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Abstract

Public datasets, such as KITTI, nuScenes, and Waymo,
have played a key role in the research and development of
autonomous vehicles and advanced driver assistance sys-
tems. However, many of these datasets fail to incorpo-
rate a full range of driving conditions; some datasets only
contain clear-weather conditions, underrepresenting or en-
tirely missing colder weather conditions such as snow or
autumn scenes with bright colorful foliage. In this paper, we
present the Michigan State University Four Seasons (MSU-
4S) Dataset, which contains real-world collections of au-
tonomous vehicle data from varied types of driving scenar-
ios. These scenarios were recorded throughout a full range
of seasons, and capture clear, rainy, snowy, and fall weather
conditions, at varying times of day. MSU-4S contains more
than 100,000 two- and three-dimensional frames for cam-
era, lidar, and radar data, as well as Global Navigation
Satellite System (GNSS), wheel speed, and steering data,
all annotated with weather, time-of-day, and time-of-year.
Our data includes cluttered scenes that have large numbers
of vehicles and pedestrians; and it also captures industrial
scenes, busy traffic thoroughfare with traffic lights and nu-
merous signs, and scenes with dense foliage. While pro-
viding a diverse set of scenes, our data incorporate an im-
portant feature: virtually every scene and its corresponding
lidar, camera, and radar frames were captured in four dif-
ferent seasons, enabling unparalleled object detection anal-
ysis and testing of the domain shift problem across weather
conditions. In that context, we present detailed analyses for
3D and 2D object detection showing a strong domain shift
effect among MSU-4S data segments collected across dif-
ferent conditions. MSU-4S will also enable advanced mul-
timodal fusion research including different combinations of
camera-lidar-radar fusion, which continues to be of strong
interest for the computer vision, autonomous driving and
ADAS development communities. The MSU-4S dataset is
available online at https://egr.msu.edu/waves/msu4s.

1. Introduction

Figure 1. An example of fused output from stitched cameras, lidar
(small points), and radar (larger points) from MSU-4S data, with
vehicles (red), pedestrians (green), and a cyclist (blue) bounding
box labels. Scene challenges include partially occluded camera
sensor due to rain, making certain objects (such as the pedestrian
on the left) difficult to detect in 2D, despite visibility to lidar and
radar. These challenges highlight the importance of multimodal
datasets in general, especially radar-inclusive datasets, that are
captured under challenging conditions.

The availability of public datasets has been a key factor in
the development of many recent innovations in the field of
computer vision, and arguably one of the largest beneficia-
ries of these data are related to autonomous driving. How-
ever, in spite of the massive corpus of data of all kinds,
there are still key shortfalls in the variety of publicly avail-
able datasets. Many commonly used datasets, such as the
Karlsruhe Institute of Technology and Toyota Technical In-
stitute (KITTI) dataset [9], only contain clear weather or
cloudy condition in daylight scenarios, and do not contain
labels for the weather conditions. While other datasets such
as Waymo [21] contain more varied lighting and weather
conditions, their primary collection locations preclude the

1

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22658

https://egr.msu.edu/waves/4saved


existence of colder weather conditions such as snow and
sleet. Very few datasets exist that attempt to address multi-
weather domain conditions at all, let alone provide labeled
weather conditions combined with scenes collected in the
same physical location for computing metrics on how spe-
cific weather conditions might affect object detection per-
formance. Of these datasets, the Ithica365 dataset is ar-
guably the current state of the art for multi-weather domain
analysis, though it focuses mainly on amodal segmentation,
and far less on the critical task of 3D object detection given
the dataset’s limited number of annotated lidar frames with
labeled 3D bounding boxes [8].

Given the aforementioned shortfalls of existing popular
autonomous driving datasets, it is clear that there is a need
for a high quality dataset that contains multiple weather and
lighting conditions for the same set of diverse physical loca-
tions. Having such data available would make benchmark-
ing object detection algorithms against varied weather con-
ditions significantly more meaningful, and would help ad-
vance robustness in new state-of-the-art perception frame-
works. With the emergence of several domain adapta-
tion techniques targeting challenging driving conditions,
there is an acute need for datasets that can further vali-
date the performance of these and other state-of-the-art al-
gorithms [6, 11, 13, 14].

In this paper, we introduce the Michigan State University
Four Seasons dataset, or MSU-4S, an autonomous vehicle
dataset containing more than 100,000 frames. The salient
attributes of our dataset are:
• MSU-4S was collected during clear, cloudy, rainy, and

snowy weather conditions throughout contiguous four
seasons of the year, with an associated label for each
frame containing this information.

• Our dataset uniquely strikes a balance between diversity
and consistency of scenes. MSU-4S includes cluttered
scenes that have large numbers of vehicles and pedes-
trians; and it also captures industrial scenes, busy traffic
thoroughfare with traffic lights and numerous signs, and
scenes with dense foliage.

• While providing a diverse set of scenes, our data incor-
porate an important feature: virtually every scene and
its corresponding lidar, camera, and radar frames were
captured in four different seasons. This attribute en-
ables unparalleled analyses and testing of the true do-
main shift problem across four seasons and weather con-
ditions while stationary components, such as underlying
roads/pavements, buildings, traffic signs, and other as-
pects of of the ambient background are consistent across
these conditions, which is rare among existing datasets.

• In the context of having consistent scenes across four sea-
sons, we present detailed analyses for 2D and 3D ob-
ject detection showing a strong domain shift effect among
MSU-4S data collected across different conditions.

• MSU-4S is highly multimodal, containing data from cam-
eras, lidars, radars, Real-Time Kinematic (RTK) GNSS,
Inertial Measurement Units (IMUs), wheel speed, steer-
ing angle, and other modalities. This diversity of data
will enable advanced multimodal fusion research includ-
ing different combinations of camera-lidar-radar fusion,
which continues to be of strong interest for the au-
tonomous driving development community. In particu-
lar, the inclusion of data captured by six radars makes
MSU-4S a compelling dataset for single- and multimodal
radar-inclusive fusion methods. A visual example of the
multimodal nature of our dataset is shown in Figure 1.

• Trained personnel and engineers manually labeled (and
continue to label) our data for training, validation, and
testing. To ensure high quality labeling, a large number of
instances from the 3D bounding box labeling of our lidar
point cloud and 2D bounding box labeling of our camera
images have been conducted independently of each other
first, and then they are compared to ensure consistency
and reliability of both sets of 2D and 3D labels.
The remainder of the paper is organized as follows. Sec-

tion 2 will discuss related work, namely the popular au-
tonomous vehicle datasets. Section 3 will discuss the MSU-
4S dataset specifically, including the collection platform
and route, calibration and synchronization, the data labels
and labeling process, the format of the dataset, and dataset
label statistics. Section 4 evaluates many variations of the
MSU-4S domain shift scenarios in the context of 2D and 3D
object detection, demonstrating the invaluable contribution
of our dataset.

2. Related Work
While there are perhaps dozens of public autonomous ve-
hicle related datasets, there are a select few that have seen
significant use among researchers. We have compiled a se-
lection of the quantitative and qualitative differences in Ta-
ble 1.

KITTI [9] - The Karlsruhe Institute of Technology and
Toyota Technical Institute (KITTI) dataset was the first pub-
lic dataset introduced for autonomous vehicle algorithm de-
velopment. In addition, KITTI also provides researchers
an outlet to test 2D and 3D perception algorithms against
unreleased segments of their dataset, and have their results
posted publicly, fostering competition among interested re-
searchers and developers for finding the top algorithms in
tasks such as 2D and 3D detection and other perception al-
gorithms.

While KITTI is the basis for a large body of perception
research, it unsurprisingly has shortcomings that are being
addressed by newer datasets. While the original KITTI’s
15,000 samples of labeled data made it the largest dataset
of its kind at that time, many datasets, including the more
recent KITTI-360 dataset [1, 2, 15], have since surpassed
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MSU-4S
(ours) KITTI / KITTI360 nuScenes Waymo BDDD100k Argoverse 2 Ithica365

2D+3D
Samples 100,000+ 15,000 / 80,000 40,157 230,000 100,000 150,000 14,750 / 7,000 [1]

Camera 3x, front facing,
approx. 150 ◦ FOV

2 stereo pairs, no FOV specified /
1 stereo pair +

2 side fisheye cameras,
360◦ FOV

6x, positioned for
360◦ FOV

5x front facing,
approx. 205◦ FOV

1x front 720p dashcam,
no FOV specified

2x front stereo +
7x ring cameras,

360◦ FOV
4x, 60◦ FOV each

Lidar 1x 64 line, 1x 32 line 1x 64 line /
1x 64 line + 1x directional 1-line 1x 32-line 1x mid-range lidar,

4x short-range lidar No 2x 32 line 1x 128-line, 2x 16-line

Radar

6x Medium Range/
Long Range Radars

with Radar Cross Section (RCS) &
SNR Measurements

No 5x Short/Long Range Radar No No No No

Position RTK GNSS RTK GNSS + INS RTK GNSS + INS Local Coordinates GNSS Only City-specific coordinates Post-processed RTK GNSS

CAN Wheel speed, steering angle,
throttle, brake No

Wheel speed and overall speed,
steering angle and rate,

throttle, signaling, gear, environment sensors
No No No No

Weather
Clear, Cloudy,
Snow, Rain,

Autumn Foliage, Fallen Leaves
Clear/Cloudy Only Clear, Cloudy, Rain Clear, Rain Clear, Cloudy,

Snow, Rain Various Sunny, Rainy, Cloudy,
Snow, Night

[1]: Amodal labeled frames (road surface / semantic segmentation) with corresponding lidar data [8]

Table 1. Comparison of Popular Autonomous Vehicle Datasets with MSU-4S

its size and scope. Meanwhile, the original KITTI dataset,
which is still used heavily by the research community, lacks
imagery taken under varied lighting or weather conditions
beyond clear or cloudy. Furthermore, other datasets have
expanded on the amount and types of sensors and other data
included in the dataset, including other sensor modalities
such as radar; even the most recent KITTI-360 dataset does
not include radar data.

nuScenes [5] - The nuScenes dataset was one of four
datasets published in 2020, and was explicitly developed to
improve the state of autonomous vehicle datasets beyond
the standard that the KITTI dataset established. Specifi-
cally, nuScenes was designed to be more - more cameras
(5, arranged in an omnidirectional configuration instead of
front-facing stereo), radar added as an additional sensor
modality; more collection locations (Singapore and Boston,
MA, USA), additional vector map data, and of course more
data frames: over 40,000 compared to the original KITTI
dataset’s 15,000. With these additions, nuScenes signifi-
cantly increased the amount of data researchers had access
to, offering the opportunity to improve existing algorithms
and provide new data to develop novel multimodal fusion
algorithms.

BDD100K [23] - The Berkley Deep Drive 100k dataset,
also published in 2020, is a large dataset that contains
100,000 40-second 720p dashcam videos crowdsourced
from drivers in New York City, San Francisco, Berkeley,
Oakland, San Jose, and Mountain View. The self-stated
goal of the BDD100k dataset is to study domain trans-
fer problems in autonomous vehicle sensor processing. To
support this goal, BDD100k contains scenes with varied
weather conditions including snow and rain, and were col-
lected at various times during the day and night. Despite
both the quality and quantity of data, the BDD100k dataset
lacks 3D sensor modalities, which limits its effectiveness
for developing and testing 3D object detection algorithms,
which are a core component of any autonomous driving
platform.

Waymo [21] - First released in 2019, the Waymo dataset
consists of data collected by their automated vehicles oper-
ating mainly in San Francisco, California; Mountain View,
California, and Phoenix, Arizona. At 200,000 total frames,
Waymo is one of the largest publicly available multimodal
autonomous driving datasets. However, due to the locations
represented in the dataset, winter weather conditions are not
present in the Waymo dataset.

While KITTI, nuScenes, BDD100K, and Waymo are
arguably some of the most widely cited autonomous ve-
hicle datasets, there are dozens of other datasets such as
Cityscapes [7], Apolloscape [12], Argoverse [21], and
A2D2 [10] that have been released to the public and used
in research and development. There has also been a spe-
cific interest in datasets focused on or otherwise containing
scenery in challenging conditions. For example, the Cana-
dian Adverse Driving Conditions Dataset (CADS) con-
tains 7500 labeled lidar and 15000 labeled camera frames,
with a specific emphasis on snow [17]. 4seasons is a multi-
weather dataset specifically focused on testing localization
algorithms in multiple seasons [22]. Arguably the current
state-of-the-art dataset for testing multi-weather perception
is Ithica365, a camera-lidar dataset of a 15 kilometer route
taken over multiple weather and lighting conditions, with
14,750 labeled frames containing amodal road masks and
7000 frames with amodal instance masks [8]. However,
this dataset’s applicability to 3D object detection is far more
limited than other datasets given its relatively small number
of labeled 3D bounding boxes.

3. The Michigan State University Four Sea-
sons (MSU-4S) Dataset

To augment the current publicly available data for au-
tonomous vehicle research and development, we are intro-
ducing the Michigan State University Four Seasons (MSU-
4S) Dataset, a collection of data captured during varied
times of year and under different weather conditions. These
data are taken using fixed routes that cover a highly diverse
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Figure 2. Selection of scenes from the Michigan State University Four Seasons Dataset. Top two rows show samples taken from the same
physical location over four seasons under different weather conditions.

Figure 3. Lidar artifacts present in lidar during wet weather con-
ditions, including (1) dead zones and object (2) reflections.

set of scenes, enabling testing for robustness across diverse
scenarios. This section will explain the data collection plat-
form, the overall collection route, the 2D and 3D labeling
process, and the final data format that will be available to
the broader computer vision and autonomous vehicle devel-
opment community.

The collection platform used to collect our data for the
MSU-4S is based on a modified 2017 Chevrolet Bolt EV.
The sensors on our platform that were used for MSU-4S are:

1 1 1
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Figure 4. Left: Sensor layout of data collection vehicle platform.
Sensors cameras (1), 64-line lidar (2), 32-line lidar (3), radar (4),
GNSS antenna (5), and IMU (6). Middle: Camera FOV overlap.
Right: Short/Long Range Radar FOV

• Three FLIR Blackfly BFS-PGE-31S4C-C cameras with
Sony IMX265 sensors running at 2048x1536 resolution
at their maximum 34 frames per second, each with a C-
mount lens with a horizontal field of view of 60 degrees,
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angled to capture approximately 150 degrees of front-
facing imagery

• One Ouster OS-1 64-line 3D lidar using 10Hz data rate,
• One Velodyne VLP-32C 3D lidar using 10Hz data rate,
• Six Continental ARS430 medium-long range radars,

equipped to return individual detections including Radar
Cross Section (RCS) and Signal-to Noise Ratio (SNR),
Our camera configuration was chosen to maximize the

effective front-facing field of view without using fisheye or
other high-field of view (FOV) lenses. Using such a lens
would severely distort the imagery, which would effectively
reduce the effective resolution at the edges of the camera’s
FOV. Our lidar configuration was chosen to provide data
for training algorithms on low density lidar, high density
lidar, or fused data from both lidars.

The compute system on our platform is an Intel Xeon
dual-socket server with 44 total cores, giving it plenty of
compute capability for ingesting data including minimal on-
vehicle processing such as image debayering. This system
is connected to most of the sensors through shielded Cate-
gory 6a networking cables, connected to the compute sys-
tem through a 10Gb link aggregation switch. The compute
system is also connected to the vehicle’s controller area net-
work (CAN) busses. The IMU is the only sensor connected
through USB. In total, we estimate the overall sensor suite
to produce approximately 5 gigabits of raw data per sec-
ond. Each data frame has an associated timestamp in Unix
format with nanosecond-level precision. This timestamp is
based on the system clock, which is first synchronized to
GPS time, then distributed among supported sensors using
Precision Time Protocol (PTP). For sensors that do not sup-
port PTP, we use a software timestamp recorded when the
packet was collected as the basis for synchronization.

The collection platform uses the Robot Operating Sys-
tem (ROS) [18] middleware to interface with all the sensors,
and provide time synchronization and data storage func-
tions. Data is stored using the native ROS storage format,
known as rosbag, which is a serialized and timestamped for-
mat, with added quality of life features such as optional data
compression and encryption. This process ensures that data
integrity, including both sensor-specific timestamp and data
receive timestamp, is maintained, which we analyze in Sub-
section 3.2.

3.1. Collection Routes

Our overall data collection zone is split into five zones based
on GNSS coordinates, which include:
central hub - A densely populated area with numerous
pedestrians, cyclists, cars, buses, and signs. In addition to
being a viable representative of a cluttered environment, this
area also contains some unusual road types, including a long
one-way loop and a non-perpendicular four way stop inter-
section, all featuring varied overhead foliage.
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Figure 5. General routes for data collection. Solid line indicates
standard route; dashed line indicates auxilliary route that branches
off at point 4 and rejoins at point 11. Underlying street map
sourced from OpenStreetMap [16].

thoroughfare - A busy north-south road containing sev-
eral traffic lights, numerous signs, and two railroad cross-
ings.
industrial - An area surrounding a power plant; con-
tains more industrial buildings and parking lots. While there
are fewer pedestrians, there are more commercial vehicles
in this area.
forest - An area with dense foliage, minimal traffic, and
some apartment buildings.
neighborhood - A residential zone containing narrow
streets with parked cars.

Our typical route for MSU-4S consists of a 11.2km loop
through the forest, thoroughfare, central hub, and industrial
zones, depicted as the solid line in Figure 5. A subset of
the overall data consists of a longer, 14.8km alternate route
through the neighborhood to capture more unusual scenar-
ios such as large piles of leaves and parked cars at the sides
of narrow roads; this route is depicted as a dashed line in
Figure 5.

We believe that the diverse attributes of the above loca-
tions make our dataset an invaluable asset for training and
testing the robustness of autonomous driving perception al-
gorithms. Because these same diverse set of locations were
traversed by our vehicle over four different seasons with dif-
ferent weather conditions, MSU-4S provides a rare dataset
for analyses and testing of the domain shift problem, and for
developing robust domain adaptation algorithms. The most
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similar existing dataset, Ithica365, is constructed similarly,
but does not contain radar and CAN data.

It is important to note that some of the dataset segments
have slightly different routes to account for construction de-
tours, operator error, or other variations when collecting
data. As GNSS tracks are available on a per-frame basis,
we believe that there should be little to no problem incorpo-
rating variances in the route when using MSU-4S.

Each frame contains both the specific GNSS coordinate,
as well as the zone. These labels are intended to help users
filter the dataset for their intended use case, and to perform
cross-domain analysis on algorithms trained in other sce-
narios. For instance, the forest area contains far fewer
objects, making it an ideal subset to test for false positives,
especially for algorithms trained on urban data.

3.2. Calibration and Synchronization

For instrinsic camera calibration, we utilized the classi-
cal Perspective n-Point (PNP), using OpenCV’s chessboard
corner detection methods for automatically detecting 2D-
3D keypoints [4]. We used professionally precision manu-
factured chessboards, ensuring there are no errors from ei-
ther incorrect scaling or non-flat boards. These calibration
parameters are made available alongside each frame in the
dataset.

For extrinsic sensor calibration, we first started by defin-
ing a common reference point for the vehicle, known as the
base link. For ground vehicle robots with Ackermann steer-
ing geometry, this point is usually defined as the center of
the rear axle. From this point, we can easily measure the
distance to the ground, which we can then use as a ref-
erence for all sensors. Then, we precisely measured the
position of the Velodyne VLP-32 lidar (chosen due to its
centralized location) relative to the base link, confirmed us-
ing both the manufacturer specifications of the vehicle as
well as a visualization of the point cloud. For the Ouster
lidar, we hand measured the offset between it and the Velo-
dyne lidar, and then used software tools to first hand adjust
the two pointclouds to maximize overlap, then used soft-
ware tools to compute a registration using Normal Distribu-
tion Transform (NDT) [3]. For the cameras, we similarly
hand measured the offset and rotation for each camera, then
used automated methods to fine tune the final transforma-
tion. This transformation was verified visually during the
early stages of the 3D labeling process. A visualization of
the lidar-camera projection using this calibration is shown
in Figure 6.

Each frame in our dataset is collected from data that are
temporally close to the Velodyne VLP-32 lidar, again se-
lected as the most central sensor on the vehicle. Our vehi-
cle utilizes GNSS-backed PTP on supported sensors to en-
sure on-device timestamps are as accurate as possible; PTP
is enabled on the Velodyne VLP-32, Ouster OS-1, and the

Figure 6. Post-calibration camera-lidar projection results

FLIR cameras. For sensors that do not support PTP, the
ROS header and/or packet receive timestamp is used as the
data synchronization source.

To verify that the difference device timestamp and packet
timestamp is not significantly different, we compared the
difference between these timestamps for all Velodyne VLP-
32 packets in our dataset. We found that the average ab-
solute difference was approximately 63 nanoseconds (vari-
ance 1.49×10−14), showing that the data transmission time
provides a negligible difference in timestamp, and thus us-
ing packet receipt timestamps is sufficient for data sources
that do not support PTP. We also analyzed the average ab-
solute timestamp difference between the Velodyne VLP-32
and the top central camera. Overall, we found the vast ma-
jority of data fell within +/-16ms, with an average absolute
timing difference of 7.6ms, with a variance of 8.16× 10−5.
A histogram of this timing data is shown in Figure 7.
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Figure 7. Synchronization timing between VLP-32 and center
camera

3.3. Labeling Process

The first stage of our data pre-labeling process is the ex-
traction of the dataset into individual, time-synchronized
frames to minimize cross-frame temporal error. Camera
imagery and lidar point-cloud frames are extracted to sep-
arate files, with the file name prepended with the integer
nanosecond timestamp of the frame, and the suffix corre-
sponding to the sensor source. For all other sources, as
well as intrinsic and extrinsic calibration information, sea-
son, and weather condition, a YAML-formatted file with
the suffix misc.yaml is created to contain these data.
Once data are extracted, the start and end of the dataset are

622663



trimmed to remove irrelevant data collected during data col-
lection startup and shutdown. Finally, the camera data is
processed to redact facial and license plate imagery using
privacy-preserving tools such as EgoBlur [19].

Our labeling process focuses on providing highly accu-
rate 3D and 2D bounding boxes within our lidar and camera
datasets, respectively. To ensure high accuracy of our la-
beling process, 3D labeling of a large instances of the lidar
point-cloud frames and 2D labeling of the corresponding in-
stances of camera images are first performed manually and
independently of each other. Both labeling pipelines are
conducted by experienced personnel who have been trained
with sufficiently large test examples prior to performing
the actual labeling. For both labeling processes, 2D and
3D, two independent advanced labeling tools are employed.
Meanwhile, for the 3D labeling process, the software tool
used provides the views in both the lidat point-cloud and
the corresponding camera image with projected 3D boxes
within the 2D camera images.

For our 3D point-cloud lidar data, we provide labels for
multiple object categories including but not limited to ve-
hicles, pedestrians, and cyclists. Vehicles include all cars,
trucks, buses, and construction vehicles. For our camera
data, more expansive 2D labels are provided in order to pro-
vide additional contextual information that may not be ob-
vious in the lidar frame, such as the content and context of
road signs, specific vehicle types, and traffic control devices
such as traffic lights. As such, we both expanded the num-
ber of classes compared with the 3D labels, as well as split
labels such as vehicles and signs into separate labels. Signs
are split into nine subcategories matching the legal defini-
tion of sign types specified by the state of Michigan, eight
types of which are captured in the MSU-4S dataset. The
shapes of these signs are shown in Figure 8. As far as we
are aware, the MSU-4S dataset is the first to classify signs
using their legal definition. While we have labeled for the
entirety of the MSU-4S dataset, we have reserved a portion
of the labels for future dataset development, similar to other
datasets like KITTI, Waymo, and nuScenes.

3.4. Data Format and Description

MSU-4S is formatted in an attempt to ease both casual use
as well as large scale automated processing of its data. For
camera imagery, we provide the compressed imagery in
their native JPEG format to avoid further reencoding loss.
Lidar data is provided in PCD format, for which several
utilities and libraries exist for reading and writing of these
data. Labeled frame data are available in plaintext format.
All other collected data are provided in the accompanying
misc.yaml file.

Figure 8. Left: Sign classifications used for MSU-4S labeling.
Right: Examples for all sign classes that appear in MSU-4S.
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Figure 9. Count of 3D labeled objects per class, separated by la-
beled weather conditions, using a trained object detector.

3.5. Object Statistics

As mentioned earlier, our dataset consists of more than
100,0000 frames of 2D camera images, 3D lidar point-
clouds, and corresponding radar data. Given that our label-
ing process is currently ongoing, here we provide a conser-
vative estimate for the total objects included in our dataset.
To estimate the number of objects captured in over 100,000
frames of MSU-4S data, we used the the PV-RCNN++ [20]
detector pretrained on Waymo data. We also used a trained
PV-RCNN++ model using our already labelled 3D dataset.
In our experience, the Waymo data pretrained model pro-
duces a more conservative object count with fewer false
positives compared to other pretrained models or models
trained specifically on our data. We subsequently used the
Waymo pretrained PV-RCNN++ detector. This detector es-
timated a total of 936,426 objects across all frames, includ-
ing 743,329 vehicles, 183,711 pedestrians, and 9,386 cy-
clists. Figure 9 shows a breakdown of each object detection
based on labeled weather condition. When comparing the
relative ratio of object types detected using the Waymo pre-
trained model versus our hand-annotated labels, we found
that the relative ratio of labels were within 5% for each cat-
egory, and for cyclists the difference was less than 1 per-
centage point, which provides stronger confidence in our
estimates.
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Test Data →
Training Data ↓

Clear
IoU=0.5 (0.7)

Rain
IoU=0.5 (0.7)

Snow
IoU=0.5 (0.7)

Clear 67.99 (54.22) -5.55 (-10.72) -12.49 (-18.45)
Rain -6.50 (-3.93) 70.09 (50.55) -7.29 (-5.16)
Snow -3.86 (-3.24) -0.21 (-0.92) 68.15 (54.22)

Table 2. Average Precision (AP) 3D object detection performance
and the changes in its values due to the domain shift problem under
different weather conditions using the PV-RCNN++ 3D object de-
tector. All results are based on training and testing using segments
of our MSU-4S manually labelled 3D lidar point-cloud with 3D
bounding boxes for vehicles and an IoU=0.5 and IoU=0.7.

4. Domain Shift Analysis

One of our key objectives for introducing MSU-4S is to
provide the 3D and 2D object detection research commu-
nities with a new and compelling dataset for the analysis,
training, and testing of algorithms that focus on the domain
shift problem across different seasons and under different
weather conditions. Some effects are immediately obvi-
ous, such as wet areas causing lidar reflections and dead
zones as shown in Figure 3, while others may not be as
immediately obvious or otherwise quantifiable. Therefore,
in this section, we demonstrate that MSU-4S provides ar-
guably unprecedented data with a strong domain shift at-
tributes across different seasons and weather conditions for
both lidar-based 3D and camera-based 2D object detection.

In that context, we performed multiple experiments
by employing both 3D and 2D popular object detectors
trained using our currently-available labeled 3D and 2D
data, respectively. For 3D object detection, we trained PV-
RCNN++ [20] using three different segments of our labeled
datasets representing clear, rainy, and snowy conditions.
These three 3D object detector models were then applied to
corresponding three different test segments of our labeled
data. These results are shown in Table 2. It is clear from
the table that MSU-4S exhibits a very strong domain shift
across different weather conditions. In particular, the 3D
object detector model trained using clear-weather data ex-
perienced significant drop in performance when tested on
rainy and snowy data segments. Another interesting obser-
vation is that a 3D object detector model trained on chal-
lenging weather condition seems to be more robust when
tested under less challenging conditions. For instance, the
Clear weather model suffers a more than 18 point drop in
AP performance when tested under snowy conditions, while
a 3D detector trained using the snow data segment suffers
somewhere between 3-4 points reduction in AP when tested
on the more favorable clear weather conditions. We can
also observe that the domain shift between rain and snow
is clearly smaller than the domain shift between clear and
snowy conditions.

One of the main attributes of our dataset is the abil-

Test Data →
Training Data ↓

Spring
Rain

Fall
Clear

Summer
Clear

Winter
Snow

Spring Rain 40.2 -13.30 -11.10 -10.40
Fall Clear -6.20 39.4 -7.30 -6.80
Summer Clear -5.60 -9.20 40.3 -13.40
Winter Snow -9.40 -19.30 -15.30 47.3

Table 3. Mean Average Precision (mAP) 2D object detection per-
formance and the changes in its values due to the domain shift
problem under different weather conditions using the YOLOv5 2D
object detector. All results are based on training and testing using
segments of our MSU-4S manually labelled 2D camera data with
2D bounding boxes for the detection of all 2D classes covered by
our dataset.

ity to test the domain shift problem due to multi-domain
shifts. For example, we can assess the domain shift be-
tween clear summer weather and fall weather with vibrant
autumn color foliage in the background. Hence, for 2D ob-
ject detection, we trained YOLOv5 using four different data
segments from our manually-labelled 2D camera dataset:
Spring Rain, Fall Clear, Summer Clear, and Winter Snow
conditions. These results are shown in Table 3. It is clear
from the table that there is a significant drop in mean Aver-
age Precision (mAP) among different multi-domain scenar-
ios. In particular, the data clearly shows the importance of
evaluating the domain shift problem due to the fall season.
Despite the similarity in weather and lighting conditions be-
tween the tested summer and fall segments, we determined
there was a significant domain shift in our data.

5. Conclusions
In this paper, we presented the Michigan State Univer-
sity Four Seasons (MSU-4S) Dataset, which contains real-
world collections of autonomous vehicle data. MSU-4S was
recorded through a full range of seasons, and capture clear,
rainy, snowy, and fall weather conditions, at varying times
of day. Our data contains more than 100,000 frames of
camera, lidar, and radar data, as well as GNSS, and CAN
data, all annotated with weather, time-of-day, and time-of-
year. Our data includes cluttered scenes that have large
numbers of vehicles and pedestrians, captured in different
locations. The diverse scenery also incorporates an impor-
tant feature: virtually every scene and its corresponding li-
dar, camera, and radar frames were captured in four differ-
ent seasons, enabling unparalleled object detection analysis
and testing of the domain shift problem across weather con-
ditions while keeping other aspects of the ambient back-
ground consistent. We also presented detailed analyses
for 3D and 2D object detection showing a strong domain
shift effect among data segments collected across differ-
ent conditions. MSU-4S is available for download online
at https://egr.msu.edu/waves/msu4s.
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