to estimate the
camera pose of the current incoming online RGB-D image.
The camera pose is initialized for a new timestep by a con-
stant velocity forward projection of the pose parameters in
the camera center + quaternion space. E.g. the camera pa-
rameters are initialized using the following:

Ep1 =E+(E —En) @)

The camera pose is then updated iteratively by gradient-
based optimization through differentiably rendering RGB,
depth, and silhouette maps, and updating the camera pa-
rameters to minimize the following loss while keeping the
Gaussian parameters fixed:

L= Z(S(p) > 0.99) (L1 (D(p)) +0.5L, (C(p))) ®)

Y

This is an L1 loss on both the depth and color renders, with
color weighted down by half. The color weighting is em-
pirically selected, where we observe the range of C(p) to
be [0.01, 0.03] & D(p) to be [0.002, 0.006]. We only apply
the loss over pixels that are rendered from well-optimized
parts of the map by using our rendered visibility silhouette
which captures the epistemic uncertainty of the map. This is
very important for tracking new camera poses, as often new
frames contain new information that hasn’t been captured
or well optimized in our map yet. The L1 loss also gives a
value of 0 if there is no ground-truth depth for a pixel.

Gaussian Densification. Gaussian Densification aims to
initialize new Gaussians in our Map at each incoming online
frame. After tracking we have an accurate estimate for the
camera pose for this frame, and with a depth image we have

21360

a good estimate for where Gaussians in the scene should
be. However, we don’t want to add Gaussians where the
current Gaussians already accurately represent the scene ge-
ometry. Thus we create a densification mask to determine
which pixels should be densified:

M(p) = (S(p) < 0.5) +

(Por(p) < D)) (L1 (D(p) > AMDE) (9)

This mask indicates where the map isn’t adequately dense
(§ <0.5), or where there should be new geometry in front of
the current estimated geometry (i.e., the ground-truth depth
is in front of the predicted depth, and the depth error is
greater than A times the median depth error (MDE), where
A is empirically selected as 50). For each pixel, based on
this mask, we add a new Gaussian following the same pro-
cedure as first-frame initialization.

Gaussian Map Updating. This aims to update the param-
eters of the 3D Gaussian Map given the set of online camera
poses estimated so far. This is done again by differentiable-
rendering and gradient-based-optimization, however unlike
tracking, in this setting the camera poses are fixed, and the
parameters of the Gaussians are updated.

This is equivalent to the “classic” problem of fitting a
radiance field to images with known poses. However, we
make two important modifications. Instead of starting from
scratch, we warm-start the optimization from the most re-
cently constructed map. We also do not optimize over all
previous (key)frames but select frames that are likely to in-
fluence the newly added Gaussians. We save each n'™ frame
as a keyframe and select k frames to optimize, including the
current frame, the most recent keyframe, and k — 2 previous
keyframes which have the highest overlap with the current
frame. Overlap is determined by taking the point cloud of
the current frame depth map and determining the number of
points inside the frustum of each keyframe.

This phase optimizes a similar loss as during tracking,
except we don’t use the silhouette mask as we want to opti-
mize over all pixels. Furthermore, we add an SSIM loss to
RGB rendering and cull useless Gaussians that have near 0
opacity or are too large, as done partly in [14].

4. Experimental Setup

Datasets and Evaluation Settings. We evaluate our ap-
proach on four datasets: ScanNet++ [49], Replica [35],
TUM-RGBD [36] and the original ScanNet [5]. The last
three are chosen in order to follow the evaluation pro-
cedure of previous radiance-field-based SLAM methods
Point-SLAM [30] and NICE-SLAM [54]. However, we
also add ScanNet++ [49] evaluation because none of the

other three benchmarks have the ability to evaluate render-
ing quality on hold out novel views and only evaluate cam-
era pose estimation and rendering on the training views.
Replica [35] is the simplest benchmark as it contains
synthetic scenes, highly accurate and complete (synthetic)
depth maps, and small displacements between consecutive
camera poses. TUM-RGBD [36] and the original Scan-
Net are harder, especially for dense methods, due to poor
RGB and depth image quality as they both use old low-
quality cameras. Depth images are quite sparse with lots
of missing information, and the color images have a very
high amount of motion blur. For ScanNet++ [49] we use
the DSLR captures from two scenes (8b5caf3398 (S1)
and b20a261fdf (S2)), where complete dense trajec-
tories are present. In contrast to other benchmarks, Scan-
Net++ color and depth images are very high quality, and
provide a second capture loop for each scene to evalu-
ate completely novel hold-out views. However, each cam-
era pose is very far apart from one another making pose-
estimation very difficult. The difference between consecu-
tive frames on ScanNet++ is about the same as a 30-frame
gap on Replica. For all benchmarks except ScanNet++, we
take baseline numbers from Point-SLAM [30]. Similar to
Point-SLAM, we evaluate every 5Sth frame for the training
view rendering benchmarking on Replica. Furthermore, for
all comparisons to prior baselines, we present results as the
average of 3 seeds (0-2) and use seed O for the ablations.

Evaluation Metrics. We follow all evaluation metrics for
camera pose estimation and rendering performance as [30].
For measuring RGB rendering performance we use PSNR,
SSIM and LPIPS. For depth rendering performance we use
Depth L1 loss. For camera pose estimation tracking we use
the average absolute trajectory error (ATE RMSE).

Baselines. The main baseline method we compare to
is Point-SLAM [30], the previous state-of-the-art (SOTA)
method for dense radiance-field-based SLAM. We also
compare to older dense SLAM approaches such as NICE-
SLAM [54], Vox-Fusion [46], and ESLAM [12] where ap-
propriate. Lastly, we compare against traditional SLAM
systems such as Kintinuous [42], ElasticFusion [43], and
ORB-SLAM2 [23] on TUM-RGBD, DROID-SLAM [39]
on Replica, and ORB-SLAM3 [3] on ScanNet++.

5. Results & Discussion

In this section, we first discuss our evaluation results on
camera pose estimation for the four benchmark datasets.
Then, we further showcase our high-fidelity 3D Gaus-
sian reconstructions and provide qualitative and quantitative
comparisons of our rendering quality (both for novel views
and input training views). Finally, we discuss pipeline abla-
tions and provide a runtime comparison.

21361

Methods Avg. S1 sS2

Point-SLAM [30] ~ 343.8 296.7 390.8
ORB-SLAM3 [3] 1582 156.8 159.7
SplaTAM 1.2 0.6 1.9

ScanNet++ [49]

frl/ frl/ frl/ fr2/ fr3/

Methods Ave. desk desk2 room xyz off.

Kintinuous [42] 484 370 7.10 7.50 290 3.00
ElasticFusion [43] 6.91 253 6.83 21.49 1.17 252
ORB-SLAM2 [23] 198 1.60 2.20 4.70 0.40 1.00

NICE-SLAM [54] 15.87 426 499 34.49 31.73 3.87
Vox-Fusion [46] 11.31 3.52 6.00 19.53 1.49 26.01
Point-SLAM [30] 8.92 4.34 454 3092 131 348
SplaTAM 548 335 654 11.13 124 5.6

TUM-RGBD [36]

Methods

Avg. RO R1 R2 Of0 Ofl Of2 Of3 Of4

DROID-SLAM [39] 0.38 0.53 0.38 0.45 0.35 0.24 0.36 0.33 0.43

Vox-Fusion [46]
NICE-SLAM [54] 1.06 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13

3.09 1.37 470 1.47 8.48 2.04 2.58 1.11 2.94

ESLAM [12] 0.63 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63
Point-SLAM [30] 0.52 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72
SplaTAM 0.36 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55
Replica [35]
Methods Avg. 0000 0059 0106 0169 0181 0207

Vox-Fusion [46] 26.90 68.84 24.18 8.41 27.28 23.30 9.41
NICE-SLAM [54] 10.70 12.00 14.00 7.90 10.90 13.40 6.20
Point-SLAM [30] 12.19 10.24 7.81 8.65 22.16 14.77 9.54
SplaTAM

11.88 12.83 10.10 17.72 12.08 11.10 7.46

Orig-ScanNet [5]

Table 1. Online Camera-Pose Estimation Results on Four Datasets (ATE RMSE |[cm]). Our method consistently outperforms all the
SOTA-dense baselines on ScanNet++, Replica, and TUM-RGBD, while providing competitive performance on Orig-ScanNet [5]. Best
results are highlighted as first , second , and third . Numbers for the baselines on Orig-ScanNet [5], TUM-RGBD [36] and Replica [35]

are taken from Point-SLAM [30].

Camera Pose Estimation Results. In Table 1, we com-
pare our method’s camera pose estimation results to a num-
ber of baselines on four datasets [5, 35, 36, 49].

On ScanNet++ [49], both SOTA SLAM approaches
Point-SLAM [30] and ORB-SLAM3 [3] (RGB-D variant)
completely fail to correctly track the camera pose due to the
very large displacement between contiguous cameras, and
thus give very large pose-estimation errors. In particular, for
ORB-SLAM3, we observe that the texture-less ScanNet++
scans cause the tracking to re-initialize multiple times due to
the lack of features. In contrast, our approach successfully
manages to track the camera over both sequences giving an
average trajectory error of only 1.2cm.

On the relatively easy synthetic Replica [35] dataset, the
de-facto evaluation benchmark, our approach reduces the
trajectory error over the prior SOTA-dense baseline [30]
by more than 30% from 0.52cm to 0.36cm. Furthermore,
SplaTAM provides better or competitive performance to a
feature-based tracking method such as DROID-SLAM [39].

On TUM-RGBD [36], all the volumetric methods strug-
gle immensely due to both poor depth sensor information
(very sparse) and poor RGB image quality (extremely high
motion blur). Compared to prior methods in this cate-
gory [30, 54], SplaTAM still significantly outperforms, de-
creasing the trajectory error of the prior SOTA in this cat-
egory [30] by almost 40%, from 8.92cm to 5.48cm. Also,
we observe that feature-based methods (ORB-SLAM?2 [23])
still outperform dense methods on this benchmark.

The original ScanNet [5] benchmark has similar issues
to TUM-RGBD, where no dense volumetric method is able
to obtain results with less than 10cm error & SplaTAM per-
forms similarly to the two prior SOTA methods [30, 54].

Overall these camera pose estimation results are ex-
tremely promising and show off the strengths of our
SplaTAM method. The results on ScanNet++ show that
if you have high-quality clean input images, our approach
can successfully and accurately perform SLAM even with
extremely large motions between camera positions, which
is not something that is possible with previous SOTA ap-
proaches such as Point-SLAM [30] and ORB-SLAM3 [3].

Rendering Quality Results. In Table 2, we evaluate our
method’s rendering quality on the input views of Replica
dataset [35] (as is the standard evaluation approach from
Point-SLAM [30] and NICE-SLAM [54]). Our approach
achieves similar PSNR, SSIM, and LPIPS results as Point-
SLAM [30], although the comparison is not fair as Point-
SLAM has the unfair advantage as it takes the ground-truth
depth of these images as an input for where to sample its 3D
volume for rendering. Our approach achieves much better
results than the other baselines Vox-Fusion [46] and NICE-
SLAM [54], improving over both by around 10dB in PSNR.

In general, we believe that the rendering results on
Replica in Table 2 are irrelevant because the rendering per-
formance is evaluated on the same training views that were
passed in as input, and methods can simply have a high ca-
pacity and overfit to these images. We only show this as this
is the de-facto evaluation for prior methods, and we wish to
have some way to compare against them.

Hence, a better evaluation is to evaluate novel-view ren-
dering. However, all current SLAM benchmarks don’t have
a hold-out set of images separate from the camera trajectory
that the SLAM algorithm estimates, so they cannot be used
for this purpose. Therefore, we set up a novel benchmark
for this using the new high-quality ScanNet++ [49] dataset.

21362

Methods Metrics Avg. RO R1 R2 O0Of0 Ofl 0Of2 O0Of3 0f4

PSNR 1 24.41 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21
SSIM1 0.80 0.68 0.75 0.80 0.86 0.88 0.79 0.80 0.85
LPIPS | 0.24 0.30 0.27 023 024 0.18 0.24 0.21 0.20

PSNR 1 24.42 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94
NICE-SLAM [54] SSIM 1 0.81 0.69 0.76 0.81 0.87 0.89 0.80 0.80 0.86
LPIPS | 0.23 0.33 0.27 0.21 0.23 0.18 024 021 0.20

PSNR 1 35.17 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49
Point-SLAM [30] SSIM 1 0.98 0.97 0.98 0.98 0.98 0.99 0.96 0.96 0.98
LPIPS | 0.12 0.11 0.12 0.11 0.10 0.12 0.16 0.13 0.14

PSNR 1 34.11 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81
SSIM T 097 098 097 098 098 098 0.97 0.95 0.95
LPIPS | 0.10 0.07 0.10 0.08 0.09 0.09 0.10 0.12 0.15

Vox-Fusion [46]

SplaTAM

Table 2. Quantitative Train View Rendering Performance on
Replica [35]. SplaTAM is comparable to the SOTA baseline,
Point-SLAM [30] and consistently outperforms the other dense
SLAM methods by a large margin. Numbers for the baselines
are taken from Point-SLAM [30]. Note that Point-SLAM uses
ground-truth depth for rendering.

The results for both novel-view and training-view ren-
dering on this ScanNet++ benchmark can be found in Ta-
ble 3. Our approach achieves a good novel-view synthe-
sis result of 24.41 PSNR on average and slightly higher on
training views with 27.98 PSNR. Note that for novel-view
synthesis, we use the ground-truth pose of the novel view
to align it with the origin of the SLAM map, i.e., the first
SLAM frame. Since Point-SLAM [30] fails to successfully
estimate the camera poses and build a good map, it also
completely fails on the task of novel-view synthesis.

We can also evaluate the geometric reconstruction of the
scene by evaluating the rendered depth and comparing it to
the ground-truth depth, again for both training and novel
views. Our method obtains an incredibly accurate recon-
struction with a depth error of only around 2cm in novel
views and 1.3cm in training views.

Visual results of both novel-view and training-view ren-
dering for RGB and depth can be seen in Fig. 3. As can
be seen, our methods achieve visually excellent results over
both scenes for both novel and training views. In contrast,
Point-SLAM [30] fails at camera-pose tracking and overfits
to the training views, and isn’t able to successfully render
novel views at all. Point-SLAM also takes the ground-truth
depth as an input for rendering to determine where to sam-
ple, and as such the depth maps look similar to the ground-
truth, while color rendering is completely wrong.

With this novel benchmark that is able to correctly eval-
uate Novel-View Synthesis and SLAM simultaneously, as
well as our approach as a strong initial baseline for this
benchmark, we hope to inspire many future approaches that
improve upon these results for both tasks.

Color and Depth Loss Ablation. Our SplaTAM involves
fitting the camera poses (during tracking) and the scene
map (during mapping) using both a photometric (RGB) and

Novel View Training View

Methods Avg. sl 52 Avg. sl S2

Metrics

PSNR [dB]+ 1191 12.10 11.73 1446 14.62 14.30
SSIM 028 031 026 038 035 041
LPIPS | 068 0.62 074 0.65 068 0.62

Depth L1 [cm] | X X X X X X

Point-SLAM [30]

PSNR [dB] 1 2441 2399 2484 2798 27.82 28.14
SSIM 1 0.88 088 087 094 094 094
SplaTAM LPIPS | 024 021 026 012 012 013

Depth L1 [ecm] | 2.07 191 223 128 093 1.64

Table 3. Novel & Train View Rendering Performance on Scan-
Net++ [49]. SplaTAM provides high-fidelity performance on both
training views seen during SLAM and held-out novel views from
any camera pose. On the other hand, Point-SLAM [30] requires
ground-truth depth & performs poorly.

Track. Map. Track. Map. ATE Dep. L1 PSNR
Color Color Depth Depth [cm]] [em]] [dB]T
X X 86.03 X X

X X 1.38 12.58 31.30

0.27 0.49 32.81

Table 4. Color & Depth Loss Ablation on Replica/Room 0.

Velo. Sil. Sil. ATE Dep. L1 PSNR
Prop. Mask Thresh. [cm]) [cm]) [dB]T
X 0.99 2.95 2.15 25.40
X 0.99 115.80 0.29 14.16

0.5 1.30 0.74 31.36

0.99 0.27 0.49 32.81

Table 5. Camera Tracking Ablations on Replica/Room 0.

depth loss. In Table 4, we ablate the decision to use both and
investigate the performance of only one or the other for both
tracking and mapping. We do this using Room 0 of Replica.
With only depth our method completely fails to track the
camera trajectory, because the L1 depth loss doesn’t pro-
vide adequate information in the x-y image plane. Using
only an RGB loss successfully tracks the camera trajectory
(although with more than 5x the error as using both). Both
the RGB and depth work together to achieve excellent re-
sults. With only the color loss, reconstruction PSNR is re-
ally high, only 1.5 PSNR lower than the full model. How-
ever, the depth L1 is much higher using only color vs di-
rectly optimizing this depth error. In the color-only experi-
ments, the depth is not used for tracking & mapping, but it
is used for the densification and initialization of Gaussians.

Camera Tracking Ablation. In Table 5, we ablate three
aspects of our camera tracking: (1) the use of forward ve-
locity propagation, (2) the use of a silhouette mask to mask
out invalid map areas in the loss, and (3) setting the silhou-
ette threshold to 0.99 instead of 0.5. All three are critical
to excellent results. Without forward velocity propagation,
tracking still works, but the overall error is more than 10x
higher, which subsequently degrades the map and render-

21363

Ours PS [30]

GT

S1 S2
Novel View

S1 S2
Train View

Figure 3. Renderings on ScanNet++ [49]. Our method, SplaTAM, renders color & depth for the novel & train views with fidelity
comparable to the ground truth. It can also be observed that Point-SLAM [30] fails to provide good renderings on both novel & train view
images. Note that Point-SLAM (PS) uses the ground-truth depth to render the train & novel view images. Despite the use of ground-truth
depth, the failure of PS can be attributed to the failure of tracking as shown in Tab. 1.

Methods Tracking Mapping Tracking Mapping ATE RMSE

/teration /Iteration /Frame /Frame [cm] |
NICE-SLAM [54] 30 ms 166 ms 1.18 s 2.04s 0.97
Point-SLAM [30] 19 ms 30 ms 0.76 s 450s 0.61
SplaTAM 25 ms 24 ms 1.00 s 1.44s 0.27
SplaTAM-S 19 ms 22 ms 0.19s 0.33s 0.39

Table 6. Runtime on Replica/R0 using a RTX 3080 Ti.

ing. Silhouette is critical as without it tracking completely
fails. Setting the silhouette threshold to 0.99 allows the loss
to be applied on well-optimized pixels in the map, thereby
leading to an important 5x reduction in the error compared
to the threshold of 0.5, which is used for the densification.

Runtime Comparison. In Table 6, we compare our run-
time to NICE-SLAM [54] and Point-SLAM [30] on a
Nvidia RTX 3080 Ti. Each iteration of our approach ren-
ders a full 1200x980 pixel image (~1.2 mil pixels) to apply
the loss for both tracking and mapping. Other methods use
only 200 pixels for tracking and 1000 pixels for mapping
each iteration (but attempt to cleverly sample these pixels).
Even though we differentiably render 3 orders of magnitude
more pixels, our approach incurs similar runtime, primarily
due to the efficiency of rasterizing 3D Gaussians. Addi-
tionally, we show a version of our method with fewer iter-
ations and half-resolution densification, SplaTAM-S, which
works 5x faster with only a minor degradation in perfor-
mance. In particular, SplaTAM uses 40 and 60 iterations
per frame for tracking & mapping respectively on Replica,
while SplaTAM-S uses 10 and 15 iterations per frame.

Limitations & Future Work. Although SplaTAM
achieves state-of-the-art performance, we find our method
to show some sensitivity to motion blur, large depth noise,
and aggressive rotation. We believe a possible solution
would be to temporally model these effects and wish
to tackle this in future work. Furthermore, SplaTAM

can be scaled up to large-scale scenes through efficient
representations like OpenVDB [24]. Finally, our method
requires known camera intrinsics and dense depth as input
for performing SLAM, and removing these dependencies is
an interesting avenue for the future.

6. Conclusion

We present SplaTAM, a novel SLAM system that leverages
3D Gaussians as its underlying map representation to enable
fast rendering and dense optimization, explicit knowledge
of map spatial extent, and streamlined map densification.
We demonstrate its effectiveness in achieving state-of-the-
art results in camera pose estimation, scene reconstruction,
and novel-view synthesis. We believe that SplaTAM not
only sets a new benchmark in both the SLAM and novel-
view synthesis domains but also opens up exciting avenues,
where the integration of 3D Gaussian Splatting with SLAM
offers a robust framework for further exploration and inno-
vation in scene understanding. Our work underscores the
potential of this integration, paving the way for more so-
phisticated and efficient SLAM systems in the future.

Acknowledgments. This work was supported in part by the Intelligence
Advanced Research Projects Activity (IARPA) via Department of Interior/
Interior Business Center (DOI/IBC) contract number 140D0423C0074.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied, of IARPA,
DOI/IBC, or the U.S. Government. This work used Bridges-2 at PSC
through allocation cis220039p from the Advanced Cyberinfrastructure Co-
ordination Ecosystem: Services & Support (ACCESS) program which is
supported by NSF grants #2138259, #2138286, #2138307, #2137603, and
#213296, and also supported by a hardware grant from Nvidia.

The authors thank Yao He for his support with testing ORB-SLAM3 &
Jeff Tan for testing the code & demos. We also thank Chonghyuk (Andrew)
Song, Margaret Hansen, John Kim & Michael Kaess for their insightful
feedback & discussion on initial versions of the work.

21364

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan
Leutenegger, and Andrew J Davison. Codeslam—Ilearning
a compact, optimisable representation for dense visual slam.
In CVPR, 2018. 2

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309-1332, 2016. 1,2
Carlos Campos, Richard Elvira, Juan J Gémez Rodriguez,
José MM Montiel, and Juan D Tardés. Orb-slam3: An accu-
rate open-source library for visual, visual-inertial, and mul-
timap slam. [EEE Transactions on Robotics, 37(6):1874—
1890, 2021. 1, 5,6

Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303-312, 1996. 1

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niefiner. ScanNet:
Richly-annotated 3D reconstructions of indoor scenes. In
Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE/CVF, 2017. 5, 6

Angela Dai, Matthias NieBner, Michael Zollofer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM Transactions on Graphics 2017 (TOG),
2017. 1,2

Andrew J Davison, Ian D Reid, Nicholas D Molton, and
Olivier Stasse. Monoslam: Real-time single camera slam.
IEEE transactions on pattern analysis and machine intelli-
gence, 29(6):1052-1067, 2007. 1

Jakob Engel, Thomas Schops, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In European con-
ference on computer vision, pages 834—-849. Springer, 2014.
1

Kshitij Goel and Wennie Tabib. Incremental multimodal sur-
face mapping via self-organizing gaussian mixture models.
IEEE Robotics and Automation Letters, 8(12):8358-8365,
2023. 2

Kshitij Goel, Nathan Michael, and Wennie Tabib. Probabilis-
tic point cloud modeling via self-organizing gaussian mix-
ture models. IEEE Robotics and Automation Letters, 8(5):
2526-2533, 2023. 2

Xiao Han, Houxuan Liu, Yunchao Ding, and Lu Yang. Ro-
map: Real-time multi-object mapping with neural radiance
fields. arXiv preprint arXiv:2304.05735, 2023. 3
Mohammad Mahdi Johari, Camilla Carta, and Frangois
Fleuret. Eslam: Efficient dense slam system based on hybrid
representation of signed distance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17408-17419, 2023. 5, 6

Maik Keller, Damien Lefloch, Martin Lambers, Shahram
Izadi, Tim Weyrich, and Andreas Kolb. Real-time 3d re-
construction in dynamic scenes using point-based fusion. In
2013,2013. 1,2

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

21365

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4),2023. 1,2,3,4,5

Christian Kerl, Jiirgen Sturm, and Daniel Cremers. Robust
odometry estimation for rgb-d cameras. In /CRA, 2013. 1,2
Leonid Keselman and Martial Hebert. Approximate differ-
entiable rendering with algebraic surfaces. In European Con-
ference on Computer Vision. Springer, 2022. 3

Leonid Keselman and Martial Hebert. Flexible techniques
for differentiable rendering with 3d gaussians. arXiv preprint
arXiv:2308.14737,2023. 3

Xin Kong, Shikun Liu, Marwan Taher, and Andrew J Davi-
son. vmap: Vectorised object mapping for neural field slam.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 952-961, 2023. 3
Heng Li, Xiaodong Gu, Weihao Yuan, Luwei Yang, Zilong
Dong, and Ping Tan. Dense rgb slam with neural implicit
maps. arXiv preprint arXiv:2301.08930, 2023. 3

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713,2023. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021. 1,
2

Yuhang Ming, Weicai Ye, and Andrew Calway. idf-slam:
End-to-end rgb-d slam with neural implicit mapping and
deep feature tracking. arXiv preprint arXiv:2209.07919,
2022. 3

Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An
Open-Source SLAM System for Monocular, Stereo, and
RGB-D Cameras. [EEE Transactions on Robotics, 33(5):
1255-1262,2017. 1,5, 6

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron
Henderson, Mihai Alden, Peter Cucka, David Hill, and An-
drew Pearce. Openvdb: An open-source data structure and
toolkit for high-resolution volumes. In ACM SIGGRAPH
Courses, 2013. 8

Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W
Fitzgibbon. Kinectfusion: Real-time dense surface mapping
and tracking. In ISMAR, 2011. 1,2,3

Richard A Newcombe, Steven J Lovegrove, and Andrew J
Davison. Dtam: Dense tracking and mapping in real-time.
In 2011 international conference on computer vision, pages
2320-2327. 1EEE, 2011. 1,2

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland
Siegwart, and Juan Nieto. Voxblox: Incremental 3d eu-
clidean signed distance fields for on-board mav planning.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1366—-1373. IEEE, 2017.
3

Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

isdf: Real-time neural signed distance fields for robot per-
ception. arXiv preprint arXiv:2204.02296, 2022. 3

Antoni Rosinol, John J Leonard, and Luca Carlone. Nerf-
slam: Real-time dense monocular slam with neural radiance
fields. arXiv preprint arXiv:2210.13641,2022. 1, 3

Erik Sandstrom, Yue Li, Luc Van Gool, and Martin R Os-
wald. Point-slam: Dense neural point cloud-based slam. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 18433-18444, 2023. 1,2, 3, 5, 6, 7,
8

Erik Sandstrom, Kevin Ta, Luc Van Gool, and Martin R Os-
wald. Uncle-slam: Uncertainty learning for dense neural
slam. arXiv preprint arXiv:2306.11048, 2023. 3

Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L
Schonberger, Pablo Speciale, Lukas Gruber, Viktor
Larsson, Ondrej Miksik, and Marc Pollefeys. Lamar:

Benchmarking localization and mapping for augmented
reality. In European Conference on Computer Vision, pages
686-704. Springer, 2022. 2

Thomas Schops, Torsten Sattler, and Marc Pollefeys.
BAD SLAM: Bundle adjusted direct RGB-D SLAM. In
CVF/IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

Frank Steinbriicker, Jirgen Sturm, and Daniel Cremers.
Real-time visual odometry from dense rgb-d images. In
ICCV Workshops, 2011. 1,2

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 5,6,7

Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of RGB-D SLAM systems. In International Conference
on Intelligent Robots and Systems (IROS). IEEE/RSJ, 2012.
5,6

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. imap: Implicit mapping and positioning in real-time. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6229-6238, 2021. 1, 2

K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam:
Real-time dense monocular slam with learned depth predic-
tion. In CVPR, 2017. 2

Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. Advances in neu-
ral information processing systems, 2021. 5, 6

Angtian Wang, Peng Wang, Jian Sun, Adam Kortylewski,
and Alan Yuille. Voge: a differentiable volume renderer
using gaussian ellipsoids for analysis-by-synthesis. In The
Eleventh International Conference on Learning Representa-
tions, 2022. 3

Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-
slam: Joint coordinate and sparse parametric encodings for
neural real-time slam. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13293-13302, 2023. 3

Thomas Whelan, Michael Kaess, Hordur Johannsson, Mau-
rice Fallon, John J Leonard, and John McDonald. Real-time

(43]

[44]

(45]

[46]

(47]

(48]

[49]

(501

(51]

(52]

(53]

[54]

[55]

21366

large-scale dense rgb-d slam with volumetric fusion. The In-
ternational Journal of Robotics Research, 34(4-5):598-626,
2015.1,2,5,6

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno,
Ben Glocker, and Andrew Davison. Elasticfusion: Dense
slam without a pose graph. In Robotics: Science and Sys-
tems, 2015. 1,2,5,6

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 3

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438-5448, 2022. 3

Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqgian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation. In
IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 499-507. IEEE, 2022. 1, 5, 6, 7
Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 3

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642,2023. 3

Chandan Yeshwanth, Yueh-Cheng Liu, Matthias NieBner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-
door scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12-22,2023. 5, 6, 7,
8,1

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Ouztireli,
and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions on
Graphics (TOG), 38(6):1-14, 2019. 2

Wei Zhang, Tiecheng Sun, Sen Wang, Qing Cheng, and Nor-
bert Haala. Hi-slam: Monocular real-time dense mapping
with hybrid implicit fields. arXiv preprint arXiv:2310.04787,
2023. 3

Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and
Andrew J Davison. Scenecode: Monocular dense semantic
reconstruction using learned encoded scene representations.
In CVPR, 2019. 2

Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018. 2
Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12786-12796, 2022. 2, 5,6, 7, 8, 1
Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui,
Martin R Oswald, Andreas Geiger, and Marc Pollefeys.
Nicer-slam: Neural implicit scene encoding for rgb slam.
arXiv preprint arXiv:2302.03594, 2023. 1, 3

