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Abstract

Reverse engineering in the realm of Computer-Aided De-
sign (CAD) has been a longstanding aspiration, though
not yet entirely realized. Its primary aim is to uncover
the CAD process behind a physical object given its 3D
scan. We propose CAD-SIGNet, an end-to-end trainable
and aeto-regressive architecture to recover the design his-
tory of a CAD model represented as a sequence of sketch-
and-extrusion from an input point cloud. Our model learns
CAD visual-language representations by layer-wise cross-
attention between point cloud and CAD language embed-
ding. In particular, a new Sketch instance Guided Attention
(SGA) module is proposed in order to reconstruct the fine-
grained details of the sketches. Thanks to its auto-regressive
nature, CAD-SIGNet not only reconstructs a unique full de-
sign history of the corresponding CAD model given an in-
put point cloud but also provides multiple plausible design
choices. This allows for an interactive reverse engineer-
ing scenario by providing designers with multiple next step
choices along with the design process. Extensive experi-
ments on publicly available CAD datasets showcase the ef-
fectiveness of our approach against existing baseline mod-
els in two settings, namely, full design history recovery and
conditional auto-completion from point clouds.

1. Introduction
Computer-Aided Design (CAD) has become the de facto

method for designing, drafting, and modeling in various
industries [8, 32]. 3D reverse engineering is the process
of inferring a CAD model given a 3D scan. This proce-
dure requires the expertise of designers and can be time-
consuming [9, 43]. Towards the automation of this proce-
dure, several works focused on decomposing point clouds
into parametric primitives allowing the reconstruction of
the final CAD model [9, 16, 23, 25, 35]. However, CAD
modeling consists of a sequential process where designers
draw 2D sketches (e.g. lines, arcs) and apply CAD opera-
tions (e.g. extrusion, chamfer) [42, 43]. Recovering these
intermediate design steps is crucial as it enables the ed-
itablity and re-usability of different object parts sharing the
same functionality. For instance, a chair can be composed
of three design steps, legs, seat, and back rest. Retrieving
these steps can allow for editing the legs to be taller, reusing
the back rest in another chair design, etc [19]. Nevertheless,
identifying adequate design steps requires design expertise.
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Accordingly, recent methods [31, 41, 42] attempted to learn
this expertise from large-scale CAD datasets [41, 42]. In
particular, the sequential nature of CAD modeling made
language-like representations with adequate grammar an
appealing choice [15, 42, 44]. While such a CAD language-
like representation has been successfully adopted for CAD
generative models [15, 33, 42, 44], it has not been estab-
lished for 3D reverse engineering. As in point cloud cap-
tioning [4, 5], leveraging language-like representations for
reverse engineering requires mechanisms for jointly learn-
ing visual representation from point clouds and correspond-
ing CAD language. Hence, the main question that we ask is:
how to effectively learn CAD visual-language representa-
tions from point cloud and CAD sequences for 3D reverse
engineering?

To answer this question, many challenges need to be ad-
dressed due to the structural disparity between point clouds
in 3D space and language-like representations of CAD se-
quences [27]. In particular, CAD sequences encode both
the chronological order of design steps and their parametric
form [42, 44], while the corresponding point clouds only
encode the geometry of the final design [9]. To the best
of our knowledge, the only works that infer CAD language
from point clouds are DeepCAD [42] and MultiCAD [27].
While DeepCAD [42] focused on learning CAD language
using a feed-forward strategy and presented the point cloud
to CAD language setting as a future application, Multi-
CAD [27] focused on learning the interaction of features
from distinct modalities (i.e. point cloud and CAD lan-
guage) through a contrastive learning framework. Despite
their promising results, both methods suffer from two main
limitations: (1) Both visual and CAD language represen-
tations are learned separately in the first stage. A mapping
between the two representations is learned afterwards. Nev-
ertheless, this separate learning might result in modality-
specific features that are not relevant for CAD language in-
ference from point clouds [36]; (2) the learning of CAD
language representation is achieved using a feed-forward
strategy where the CAD language of the full design his-
tory is inferred at once. However, in a real-world scenario,
providing input or preferences at each design steps would
allow for tailoring the solution to the requirements of the
designer [44, 45].

To address the aforementioned challenges and limita-
tions, we propose CAD-SIGNet, an end-to-end trainable ar-
chitecture that auto-regressively infers CAD language in
the form of sketch-and-extrusion design steps from point
clouds. Instead of learning separate representations for both
point clouds and CAD language and the mapping between
them, the proposed method jointly learns these representa-
tions through multi-modal transformer blocks. Each block
is composed of layer-wise cross-attention between CAD
language and point cloud embedding. Moreover, other ex-

isting works [27, 42] infer sketches from a global represen-
tation of the point cloud. However, we assume that only
a subset of the point cloud is needed to parameterize a
sketch. As shown in the right panel of Figure 1, design-
ers specify a plane in 3D space where the sketch is drawn.
The intersection of the sketch region and the point cloud
(shown in red in the same Figure) is assumed to be suffi-
cient for sketch parameterization. Therefore, this subset,
referred to as Sketch Instance, is first identified and then
considered in the cross-attention to infer sketch parameters.
We refer to this technique as Sketch instance Guided Atten-
tion (SGA). It allows the network to focus its attention on
specific points (i.e. sketch instance), hence improving fine-
grained sketch inference. Finally, the auto-regressive nature
of CAD-SIGNet allows multiple plausible design choices
to coexist. As shown in the right panel of Figure 1, this en-
ables an interactive reverse engineering scenario, offering
designers various choices throughout the CAD process. An
overview of the proposed approach is provided in Figure 2.
Contributions: The contributions can be summarized to:
• An end-to-end trainable auto-regressive network that in-

fers CAD language given an input point cloud. To the
best of our knowledge, we are the first to propose an auto-
regressive strategy for this problem.

• Multi-modal transformer blocks with a mechanism of
layer-wise cross-attention between point cloud and CAD
language embedding.

• A Sketch instance Guided Attention (SGA) module
which guides the layer-wise cross-attention mechanism to
attend on relevant regions of the point cloud for predicting
sketch parameters.

• A thorough experimental validation in two different re-
verse engineering settings, namely, full CAD history
recovery and conditional auto-completion from point
clouds (see bottom left panel of Figure 1).

2. Related Works
Deep Learning-based CAD Reverse Engineering: CAD
models are well defined 3D objects described by their ge-
ometric and topological properties. As such, some works
address the reverse engineering problem by focusing on re-
covering the geometric features of CAD models from point
clouds. This has been achieved using parametric fitting
techniques either on the edges of the CAD model [7, 26,
28, 39] or on the surfaces [10, 12, 16, 23, 35, 46]. However,
a parametric fitting approach can only provide information
about the final CAD model and it lacks any insight into the
design process and the intermediate steps that were used
to create the CAD model. In order to address these limi-
tations, another line of work [9, 13, 18, 34, 47, 48] mod-
els the CAD construction using Constructive Solid Geome-
try (CSG) [18]. CSG is a sequential method in CAD mod-
eling that combines simple 3D shapes (e.g., cube, sphere)
using boolean operations (e.g., union, intersection). While
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Figure 2. Method Overview. CAD-SIGNet (left) is composed of B Multi-Modal Transformer blocks, each consisting of an LFA [17]
module to extract point features, Fv
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b for

CAD visual-language learning. A sketch instance (bottom right), I, obtained from the predicted extrusion tokens is used to apply a mask,
Msga during CA to predict sketch tokens.

CSG can allow for the construction of relatively complex
shapes, it is no longer the standard in the CAD industry [43].
Indeed, the feature-based approach has now been adopted
by most CAD software as it allows for the modelling of
more complex shapes using a sequence of sketches and
CAD operations [41]. The work in [37] attempts to retrieve
some of the features of the construction history as extrusion
cylinders, but requires manual input to combine the cylin-
ders into the final shape and does not result into parametric
sketches. Self-supervised [24] and unsupervised [30] ap-
proaches have also been adopted in this context. Neverthe-
less, these approaches strive to infer plausible design steps
approximating the input point cloud, but not necessarily in-
ferring the standard parametric entities and therefore not
reproducing design expertise. CAD-SIGNet goes beyond
these limitations and leverages feature-based sequences of
real design steps to predict CAD history from point clouds.
CAD as a Language: Due to the sequential nature of
feature-based CAD modeling, a common strategy to rep-
resent it is to use language modelling. Inspired by Natural
Language Processing (NLP) [38], some works have focused
on language modeling of CAD sketches [15, 22, 33], others
leveraged it in the context of CAD models [44, 45]. How-
ever, all the aforementioned works present generative mod-
els that allow for the manipulation of a latent space but do
not directly tackle the reverse engineering problem. CAD-
Parser [49] used an intermediate representation of the fi-
nal shape, called Boundary-Representation (B-Rep) [21],
instead of point cloud to relax the problem of CAD lan-
guage inference. Closest to our work are DeepCAD [42]
and MultiCAD [27]. DeepCAD proposed a language-based
sketch-extrusion formulation and predicted the CAD his-
tory from point clouds as a preliminary experiment. Build-
ing on these findings, MultiCAD [27] opted for a two-stage
multimodal contrastive learning strategy. In addition to the

separate modality learning, both [42] and [27] use a feed-
forward strategy limiting the scope of reverse engineering
scenarios. In contrast, CAD-SIGNet presents a joint visual-
language learning strategy and allows designers to interact
with design choices (see Figure 1).

3. Problem and CAD Language Formulation
Given an input point cloud, our objective is to gener-
ate a sequence of tokens representing the design history
of the corresponding CAD model. Formally, let X =
[ x1,x2, . . . ,xN ] ∈ RN×3 be an input point cloud with
xi ∈ R3 denoting the 3D coordinates of the i-th point and
N the number of points. Following recent CAD genera-
tive models [42, 44], the design history of a CAD model
C = {Cj}ns

j=1 is represented by a sequence of ns design
steps, where each step Cj = {tk}

nj

k=1 consists of a se-
quence of nj tokens tk ∈ J0..dtK, with dt defining the tok-
enization interval. The objective is to learn a mapping,

Φ : RN×3 → J0..dtKnts s.t., Φ(X) = C ,

where nts =
∑ns

j=1 nj denotes the total number of tokens.
As in [42, 44], the design history is assumed to be composed
of sketch-and-extrusion sequences. This implies that the se-
quence of tokens {tk}

nj

k=1 of each design step Cj represents
either a parametric sketch S or an extrusion operation E
and the full design history C can be seen as a sequence of
sketch-and-extrusion pairs {(Sl,El)}ns/2

l=1 .
Sketch Representation: Similarly to [44], a hierarchical
representation of the sketch is considered. As depicted in
Figure 3, a sketch is created from one or more faces, with a
face being a 2D region bounded by loops. A loop, in turn,
is a closed path that can consist of either a single closed
curve, such as a circle, or multiple curves, e.g., combina-
tion of lines and arcs. The curves are represented by the
tokenized 2D coordinates (px, py) of their parametric for-
mulation (e.g., start and end points for lines). The end of
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Figure 3. Illustration of sketch and extrusion representations.

a curve, loop, face, and sketch are represented by the end
tokens ec, el, ef , and es, respectively.
Extrusion Representation: The extrusion operation de-
fines the sketch plane and the parameters needed to turn it
into a 3D volume. Following [44], the tokens (θ, ϕ, γ) and
(τx, τy, τz) define the sketch plane orientation and trans-
lation, respectively, with respect to a reference coordinate
system. The token σ scales the normalized sketch defined
by the sketch tokens. The pair (d+, d−) represents the ex-
trusion distances along the normal direction of the sketch
plane and its opposite, respectively. The parameter β de-
notes the type of extrusion operation among new, cut, join,
and intersect. Finally, ee sets the end of the extrusion to-
kens. Figure 3 shows the different tokens used to represent
the extrusion operation.
In addition to sketch and extrusion tokens, pad is used for
padding and cls is considered to indicate the start or end
of the design sequence. More details about CAD sequence
representation are provided in supplementary materials.

4. CAD-SIGNet Architecture

The proposed CAD-SIGNet is an end-to-end trainable
transformer-based architecture that takes a point cloud X
as an input and outputs the corresponding design history se-
quence C. It follows an auto-regressive strategy by consid-
ering the set of previous tokens C<i = {tj}j<i as context to
infer the next token ti. For a given point cloud X, the goal
of CAD-SIGNet is to learn its corresponding CAD history
using the following probability distribution,

pθ(C | X) =

nts∏
i=1

pθ(ti | {tj}j<i,X) , (1)

where ti is the i-th sequence token and θ denotes the learned
parameters of the network. As mentioned in Section 3,
the predicted tokens ti correspond to the representations
of sketch-and-extrusion sequences. Unlike other CAD lan-
guage generative models [42, 44] which infer sketch to-
kens Sk for each design step Ck followed by extrusion to-
kens Ek+1, CAD-SIGNet first predicts extrusion tokens that
are further used as context to predict sketch tokens. An
overview of our CAD-SIGNet modules is provided in the
left panel of Figure 2.

4.1. Point Cloud and CAD Language Embedding

The first module of CAD-SIGNet is responsible for embed-
ding point cloud points and CAD language tokens into the
same de-dimensional space Rde .
Point Cloud Embedding: Given the point cloud
X ∈ RN×(3+f), where f is the number of additional
per-point estimated features1, a linear layer2 followed by
ReLU [14] is firstly applied as follows,

Fp
0 = ReLU(XWp

emb) , (2)

where Fp
0 ∈ RN×dp0

e is the learned embedding,
Wp

emb ∈ R(3+f)×dp0
e is a learnable matrix, and dp0

e = 16.
The per-point features obtained in Fp

0 are further enriched
using two Local Feature Aggregation (LFA) [17] modules.
LFA uses k-Nearest Neighbor (k-NN) to aggregate the fea-
tures of neighboring points through a linear combination
weighted by learned attention weights. A linear layer is
applied on the resulting aggregated features followed by
ReLU for each LFA module. The first LFA module results
in the point cloud embedding Fv

0 ∈ RN×de defined by,

Fv
0 = ReLU(LFA(Fp

0)Wlfa) , (3)

where Wlfa ∈ Rdp0
e ×de denotes the weight matrix of the

linear projection. The second LFA module is applied on Fv
0

without changing its dimension. For more details about the
operator LFA(.), readers are referred to [17].
CAD Language Embedding: Given an input design se-
quence C = {ti}nts

i=1 ∈ J0 ..dtKnts , a matrix form of the
sequence is adopted. Unlike [44] which maps the sketch co-
ordinates px and py into a 1-dimensional token, we consider
them as a single 2-dimensional token (px, py). To avoid di-
mension mismatch, the other tokens are also considered as
2-dimensional by augmenting them with pad tokens. By
concatenating these tokens and using a one-hot encoding,
a matrix form C ∈ {0, 1}nts×2dt is used to represent the
sequence C. As in [44], token flags Ctype ∈ J0 ..nf Knts×1

and Cstep ∈ J0 ..ns/2Knts×1 are set to indicate token types
and design steps, respectively. The initial embedding of
the CAD language Fc

0 ∈ Rnts×de is obtained by using the
aforementioned token representations within a linear layer
and is given by,

Fc
0 = [C+Mseq,Ctype,Cstep]W

c
emb +Cpos , (4)

where (, ) is the concatenation operation,
Wc

emb ∈ R(2dt+2)×de is a learnable weight matrix,
and Cpos ∈ Rnts×de a learned positional encoding. Note
that CAD sequences have a variable number of tokens
ñts < nts and Mseq ∈ {0,−∞}nts×2dt is the padding
mask that sets token embedding beyond ñts to −∞.

1Point normals are extracted using Open3D [1]
2All linear layers used in the paper consist of a weight matrix and a

bias. For notation simplicity, we omit the bias.
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4.2. Layer-wise Multi-Modal Transformer Block

Based on the aforementioned embedding, CAD-SIGNet
jointly learns visual-language representations using B
multi-modal transformer blocks of layer-wise cross-
attention between CAD and point cloud embedding.

In particular, let the CAD language embedding Fc
b−1 and

the point cloud embedding Fv
b−1 be the input of the b-th

block (i.e., the first block receives Fc
0 defined in Eq. (4) and

Fv
0 defined in Eq. (3)). Firstly, Fc

b is generated from Fc
b−1

using a multi-head scaled dot-product attention [38] (SA)
and an add-normalization layer [38] (AddNorm) as follows

Fc
b = SA(Q,K,V,M) , (5)

Fc
b = AddNorm(Fc

b,F
c
b−1) , (6)

where query Q, key K, and value V are extracted from
Fc

b−1 and M is the standard self-attention mask [38]. On
the other hand, the point cloud embedding Fv

b−1 undergoes
an additional LFA module as described in Eq. (3) to obtain
a point cloud embedding Fv

b ∈ RN×de .
To enable the information passing between CAD lan-

guage and point cloud embedding within each block, a
cross-attention layer is used on Fv

b and Fc
b. This is

achieved by employing linear projections to extract a key
Kv ∈ RN×de and value Vv ∈ RN×de from the point
cloud embedding Fv

b . A query Qc ∈ Rnts×de is extracted
from the CAD embedding Fc

b. Using Eq. (5), the cross-
attention layer computes a CAD visual-language embed-
ding Fvc

b ∈ Rnts×de as follows,

Fvc
b = SA(Qc,Kv,Vv,0) , (7)

where 0 is a (nts ×N) zero matrix. Furthermore,
the cross and self-attended embedding Fvc

b and Fc
b are

added and normalized to help the network learn the
geometric relationship between CAD tokens, yielding,
Fc

b = AddNorm(Fvc
b ,Fc

b). Finally, as in [38], a Feed-
Forward Network (FFN) is applied on Fc

b and added to it to
form the final CAD embedding, which is passed to the next
block along with Fv

b .
Sketch Instance Guided Attention (SGA): The aforemen-
tioned multi-modal transformer blocks are designed to pass
the information from all point embedding to CAD token
embedding. However, we posit that parameterizing a sketch
requires only cross-attending to a subset of the point cloud.
As shown in the bottom right panel of Figure 2, the inter-
section between the sketch region and the point cloud (de-
picted in red in the same Figure) is considered as adequate
for sketch parameterization. As depicted in Figure 3, the
representation of extrusion tokens defines the sketch plane
and bounding box. Furthermore, CAD-SIGNet predicts ex-
trusion tokens followed by sketch tokens for each design
step. This implies that the predicted extrusion tokens can

be leveraged to define a sketch instance on the point cloud
for cross-attention with sketch token embedding.
Definition 1 A sketch instance I ∈ Rη×3 ⊂ X, with
η < N , is a subset of the input point cloud X. It is ex-
tracted by selecting points inside the bounding box on the
sketch plane derived from the corresponding predicted ex-
trusion tokens.

The bottom right panel of Figure 2 shows the sketch in-
stance extraction process. Given a set of extrusion to-
kens E, we first project the unit bounding box of the
xy-plane into a bounding box on the sketch plane de-
fined by the extrusion tokens E. In particular, given
the unit bounding on xy-plane defined by the points
U = [(0, 0, 0)T, (0, 1, 0)T, (1, 0, 0)T] ∈ R3×3, the Euler
angles (θ, ϕ, γ), the translation vector (τx, τy, τz), and the
scaling factor σ defined by the extrusion operation E, the
projected bounding box Up ∈ R3×3 is given by,

Up = (Rxyz(θ, ϕ, γ)(U× σ) + (τx, τy, τz)
T) , (8)

where Rxyz(θ, ϕ, γ) ∈ SO(3) combines the Euler an-
gles in a rotation matrix in the special orthogonal group
SO(3). The sketch instance I is then defined by
the points of X lying inside this bounding box, i.e.,
I : = {x ∈ X | ϕ ( x , Up) = True}, where
ϕ(x,Up) is an operator that checks whether an input point
x ∈ R3 is inside the projected bounding box Up. Note that
for training the ground-truth extrusion tokens are used to
define the bounding box Up, while the predicted extrusion
tokens are leveraged at inference time. In order to not pe-
nalize small errors in sketch plane predictions of the extru-
sion tokens and point cloud sampling, the bounding box is
enlarged in the direction of sketch plane normal and its op-
posite by a small margin 0.1×max(d+, d−). The extracted
sketch instances can be then used in the cross-attention de-
fined in Eq. (7) only for sketch token embedding by em-
ploying a suitable mask instead of the zero matrix. In par-
ticular, let Msga ∈ {0,−∞}nts×N be this mask and msga

ij

be its value for the attention between the i-th token and j-th
point embedding. Msga is introduced to mask the attention
of sketch token embedding to the points lying outside their
corresponding sketch instance. As a result, msga

ij is set to
0 if the i-th token embedding is not denoting a sketch. If
the i-th token is representing a sketch, then msga

ij is set to 0
where the j-th point embedding is part of the corresponding
sketch instance and −∞ otherwise. Note that after identi-
fying the sketch instances, 4 linear layers are used on the
corresponding subsets of Fv

b to refine their embedding be-
fore extracting the key and value for the cross-attention with
sketch token embedding. The top right panel of Figure 2 vi-
sually describes the SGA module.
4.3. Training and Inference Strategies

After the last multi-modal transformer block, the CAD
embedding Fc

B is passed to two separate linear lay-
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Figure 4. Visual results of reconstruction from the CAD sequences predicted from input point clouds. Both DeepCAD [42] and CAD-
SIGNet are trained on DeepCAD dataset [42]. Left: Results on DeepCAD dataset [42]. Middle: Cross-dataset results on CC3D dataset [6],
Right: Cross-dataset results on Fusion360 dataset [41].

ers for predicting the 2D tokens probability matrices
Ox, Oy ∈ [0, 1]nts×dt .
Training: During training, a teacher-forcing strategy [40]
is used to pass the ground-truth as input. The cross-entropy
loss Lce is used as an objective function.
Inference: During inference, given the input point
cloud X and the initial CAD sequence consisting of
C = {(cls, pad)}, the next tokens are auto-regressively
generated until the end token is predicted.
Hybrid Sampling: The auto-regressive nature of CAD-
SIGNet suggests that different token predictions at a given
time-stamp result in different final CAD sequences. This
allows for generating multiple plausible predictions given
a point cloud. In particular, given the output probabilities
Ox,Oy , one can take the top-1 to obtain the predicted to-
kens or opt for a different selection strategy for each token
to have a different final CAD sequence. To showcase this,
we use a hybrid sampling approach during inference by se-
lecting top-5 probabilities for the first token, and top-1 for
subsequent tokens. This results in 5 different final CAD se-
quences given a point cloud. Finally, the optimal CAD se-
quence is chosen by selecting the one that best approximates
the input point cloud. This is assessed by reconstructing
the CAD models3 from the predicted sequences, sampling
point clouds on them, and selecting the model that results in
a minimum Chamfer Distance [11] with respect to the input
point cloud.

5. Experimental Results
In this section, the proposed CAD-SIGNet is evaluated on
two reverse engineering scenarios: (1) design history recov-
ery from point clouds, and (2) conditional auto-completion
of design history given user input and point clouds. Addi-
tional preliminary experiments showcasing the applicability
of the proposed method in a realistic scenario of reverse en-

3Opencascade[2] is used to reconstruct a model from a CAD sequence.

gineering is also discussed.
Dataset: The DeepCAD dataset [42] is used. The sketch
and extrusion parameters are normalized, ensuring that the
sketches and the CAD models are within a unit-bounding
box starting from the origin. The point clouds are obtained
by uniformly sampling 8192 points from the normalized
CAD model. As in [42], the sketch and extrusion param-
eters are quantized to 8 bits.
Implementation Details: We use 8 CAD-SIGNet multi-
modal transformer blocks with h = 8 number of heads for
self-attention. The latent dimension is set to de = 128. The
network has been trained with a batch size of 72 for 150
epochs using 2 NVIDIA RTX A6000 GPUs. We implement
curriculum learning [3] for the first 15 epochs, increasingly
sorting CAD sequences by the number of curves. For the
subsequent 135 epochs, the samples are shuffled. More de-
tails are provided in supplementary materials.

5.1. Design History Recovery from Point Cloud

In this experiment, the task is to infer CAD language history
given an input point cloud.
Metrics: To evaluate the predicted sequences, a set of met-
rics assessing different levels of the predictions are used.
In particular, the final CAD reconstructions are quantita-
tively evaluated with respect to ground-truth CAD models
using mean and median Chamfer Distances (CD) [11]. As
CAD sequences are predicted as tokens, they do not nec-
essarily result in valid CAD models when reconstructed
using OpenCascade [2]. Accordingly, an Invalidity Ratio
(IR) metric, expressed as a percentage, is the ratio of in-
valid models. F1 score is computed to evaluate the pre-
dicted extrusions and different primitive types along with
their occurrences in the sequences. A Hungarian matching
algorithm [20] is used to match the predicted loop and prim-
itive bounding boxes with the ground-truth ones of the same
sketch. More details are provided in the supplementary.
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Model IR↓ Mean CD ↓
(×10−3)

Median CD ↓
(×10−3)

DeepCAD [42] 7.14 42.49 9.640
MultiCAD [27] 11.5 - 8.090
CAD-SIGNet (Ours) 0.88 3.430 0.283

Table 1. Design history recovery from point clouds on Deep-
CAD [42] dataset. Invalidity Ratio (IR), mean and median Cham-
fer Distance (CD) results.

Results: To the best of our knowledge, DeepCAD and Mul-
tiCAD are the only works in literature that perform point
cloud to CAD language inference. Note that DeepCAD re-
sults have been reproduced using its publicly available im-
plementation, while MultiCAD results were taken from the
reported ones in [27] due to unavailability of public im-
plementation. It can be observed in Table 1 that the pro-
posed CAD-SIGNet is outperforming both DeepCAD and
MultiCAD in terms of median CD by a factor of 35 and
28, respectively. Moreover, the IR metric shows that the
predicted CAD sequences by CAD-SIGNet results in dras-
tically more valid CAD model reconstructions than both
DeepCAD and MultiCAD. In Table 2, the per-primitive and
extrusion F1 scores of our method are compared to those of
DeepCAD. Our model predicts more accurately the prim-
itive types, and their occurrences in the design sequence
when compared to DeepCAD. Notably, our method records
improvements of more than 14% in F1 score on the arc type
with respect to DeepCAD. In addition, CAD-SIGNet cor-
rectly predicts the extrusions in most cases, showing that
our model can correctly identify the number of needed de-
sign steps. Figure 4 displays several qualitative CAD mod-
els reconstructed from the predicted CAD sequences. Visu-
ally, our method achieves better reconstructions with more
accurate details than DeepCAD [42]. More visual results
are reported in the supplementary materials.

Model F1 Score
Line ↑ Arc↑ Cricle↑ Extrusion↑

DeepCAD[42] 69.26 13.82 60.14 86.70
CAD-SIGNet (Ours) 77.31 28.65 70.36 92.72

Table 2. Design history recovery from point clouds on Deep-
CAD [42] dataset. F1 scores for lines, arcs, circles, and extrusions.

Ablation Study: The impact of the components proposed
in CAD-SIGNet is assessed in Table 3 in terms of F1 scores
and CAD reconstruction metrics (IR, mean, and median
CD). In the first row of this Table, the hybrid sampling
described in Section 4.3 is ablated, thus selecting tokens
with top-1 probabilities. It can be observed that this re-
sults in a drop of performance in terms of CD distances and
IR while maintaining similar sketch and extrusion scores.
A similar trend is observed for the second row, where the
SGA module is omitted in the layer-wise cross-attention de-
scribed in Section 4.2. This suggests that the hybrid sam-
pling and the SGA module are especially important to ob-
tain valid and accurate final CAD reconstructions. Finally,

Model F1 Score Median CD↓
(×10−3)

Mean CD↓
(×10−3)

IR↓Sketch↑ Extrusion↑
Ours w/o Hybrid Samp. 75.30 92.97 0.291 6.784 5.02
Ours w/o SGA 75.13 92.49 0.289 4.995 2.18
Ours w/o Layer-wise CA 45.89 84.53 76.40 122.7 0
CAD-SIGNet (Ours) 75.94 92.72 0.283 3.432 0.88

Table 3. Ablation study. Sketch and extrusion F1 scores. Median,
Mean CD, and IR metrics.

the third row reports the results when the layer-wise cross-
attention defined in Eq. (7) is not considered. In this case,
each CAD language embedding Fc

b cross-attends to only
the point cloud embedding Fv

B from the last block B. In
other words, this experiment omits passing the information
from intermediate geometric embedding to the CAD lan-
guage one. Despite generating only valid CAD reconstruc-
tions, we observe a drastic performance drop in all other
metrics using this strategy compared to the proposed layer-
wise cross-attention. Visual results of the ablation experi-
ments are provided in supplementary materials.

5.2. Conditional Auto-Completion from User Input

CAD-SIGNet’s auto-regressive nature enables it to com-
plete the next design steps given a user input and a complete
point cloud. To showcase this scenario, the same model
trained for full design history recovery is used. During in-
ference, the ground-truth tokens of the first extrusion and
sketch are provided, and the task is to predict the next to-
kens of the CAD sequence given the complete point cloud.
Baseline Methods: To the best of our knowledge, there
is no existing method capable of achieving the aforemen-
tioned task. DeepCAD [42] and MultiCAD [27] are not
suitable candidates for this task due to their feed-forward
nature. For the sake of comparison, we adapt two auto-
regressive generative models, namely SkexGen [44], and
HNC [45]. Similarly to DeepCAD [42], we train a Point-
Net++ [29] to encode the point cloud into the latent space
learned by SkexGen [44], and HNC [45] on CAD language.
Note that these adapted baselines were not subject to opti-
mization. More details on how these methods are adapted
are provided in the supplementary materials.
Metrics: The auto-completion performance is evaluated in
terms of final CAD reconstructions. This is measured by
the IR introduced in Section 5.1 and another measure based
on the CD. The latter is given by computing: (1) CDgt

pred
which is the CD between the CAD reconstruction of the
completed sequence and the ground-truth CAD model, (2)
CDgt

in which is the CD between the CAD reconstruction of
the user input sequence and the ground-truth, (3) the ratio
of the two distances CDgt

pred/CDgt
in. This ratio allows for as-

sessing whether the completed sequence resulted in a better
final CAD reconstruction with respect to the user input. In
order to reflect the distribution of this measure, the three
quartiles Q1, Q2 (i.e., median), and Q3 are reported.
Results: Table 4 compares the results of CAD-SIGNet
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Point Cloud GTHNCSkexGenInput CAD-SIGNet

Figure 5. Visual results for auto-completion from user input on
DeepCAD [42] dataset. From left to right, input point cloud,
CAD model reconstruction from user input CAD sequence, Skex-
Gen [44], HNC [45], CAD-SIGNet (ours), and ground-truth.

when using hybrid sampling and without, to the adapted
baselines based on HNC [45] and SkexGen [44]. It can
be observed that all the quartile values of the CD ratio for
SkexGen baseline are very close to 1 which indicates that
the completed sequences resulted in a final CAD recon-
struction that is close to the one of the user input. Notably,
CAD-SIGNet achieved low Q1 and Q2 values of 0.054 and
0.325, respectively, showing that it improved the user input
by a large margin on half of the testing samples. These ob-
servations are consistent with the visual results reported in
Figure 5. Moreover, discarding the hybrid sampling yields
in a lower performance in all metrics but still outperforms
both HNC and SkexGen baselines. Finally, the SGA mod-
ule provides a noticeable improvement on the median CD
ratio which further highlights its importance.

Model CD Ratio IR↓Q1↓ Q2 (Median)↓ Q3↓
SkexGen-Baseline [44] 0.987 1.000 1.035 2.04
HNC-Baseline [45] 0.437 1.015 2.589 8.85
Ours w/o Hybrid Samp. 0.096 0.696 1.096 4.40
Ours w/o SGA 0.060 0.458 0.992 0.91
CAD-SIGNet (Ours) 0.054 0.325 0.995 0.65

Table 4. Conditional auto-completion from user input and point
clouds on DeepCAD [42] dataset. Quartiles of CD ratio and IR.

5.3. Applications of CAD-SIGNet

In this section, we highilight the applicability of CAD-
SIGNet in a real-world scenario of reverse engineering.
Cross-Dataset Experiment on Fusion360: Following the
protocol outlined in MultiCAD [27], a cross-dataset exper-
iment is performed on the Fusion360 dataset [41]. Results
presented in Table 5 shows that CAD-SIGNet outperforms
both MultiCAD [27] and DeepCAD [42] by a significant
margin. Figure 4 (right) shows some visual comparison of
the reconstructed CAD models from the predicted CAD se-
quences of CAD-SIGNet and DeepCAD [42]. The results
indicate that CAD-SIGNet achieves better 3D reconstruc-
tion quality in comparison to DeepCAD [42].
Design History Recovery from Realistic 3D Scans: The
reported results on DeepCAD dataset [42] are obtained

Model IR↓ Median CD (×10−3)↓
DeepCAD [42] 25.17 89.2
MultiCAD [27] 16.52 42.2
CAD-SIGNet (Ours) 1.83 1.15

Table 5. Cross-dataset experiment on design history recovery from
point clouds on Fusion360 [41] dataset.

by applying the model on point clouds sampled on CAD
meshes. However, in a real-world scenario of reverse en-
gineering, we aim to reverse engineer 3D scans which are
prone to 3D scanning artifacts. The CAD-SIGNet model
trained on DeepCAD dataset is tested on this setting by per-
forming a cross-dataset testing. The CC3D dataset consists
of 50k+ realistic 3D scans with their corresponding CAD
models. Figure 4 shows some qualitative results of CAD-
SIGNet compared to DeepCAD. Despite not being trained
on such scan data, CAD-SIGNet succeeds in reconstructing
promising CAD reconstructions. On the test set of CC3D
dataset, composed of 5570 samples, we report a median CD
of 2.398 and an IR of 2.39 compared to a median CD of
263.56 and an IR of 12.73 achieved by DeepCAD.
User Controlled Reverse Engineering: In a real-world re-
verse engineering scenario, it is not only desirable to gen-
erate the correct CAD sequence from a given point cloud,
but to provide the user with a choice over every design
step [45]. Towards this direction, one can further extend the
hybrid sampling strategy to generate either multiple sketch
planes for the extrusion steps or multiple sketches or loops
from one single sketch plane. Since sketch sequence gener-
ation relies on the points laying close to the predicted sketch
planes, changing sketch planes can result in a new sketch.
The right panel of Figure 1 shows different generated de-
sign paths by our method a user can interactively follow.

6. Conclusion
In this paper, we propose, CAD-SIGNet, an auto-regressive
architecture designed for recovering the design history of
a CAD model given a point cloud. This history is rep-
resented as a sequence of sketch-and-extrusion sequences.
Leveraging its auto-regressive nature, CAD-SIGNet recon-
structs a CAD design history from the input point cloud,
simultaneously offering a range of plausible design alter-
natives. Through multi-modal transformer blocks of layer-
wise cross-attention, the information is passed between
CAD language and point cloud embedding. Notably, the
incorporation of the SGA module enhances the reconstruc-
tion of fine-grained details in the sketches. As future works,
selecting subsets of points using SGA could help overcom-
ing the high computational costs associated with large point
clouds. While our work only considers extrusions, CAD-
SIGNet could be adapted to other operations.
Acknowledgement: The present work is supported
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