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Abstract

We present WinSyn, a unique dataset and testbed for cre-

ating high-quality synthetic data with procedural model-

ing techniques. The dataset contains high-resolution pho-

tographs of windows, selected from locations around the

world, with 89,318 individual window crops showcasing di-

verse geometric and material characteristics. We evaluate

a procedural model by training semantic segmentation net-

works on both synthetic and real images and then compar-

ing their performances on a shared test set of real images.

Specifically, we measure the difference in mean Intersection

over Union (mIoU) and determine the effective number of

real images to match synthetic data’s training performance.

We design a baseline procedural model as a benchmark and

provide 21,290 synthetically generated images. By tuning

the procedural model, key factors are identified which sig-

nificantly influence the model’s fidelity in replicating real-

world scenarios. Importantly, we highlight the challenge of

procedural modeling using current techniques, especially in

their ability to replicate the spatial semantics of real-world

scenarios. This insight is critical because of the potential of

procedural models to bridge to hidden scene aspects such

as depth, reflectivity, material properties, and lighting con-

ditions.

1. Introduction

Larger and more sophisticated machine learning models de-

mand an ever-increasing supply of data, particularly in tasks

where manual annotation is challenging, such as depth es-

timation, reflectance estimation, or full 3D reconstruction.

One solution is to use procedural models to generate syn-

thetic training data. However, creating procedural models

that accurately reflect the domain of real images (i.e. clos-

ing the domain gap) remains an open problem. Despite the

visual realism of many synthetic scenes, their effectiveness

in machine-learning applications often falls short. In this

work we do not close the gap – but present an accessible pair

of real and synthetic datasets, with annotations, in which

this domain gap may be studied without massive resources.

While the final goal is to tackle complex problems, a

straightforward proxy task is initially required to ensure that

real-world imagery can be manually annotated and com-

pared to synthetic imagery. We, therefore, propose segmen-

tation as a proxy task. This proxy task helps pinpoint where

a procedural model fails to capture the diversity and nuances

of real-world scenes.

As our long-term goal is procedural urban modeling, we

initially considered street-view images and datasets, such

as CityScapes [12]. However, this has several drawbacks.

Modeling arbitrary urban scenes realistically requires over-

whelming complexity; requiring modeling at least cars, hu-

mans, buildings, skies, and vegetation, and each of these

poses quite distinct and complex modeling challenges. For
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Figure 1. Photographers in 28 geographic regions captured real-

world photos (a) of windows that are cropped (b) to single win-

dows, which are then labeled (c). Synthetic windows are rendered

giving color (f) and labels(d), while other passes such as depth (e)

are also possible.
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example, modeling urban environments for video games is

a significant undertaking that often requires over 100 artists

for open-world games. This type of effort is unrealistic for

procedural modeling research. We propose that it is more

promising to identify a simpler subset of images and de-

velop a more constrained procedural model for this subset.

This should enable faster iterations and broader participa-

tion in procedural modeling research, before scaling up to

complete cities.

The decision to study the domain of window images was

based on the following design principles for our dataset:

Diversity: Our goal is to capture a range of variations in

both geometry and materials. We opted against humans due

to the complexities in modeling realistic fine geometric de-

tails (like hair and beard) and materials (such as skin), and

the limited topological variations. Although humans have

been used for synthetic data studies as demonstrated in [39],

exploration in this domain is complicated because the pro-

cedural model was not released and high-fidelity models

such as Unreal Metahumans by Epic Games [15] tend to

prioritize realism over variability. Plants, another option,

present challenges in material diversity and are difficult for

human annotators to segment. Windows, in contrast, offers

a balanced combination of geometric complexity and mate-

rial variation suitable for our research goals.

High-resolution: The images in the dataset should be

high resolution to make the dataset useful for the near and

medium-term future. This is in contrast to existing archi-

tectural datasets, with resolutions typically in the 512-1025

pixel range [5, 6, 25, 33]. While these are not low resolu-

tion in typical computer vision terms, architectural features

such as windows are often too small to resolve in the im-

ages. Although the CityScapes dataset is larger than most,

with a resolution of 2048 × 1024 pixels, it often captures

architecture from oblique viewpoints limiting the effective

resolution.

Image Rights: We would like to have all rights to the

images to avoid future copyright problems.

To explore this problem, we introduce a specialized

dataset that bridges real-world architectural imagery and

procedurally-generated images, with a particular focus on

window designs. Our dataset, comprising 89,318 windows

in 75,739 high-resolution (4K to 6K) and RAW images, not

only matches the scale of established datasets like CelebA-

HQ and FFHQ but also offers a unique niche with an em-

phasis on architectural details and high resolutions.

Our dataset is designed not just to advance synthetic data

generation, but also to facilitate diverse research avenues.

Our primary contributions1 are:

1Available online https://twak.github.io/winsyn

1. Real-World Imagery: A 4K resolution dataset with

75,739 photos of windows from global locations, offer-

ing unprecedented detail for architectural research.

2. Hand-Annotated Labels: Segmentation labels for

9,002 images.

3. A Procedural Model: A novel procedural model for

windows, underscoring key design choices for synthetic

data generation.

4. Synthetic Data and Labels: A diverse set of 21,290

synthetic window images, mirroring features observed

in real imagery.

Additionally, we conduct extensive experiments and ab-

lations to understand the impact of various features in our

synthetic dataset on segmentation performance.

2. Related Work

Several datasets of architectural imagery have been cre-

ated, enabling applications such as architectural style clas-

sification [2, 9, 40], building functional use classifica-

tion [21, 41], architectural heritage classification [27], land-

mark identification [31], or urban scene matching [18].

Notably, datasets that support image synthesis or image

segmentation have been instrumental in advancing these

fields. For instance, the FaSyn13 dataset [13] consists of

200 façade images for texture synthesis, but its size is lim-

ited for modern generative models. Similarly, the LSAA

dataset [42] includes 199,723 façade images and 516,000

cropped window images. However, the resolution of these

cropped windows varies, with the majority being less than

100 pixels in the longest dimension.

In comparison, extensive collections like MS

COCO [26] and LAION [35] offer a broader range

but with challenges in resolution and scene variety. For

instance, the sheer diversity in LAION’s 9.8 million

1K-resolution images presents significant challenges for a

single procedural model, highlighting the need for focused

datasets. Our dataset addresses this by providing high-

resolution window images, offering a specialized resource

for detailed architectural analysis and procedural modeling.

Our windows-focused dataset, while containing fewer

windows than LSAA, stands out as the highest-resolution

dataset of window images known to us, with an average res-

olution of 4,000 pixels per side for cropped windows. This

high-resolution focus, particularly in the 4K to 6K range,

fills a unique niche in architectural and synthetic-to-real do-

main transfer research. Our dataset’s specialization in high-

resolution architectural elements, especially windows, of-

fers a valuable resource for advancing procedural modeling,

emphasizing the importance of detail and precision.

Several architectural image datasets supporting seman-

tic segmentation or façade parsing exist, though not specif-

ically focused on windows. The Graz dataset [33] contains

50 rectified images, and the eTRIMS datset [25] contains 60
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non-rectified images. The CMP-Facade dataset [36] con-

tains 606 images, with about half of them fairly high reso-

lution (1,024 pixels on the long edge) but a limited diver-

sity of image locations. The LabelMe-Facade dataset [5]

has the largest number of images at 945, with each image

varying in size between 512 and 768 pixels on a side. How-

ever, these datasets do not have the number of images nor

the resolution that are desirable for training the latest com-

puter vision methods, which increasingly require more de-

tailed and high-resolution data. With 9,002 labeled images

at four times the resolution of these datasets, our proposed

dataset of real-world images is an order of magnitude larger.

By concentrating exclusively on windows, our dataset offers

unprecedented detail and specificity, enabling more precise

and effective models for architectural element analysis.

Various authors have attempted to use synthetically gen-

erated data to bootstrap performance on real images. This

approach seems to work best in domains where the human

annotation is not directly feasible, such as reinforcement

learning, especially for driving applications [14], depth or

optical flow [8, 16], or 6DoF pose estimation for robotic

grasping or manipulation [19, 24, 37].

Infinigen [32] is a good example of a procedural model,

however, there is no validation of the effectiveness of the

model for machine learning tasks. Of particular note is

the SynthIA dataset [34], a driving dataset built on video

game technology specifically designed to support seman-

tic segmentation in urban environments. A very large en-

gineering effort went into this, as well as CARLA [14],

and we believe that reproducing such high-quality synthetic

data is out of reach for most academic teams. Similar to

our dataset, SynthIA aims at pushing the envelope to use

synthetic data to improve computer vision even for prob-

lems where large human-annotated datasets (KITTI [28],

LabelME-Facade [6], Camvid [4]) already exist. Similar to

our findings, they can get some results from purely synthetic

data, but they cannot out-compete even relatively small real-

world labeled images, but by combining synthetic and real

at a 4:6 ratio they obtain their best results. However, unlike

SynthIA, our segmentation challenge is more constrained

(only windows) and we think would require fewer resources

for academic researchers to develop competing procedural

models for synthetic training. Although buildings are vis-

ible in these datasets, they are not focused on architecture.

Domain transfer for architecture is challenging due to the

amount of variety and complex dependencies between ar-

chitectural elements, whereas the categories of objects rel-

evant in driving scenes are much more clearly defined. In

addition, the high resolution of the images we use makes

the synthesis of realistic textures and precise object bound-

aries critical, and the higher-capacity segmentation models

of today vs. 2016 (when SynthIA was published) are more

precise but may also be more likely to overfit synthetic data.

Figure 2. Samples from the 75,739 photographs in the dataset.

Each column shows a variety of examples of windows from dif-

ferent geographic locations. From left to right: Chicago (USA),

Cambridge (UK), Bangkok (Thailand), Cairo (Egypt), and Vienna

(Austria). The dataset has a variety of window shapes and archi-

tectural styles.

Our dataset of real and synthetic imagery is unique as a

high-resolution, voluminous dataset and serves as a prov-

ing ground for synthetic to real training, image generation,

and semantic segmentation tasks.

To our knowledge, the most successful work on using

synthetic data for segmentation is the ‘Fake It Till You Make

It’ paper by Wood et al. [39], which reports improvements

in segmentation when a U-Net is trained using their syn-

thetic data vs. real image. However, to get these improved

results, they used label adaptation, a technique that requires

real labeled data. This is counter to our goals for using

synthetic data for domains where labels are scarce. They

do not report segmentation results without label adaptation,

but they do show in their ablation study on landmark local-

ization that label adaptation is critical for benefiting from

synthetic data.

3. Real-Windows Dataset

In line with our goal of advancing procedural modeling, our

dataset is curated to offer high-resolution, diverse imagery

essential for developing and evaluating procedural models.

Our dataset, comprising over 75,739 high-resolution images

(up to 4K×6K), is one of the largest and most detailed col-

lections of window imagery available. Unlike other datasets

sourced from the web or Flickr [22, 23], we hold complete

copyright ownership of every image, ensuring legal clarity

and flexibility for research use2.

The dataset’s diversity in location, viewpoint, and archi-

2While the datasets we referenced use images under permissive li-

censes, owning our images outright simplifies usage rights.
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wall window-frame window-pane wall-frame misc-object blind

Figure 3. Examples of the labels used to annotate our data. Each instance receives its own polygon. The reader may wish to zoom into the

figure for details.

tectural style, was achieved through a global effort. We

engaged photographers from various countries, primarily

hired via Upwork, to capture a wide array of window de-

signs. This global collection effort ensures our dataset rep-

resents a broad spectrum of cultural and architectural di-

versity. This diversity is crucial for procedural models

to learn and adapt to a wide range of architectural styles,

directly supporting our goal of creating versatile and re-

alistic models. Each image was chosen to highlight the

window’s design and architectural context, ensuring clear,

distraction-free, and well-framed shots. The emphasis was

on professional-grade photography with a focus on 4K res-

olution, achieving at least 2K pixels across each window,

and taken during the day to ensure balanced exposure and

minimal noise.

In curating this collection, we also prioritized ethi-

cal considerations, instructing photographers to avoid cap-

turing private situations or sensitive locations. Over 12

months, this project involved hiring 30 photographers and

incurring costs of US $0.20-$0.50 per image, in addition to

our quality control and subcontract management expenses.

The diversity of image locations is indicated in Table 1 of

the Appendix, along with the number of images that include

semantic segmentation labels and RAW camera data. The

RAW camera data’s higher bit-depth could be particularly

valuable for future procedural modeling research, offering

richer information for model training and evaluation.

Many photos included multiple windows. We manually

annotated crops in each image as a region that includes a

single window in the center, along with any portion of the

wall that may have been adapted to the window (such as

brickwork or molding) and a portion of the wall on all four

sides of the window. Due to this cropping, window im-

ages are in a variety of sizes, as shown in Appendix Fig. 2.

We store the original images and the cropping information

separately and generate a cropped version of the dataset on

demand.

Each image has been carefully cropped and then anno-

tated to focus on a single window and its immediate archi-

tectural context, as illustrated in Fig. 3. The annotations

are designed to test if procedural models accurately repli-

cate real-world architectural elements. The cropped win-

Label Images Using Area %

wall 8907 43.02%

window pane 8362 22.58%

wall frame 8697 14.91%

window frame 8681 9.71%

unlabeled 2994 3.09%

shutter 931 2.56%

balcony 973 1.08%

misc object 2357 1.07%

blind 375 0.75%

bars 679 0.68%

open-window 977 0.55%

Table 1. The labels used, their frequency of use, and percentage

by area for the square-cropped dataset used for our experiments.

We note that the dataset is a mix of well-used labels such as wall

and less-used ones, such as blind or bar. The ‘unlabeled‘ category

contained areas beyond the building (e.g., sky, streets) and a much

smaller number of ambiguous areas where we could not reach a

decision on how to label a feature.

dow images also underwent a manual annotation process for

panoptic segmentation, and subsequent review for quality

assurance, leading to the acquisition of 9,002 annotations

at an average cost of US $3.90 per image. While manage-

able, this cost notably exceeds image acquisition expenses,

underscoring the value of methods that reduce reliance on

labor-intensive labeled data for segmentation tasks. A de-

tailed account of the annotation process is presented in Sec-

tion 5.

The WinSyn dataset serves as a foundational step to-

wards our larger goal of procedural urban modeling, offer-

ing a comprehensive and detailed resource for both current

and future research in this domain.

4. Procedural Model Development

In developing our procedural model, we aim to create a

realistic synthetic dataset with the ability to produce vari-

ations (ablations and experiments) for evaluation against

real-world data. The compact domain (windows are rela-

tively simple to model) allows well-developed approaches

to be used to create the scene geometry including Split
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Shape Grammars [38] and the CGA language [29], com-

bined with Bézier splines for curved window shapes. This

approach ensures that our model can generate a wide range

of architectural styles and window designs closely resem-

bling real-world distributions. The canonical orientation of-

fered by windows as a domain allows a layered approach to

geometry generation, as Appendix Fig.11: from the cam-

era, we generate street clutter (e.g., cars, bollards, shrubs),

wall decorations (shutters, balconies, pipes) exterior walls,

window geometry, window dressing (blinds, curtains), and

interior geometry.

The procedural modeling pipeline, developed in Python,

Blender [11], and rendered with the physically based Cy-

cles [3] renderer is used to generate a diverse dataset of

21,290 synthetic window images with corresponding labels

(as Appendix Fig. 4). Normal, depth (Fig. 1), and edge

maps are optionally generated. The model was designed

to prioritize diversity, making use of domain randomization

to extend beyond typical real-world variations.

The procedural model’s core uses two varieties of Split

Grammar. The first, utilizing the CGA language, was em-

ployed to subdivide the volume to create the building mass,

façades, shutters, blinds, balconies, roof, and window-

bounds. From these window-bounds, a second Split Shape

Grammar creates the window shapes themselves, using

Bèzier spline curves to capture various geometries, such as

trapezoid, arched, or circular windows. This grammar sub-

divides closed curves to create nested window frames and

offsets them to create individual glass panes. The frame ge-

ometry is created by extruding a profile along each Bèzier.

The profiles are selected from a randomly selected hierar-

chy of profiles. Parts of the window geometry hierarchy

can be translated and rotated to ‘open’ windows by slid-

ing or hinged mechanisms. This multi-grammar approach

allows for detailed and varied window designs, while the

generation remains algorithmically robust at scale.

The procedural model is highly parameterized, with the

number of parameters ranging from 216 to 21,735 in our

dataset, depending on the chosen sequence of randomly-

sampled rules in the grammars. We observe that optionally

reusing parameters between parts of the model can improve

visual realism; for example, we see window frames shar-

ing their material (paint or stucco) with walls, or adjacent

windows having similar (but not identical) materials. In the

analysis section below we vary the distributions of these pa-

rameters to ablate and experiment on our procedural model

and identify the most performant factors, including materi-

als, textures, geometry, camera position, and lighting.

Textures are primarily procedural shaders [7], control-

ling materials such as wood, brick, or glass applied to ap-

propriate object classes. To add realism, we captured ex-

terior clutter, such as building signage, vehicles, and trash

cans, through a number of sources, including pre-existing

datasets and LiDAR/RGB scanning (Appendix Fig. 12)

with bitmap textures.

Scene lighting is supplied by a combination of skybox

emission, sun-lamp, and optional interior sources. We use

interior and exterior panoramic images for the skybox and

interior-box to create realistic background environments for

our geometry. The camera is strategically positioned in

order to capture the entire window from a predominantly

frontal view; we use a variety of camera distances and adjust

the field of view to frame the target window in the façade.

Additional details of the procedural model can be found in

Appendix Section 6.

5. Estimating Procedural Model Quality

We use semantic segmentation as a benchmark to evaluate

the quality of a procedural model. This method involves

training segmentation models on labeled images generated

from the procedural model, evaluating model performances

on a holdout (test) set of labeled real-world images, and

providing a robust measure of the synthetic data’s ability to

accurately reflect real-world scenarios.

For this approach to be successful, we must align our se-

mantic labels with both real-world images and images gen-

erated by a procedural model. We established ten broad cat-

egories such as ‘window-pane’, ‘window-frame’, and ‘wall

frame’ (see Appendix Section 7.7). This categorization

mirrors the elements that our procedural model can real-

istically generate. Furthermore, we label each unique in-

stance within the images, as demonstrated in Fig. 3, making

the data suitable for panoptic segmentation even though we

only evaluate the semantic segmentation task. This detailed

set of labels extends traditional segmentation datasets,

which typically provide a single ‘window’ label, with oc-

casional additions like ‘shutter’ or ‘blind’ [6, 25, 36]. Our

labeling allows consistent annotation across varied architec-

tural styles but also ensures compatibility with the capabil-

ities of procedural modeling.

When utilizing mIoU to evaluate procedural model per-

formance, inspecting plots such as Figures 6 and 7 can be

insightful. These visual analyses aid in identifying param-

eters that optimize the model’s performance. Additionally,

Spearman’s rank correlation is applied to quantify the im-

pact of changes in model parameters (such as textures and

lighting) on the synthetic image quality.

6. Analysis

In all following experiments, we fine-tune a BEiT ‘base’

model that was pre-trained on ImageNet-1k, trained on

ImageNet-21k, and fine-tuned on data from some varia-

tion of our procedural model. We evaluated the mIoU over

10 labels, excluding the ‘unlabeled’ category. All cropped

window-images are resized to 512 pixels square; examples
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Figure 4. Left: histogram of per-image mIoUs showing the distribution of labeling results for a model trained on n = 2,048 synthetic

(s) and real (r) images. We also show the difference between the model mIoU’s per image (r-s). The mIoU was evaluated on 4,906 real

images. Right: random samples of the labeling quality for networks trained on real and synthetic data; the first sample with an mIoU above

each decile was selected.

are shown in Fig. 4.

The performance of our procedural model is best un-

derstood in the context of regional performance disparities

within real-world data. We contextualize the procedural

model by comparing it to subsets from various regions of

real-world data in Table 2 shows. Each set consists of 1,024

training images and 300 test images. Models trained on

synthetic data have a narrower performance range (29.33

to 35.02 mIoU) compared to those trained on locale-specific

data (25.23 to 61.85 mIoU). Notably, synthetic data can sur-

pass real data from a different locale, as seen in the com-

parison of England and Egypt results. This narrower range

seems to indicate synthetic data has not over-fit any partic-

ular region. The overall mIoU gap on the global dataset

underscores the procedural model’s limitations. The com-

bined training set of real-world images evaluated to 53.79

mIoU, which is an upper limit on what one should expect

from any model. The synthetic data yields 31.23 mIoU on

the global test set, whereas other locales varied from 37.76–

51.22 mIoU for the ‘other’ set. Given the global set includes

holdout images from each locale, it is not surprising the

mIoU’s are slightly higher. This table indicates that the pro-

cedural model is of comparable quality to choosing a single

locale.

6.1. Procedural Model Variations

We assess the impact of synthetic dataset variations on

a segmentation model by comparing against our baseline

model. For each variation we render 2, 048 training exam-

ples and use the same geometry, lighting, and rendering set-

tings as the baseline unless specified. For each variation, we

render 2,048 training examples. Empirically, we find that

the performance of synthetic data levels off at this number

of examples (see Appendix Fig. 7) and evaluation is faster

if the set is kept smaller. Evaluation takes place on a test

partition of 4,906 real-world images; the mIoU of the base-

line model is 32.58 and real photos have an mIoU of 58.69.

To gauge each variation’s importance, we either the relative

number of real images (n)

m
Io

U

0

20

40

60

1

11.05

59.19

57.07

32.58

nr

2,048s + nr

4 16 64 25
6

1,
02

4

4,
09

6

Figure 5. The effect of varying real-world dataset sizes on mIoU

with (blue) and without (red) an additional 2,048 synthetic sam-

ples. The green area bounds the range in which adding real data

neither harms nor improves performance; the right-most point of

which has n = 152 with an mIoU of 44.96. At larger datasets,

synthetic data slightly reduces mIoU relative to only using real-

world data.

mIoU range as a percentage of the baseline, or report the

mIoU Spearman’s rank correlation (rs). Detailed results are

in Appendix Section 7 and summarized here.

Rendering samples. We evaluated the impact of sam-

ples per pixel (spp) on render quality, noting diminish-

ing returns beyond 256spp (Fig. 6). Render times scale

from 6.4s at 1spp to 85.2s at 512spp. A strong correlation

(rs = 1, n = 10) exists between spp and mIoU, with a

68% change in mIoU scores relative to baseline, underlin-

ing the importance of spp. In this experiment no denoising

was performed, however, our baseline model used 256spp

and a powerful neural denoiser.
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test

global Austria Egypt UK USA other synthetic

tr
ai

n

global 53.79 58.20 56.85 42.64 50.16 54.74 31.21

Austria 39.49 58.23 28.36 34.40 35.67 41.32 21.87

Egypt 47.51 38.32 61.85 33.02 38.01 49.75 31.34

UK 37.76 40.68 25.23 38.56 35.39 37.64 28.51

USA 41.08 42.50 27.39 33.30 50.08 39.39 27.02

other 51.22 48.54 39.47 37.44 41.33 52.74 28.39

synthetic 31.23 29.53 29.33 32.15 34.17 35.02 62.12

Table 2. mIoU for different splits of the real labeled data on the segmentation task. Trained on 1,024, tested on 300 samples. global is a

mixture of all the real data; other data is from locales outside of Austria, Egypt, UK, or USA. In this experiment our synthetic network is

similarly trained on 1,024 samples from our baseline synthetic model.

1spp 8spp 64spp BL512spp

m
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Figure 6. Top: The impact of rendering samples per pixel (spp)

on segmentation task accuracy. Bottom: example renderings at

different spp with zoomed section of rendering. BL = baseline.

Mixed Materials. We experimented with 9 material

variations, including uniform gray, edge shaders, and ran-

dom textures. Some tests used a single material for the

entire scene, others assigned different materials per object.

Simplifying materials, such as rendering only the albedo

channel, resulted in a significant performance drop. Ap-

pendix Fig. 18 shows that any material restriction led to at

least an 18% mIoU decrease from the baseline.

Lighting. We examined 8 lighting model variations

and their mIoU impact, as detailed in Appendix Fig. 19.

Lighting models like albedo-only were crucial, while light-

ing conditions such as night-time had moderate impor-

tance. Conditions varied mIoU by 15.35% from baseline.

Daylight-only training decreased baseline mIoU by 1.04%

relative to baseline.

Camera. We experimented with the distribution of cam-

era positions. These 7 variations used a simple model

which sampled a camera position over a circle, of radius

r = {0...96} meters, truncated at the floor plane. The circle

is positioned 5 meters from the wall, directly in front of the

window. The camera’s field of view is adjusted to the ap-

parent window size. We observed limited impact on mIoU

as r changes; peak task performance was at r = 12m.

Window Geometry. We ran 7 tests with varying win-

dow dimensions and shapes, including square and non-

rectangular windows. The mIoU impact was minor, fluctu-

ating by up to 5.7% relative to the baseline (1.86 absolute),

with the best variation 1.2% worse relative to the baseline

(−0.04 absolute). Small features, though noticeable to hu-

mans, had a weak impact on model performance.

Labels Modeled. In developing our procedural synthetic

data generator, we prioritized labels by size, starting with

wall and ending with open-window (Appendix Section 4).

This enabled the assessment of mIoU at nine developmental

stages (Fig. 7). Adding smaller classes later showed dimin-

ishing returns and occasionally reduced single-label accu-

racy (Appendix Fig. 22).

6.2. Additional Experiments

In our segmentation experiments, we employed the BEiTv2

base model [1, 30] for its proficiency in generating accu-

rate results with minimal data. However, the trends we

observed are consistent across various models, including

DeepLabv3+ [10]. In the Appendix Section 5, we discuss

two experiments that study the impact on the segmentation

task when training (and testing) with different mixes of real

and synthetic data. The first experiment in Appendix Fig. 7

explores segmentation performance when training and test-

ing on different amounts of real or synthetic data. We ob-

serve that synthetic data saturates (stops improving with ad-

ditional data), while real-world data continues to benefit

from additional samples. The second experiment, in Ap-

pendix Fig. 8, illustrates the impact of different mixtures of
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Figure 7. Top: The progressive impact of incorporating addi-

tional labels into the procedural model, with label subsets ex-

panding from lvl1 to lvl9. The sequence begins with ‘walls’ only

(lvl1), adding ‘window panes’ (lvl2), ‘wall frames’ (lvl3), ‘win-

dow frames’ (lvl4), ‘shutters’ (lvl5), ‘balconies’ (lvl6), ‘miscella-

neous objects’ (lvl7), ‘blinds’ (lvl8), and ‘bars’ (lvl9). The full

model includes additional features beyond lvl9, such as interior

dressing, open windows, and windows without glass. Bottom: Ex-

amples corresponding to each incremental level of model com-

plexity.

real and synthetic data, when tested on real data. Mixing

synthetic and real data can be advantageous when there is

little real data, but adding large amounts of synthetic data

does not help task performance. We conclude that no vol-

ume of synthetic data can overcome this domain gap.

An exploration of different architectures and data par-

titions is presented in Appendix Fig. 9 and Table 2 -

we train an older convolution network without pre-training

(DeepLab3+ [10]), a ‘large‘ BEiTv2 model, an architecture

which uses real data labels during training to improve per-

formance (Label Adaptation [39]), another technique which

uses unlabeled data to improve performance (MIC [20]), ad-

justing the colors of the training dataset (Histogram Match-

ing [17]), and creating an ‘easy’ real data partition. Under

these approaches, the synthetic-real domain gap persists,

suggesting that network architecture and data partitions are

an orthogonal research direction to improving the quality of

synthetic procedural models.
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8. Conclusion

We have introduced a new dataset of 75,739 photos (2.09

terapixels), of which 9,002 photos are semantically labeled,

as well as a high-quality procedural model that closely

approximates real-world variation, making it effective for

image segmentation tasks. Together these components of

WinSyn have applications in unsupervised domain adap-

tation (using the large amount of unlabeled data), super-

resolution (via the thigh resolution images), learning from

RAW sources, generative modeling, 3D reconstruction or

depth recovery (using the synthetic depth or 3D geometry

from the procedural model), as well as learning from im-

ages containing transparent or specular materials (i.e., win-

dow panes/glass balconies are often transparent).

We systematically explored the effect of variations on

our model on mIoU over 64 variations and 156,903 ren-

ders. The mIoU performance gap between our synthetic

and real-world data is comparable to inter-country differ-

ences with largely different architectural styles. However,

the difference between synthetic data and real data is still

much larger than desired. This gap is not sufficiently re-

duced by either our work or other network architectures or

dataset scale. We, therefore, believe that WinSyn provides

a timely and efficient testbench from which researchers can

iterate quickly to explore graphics contributions to the syn-

thetic data problem. Our work contributes a sizable and

versatile dataset that can be the basis of exciting and much-

needed progress in the area of procedural graphics for syn-

thetic data generation in machine learning. The key value

of our dataset is that as a new benchmark of simulated and

real images, it enables others to study the problem at an ap-

proachable level of complexity.
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