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Abstract

Visual program synthesis is a promising approach to ex-
ploit the reasoning abilities of large language models for
compositional computer vision tasks. Previous work has
used few-shot prompting with frozen LLMs to synthesize
visual programs. Training an LLM to write better visual
programs is an attractive prospect, but it is unclear how to
accomplish this. No dataset of visual programs for training
exists, and acquisition of a visual program dataset cannot
be easily crowdsourced due to the need for expert annota-
tors. To get around the lack of direct supervision, we explore
improving the program synthesis abilities of an LLM using
feedback from interactive experience. We propose a method
where we exploit existing annotations for a vision-language
task to improvise a coarse reward signal for that task, treat
the LLM as a policy, and apply reinforced self-training to
improve the visual program synthesis ability of the LLM
for that task. We describe a series of experiments on ob-
ject detection, compositional visual question answering, and
image-text retrieval, and show that in each case, the self-
trained LLM outperforms or performs on par with few-shot
frozen LLMs that are an order of magnitude larger. Website:
https://zaidkhan.me/ViReP

1. Introduction
Complex visual queries can often be decomposed into sim-
pler subtasks, many of which can be carried out by task-
specific perception modules (e.g. object detection, caption-
ing). For example, consider the problem of finding bounding
boxes for the phrase “white mug to the left of the sink”. This
is a challenging query for single model such as an open vo-
cabulary object detector. However, this query can be solved
by writing a program that composes task-specific perception
modules with logic: use an open vocabulary object detector
to find a sink and white mugs in the scene, then compare the
horizontal center of the sink and the mugs to find white mugs
to the left of the sink. Program synthesis with large language
models [1] is a promising approach to automate this process,
and recent work has shown that proprietary large language
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Figure 1. Visual program synthesis with LLMs has been treated as
a 0/n-shot task where the LLM is kept frozen. This limits oppor-
tunities for improvement. We ask whether it is possible to train a
LLM to write more accurate programs. Given that there is no large
scale dataset of accurate visual programs available, we propose
improving the LLM using self-training.

models can write programs for visual tasks [9, 27, 28]. Cur-
rent approaches for visual program synthesis with LLMs
use few-shot prompting and rely on the in-context learning
abilities [32] of frozen, proprietary LLMs. (Fig. 1)

Few-shot prompting with frozen LLMs for visual pro-
gram synthesis as in ViperGPT [28], VisProg [9], or Code-
VQA [27] has several limitations. The LLM needs to un-
derstand the competencies of the perception modules it is
using. A open vocabulary object detector may able to lo-
cate a common attribute-noun phrase such as “white mug”
without problems, but struggle with a more abstract phrase
such as “microwaveable mug” [24]. A VQA model might
be able to answer “is the car blue?” without problems, but
fail when logical modifiers are introduced, such as “is the
car not blue?” [7]. In many cases, we do not precisely know
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Task Domain Self-Training Supervision Tool/API Use Visual Task Decomposition Grounded By Feedback Improves LLM

VisReP (Ours) Visual Program Synthesis Yes Weak Yes Yes Yes Yes
Haluptzok et al. [10] Programming Puzzles Yes Weak No No Yes Yes

ReST [8] Natural Language Understanding Yes - No No Yes Yes
VisProg [9] Visual Program Synthesis No - Yes Yes No No

ViperGPT [28] Visual Program Synthesis No Weak Yes Yes No No
ToolLLM [20] Tool Usage by API No Strong Yes No No Yes

GorillaLLM [19] Tool Usage by API No Strong Yes No No Yes
ToolFormer [23] Natural Language Understanding Yes Weak Yes No Yes Yes

Table 1. Differences between our work and similar work. Strong supervision means that the training process requires examples of ground-truth
programs to train the LLM. Weak supervision means that the training process does not require ground-truth programs. Tool / API use means
that the LLM is required to use substantial functionality implemented by external modules (e.g. an object detector, a web search API) to
solve tasks. Visual task decomposition means that the LLM can decompose a complex visual task into primitive subtasks. Grounded by
feedback means that the LLM has been optimized not just for syntactic / semantic correctness (program does not hallucinate / cause errors),
but for functional correctness (programs produce the correct answer). Improves LLM means that the work proposes a method to improve an
LLM for a specific task, rather than using a frozen LLM.

the weaknesses or competencies of a perception model [30].
Even if this were known, it is difficult to convey all of the
competencies / weaknesses of a perception module through
in-context examples. Second, it is the case in program syn-
thesis that an LLM often can generate the correct solution
to a problem, but the correct solution is not the solution the
LLM places the highest probability on [4]. We would like
to align the LLM to “uncover” the knowledge of the correct
solution, but it not clear how to do this in a principled way
with few-shot prompting alone.

How can we train a large language model to write
better visual programs for a specific task?

Our goal is to optimize the parameters of the language
model so the accuracy of the synthesized programs is
higher. Existing approaches that train LLMs to improve
their ability to programatically use tools / APIs such as
GorillaLLM [19], ToolLLM [20] do so by finetuning LLMs
on examples of tool use or API use. This cannot be directly
applied to visual program synthesis because there are no
large scale datasets of visual programs, and collecting
such a dataset would be extremely labor intensive. In the
absence of a large scale dataset, how do we learn to write
better programs for a visual task?

We posit that grounding a language model with
interactive feedback from a generic visual task
will improve the general visual program synthesis
abilities of the model.

A natural way to learn from feedback is to use reinforce-
ment learning. ReST [8] and RaFT [6] introduce a general
framework for reinforced self-training in generative tasks
and demonstrate success in machine translation and text-
to-image generation. However, a crucial ingredient in their
recipe is the availability of a fine-grained reward model. It
is difficult to construct a fine-grained reward model for vi-
sual program synthesis, given both the absence of human
preference datasets for visual programs, and the difficulty

of devising a proxy metric. One alternative is to use unit
tests to teach a neural reward model or give a coarse-grained
reward. This technique has been used successfully in cod-
ing challenges by CodeRL [16] and Haluptzok et al. [10],
but it is unclear how it can be applied to visual program
synthesis. Our key idea is to use existing annotations for a
vision-language as improvised unit tests to provide a coarse
reward signal. Using the coarse reward signal, we can apply
reinforced self-training by treating the language model as
a policy and training it with a simple policy gradient algo-
rithm. We alternate synthetic data generation steps in which
we sample programs from the language model policy with
optimization steps in which we improve the language model
policy based on observations from executing the sampled
programs. We name our proposed method VisReP, for Visu-
ally Reinforced Program Synthesis.

• We propose optimizing the parameters of a LLM so that
the accuracy of the synthesized visual programs is higher,
in contrast to previous works that use frozen LLMs.

• Since no dataset of accurate visual programs is available
for finetuning, we hypothesize that we can instead use
feedback from the execution environment to improve the
visual program synthesis abilities of a language model.

• We propose VisReP, an offline, model agnostic recipe
for reinforced self-training of large language models for
visual program synthesis using existing vision-language
annotations with a simple policy gradient algorithm.

• Our results show that it is possible to apply reinforced self-
training for to improve large language models for visual
program synthesis with only coarse rewards.

We demonstrate the effectiveness of an CodeLlama-7B
policy trained by VisReP on compositional visual question
answering (+9%), complex object detection (+5%), and
compositional image-text matching (+15%) relative to the
untrained policy. We show that the policy trained by Vis-
ReP exceeds the accuracy of a gpt-3.5-turbo policy on all
three tasks.
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2. Related Work
2.1. Self-Training

Self-training is an established paradigm which uses unla-
beled data to improve performance. Self-training has been
successfully applied in a number of fields. We restrict our
coverage to usages with significant overlap.
Program Synthesis Haluptzok et al. [10] showed that LLMs
can improve their program synthesis abilities by generating
programming puzzles and solving them. CodeRL [16] pro-
posed an actor-critic framework to improve the program
synthesis abilities of LLMs for programming problems ac-
companied by unit tests. CodeIT [3] and Rest-EM [26] also
use a similar policy gradient approach for program synthesis.
Our problem domain is different from these works, which
focus on program synthesis for programming puzzles / prob-
lems. In addition, our work has an explicit focus on learning
to use an API fluently.
Alignment ReST [8] and RaFT [6] introduced a generic
framework for reinforced self-training and applied it to align
machine translation outputs to human preferences and align
foundation models on language understanding and image
generation tasks respectively. These works share the same
basic idea as our work, though they are in a substantially
different task domain where human preferences are either
known (conversational alignment) or can be estimated with
an available neural model.
Vision-Language SelTDA [14] introduced a self-training
approach for visual question answering. SelTDA proceeds
by pseudolabeling unlabeled data, then finetuning a large
VLM on the pseudolabeled data. In contrast to SelTDA, we
improve a LLM for visual program synthesis.

2.2. Visual Program Synthesis

Visual program synthesis with LLMs was proposed concur-
rently by ViperGPT [28], VisProg [9], and CodeVQA [27].
The common points between these three works is that (a)
they use pretrained LLMs as code generators (b) they repre-
sent complex visual tasks as compositions of primitive visual
subtasks (c) they use code to invoke task-specific models to
perform the primitive subtasks. Our work is most similar to
ViperGPT and CodeVQA as they produce code in a general
purpose programming language rather than a DSL. All three
works use a proprietary, frozen LLM. In contrast to all three,
the focus of our work is on how we can improve the visual
program synthesis abilities of an open LLM.

2.3. Tool Use with LLMs

Multimodal tool-using LLMs were first introduced by So-
cratic Models [33]. However, their approach was to create
fixed pipelines in which the output of a perception model
such as CLIP [21] is fed to a LLM. Later approaches such
as GorillaLLM [19] and ToolLLM [20] improved on this by

treating tool use as a program synthesis problem and creating
LLMs that use a broad range of tools by learning to invoke
APIs. However, one key limitation of these approaches in
the context of visual program synthesis is that that they do
not learn to decompose problems into subproblems that can
be solved by tools. Instead, they are trained to select the
right tool for the problem and invoke it. Another limitation is
that they are not optimized for functional correctness. They
are trained for syntactic and semantic correctness, but they
have not been provided feedback on whether their use of
tools produces the desired answer. ToolFormer [23] is simi-
lar to our work in the sense that the LLM’s usage of tools is
grounded by feedback, but they focus on natural language
understanding tasks rather than visual tasks.

3. Method
3.1. Visual Program Synthesis with LLMs

Task Formulation Let v be a visual input and q be a textual
query about v. In visual program synthesis, we synthesize
a program p = πθ(q) with a program generator πθ. The
program p and visual input q are then fed into the execution
engine ŷ = ϕ(v, p) to produce a result ŷ. The program
generator is an auto-regressive large language model

πθ(y | x) =
T∏

t=1

πθ (pt | p1:t−1,x) , (1)

where p1:t are the tokens of the program, and x is the input
to the large language model. The language model is kept
frozen in previous work [28]. Our goal is to optimize the
parameters θ of the language model π so the accuracy of the
synthesized programs is higher.
Implementation Following ViperGPT [28], we provide the
specification of the ImagePatch API concatenated with
the textual query q as the prompt to the program genera-
tor. The synthesized program p is a Python program that
can invoke any Python builtins, control flow structures,
and the ImagePatch API. Our implementation of the
ImagePatch API is largely similar to ViperGPT. We re-
move some API methods that were not required for the
tasks we evaluate on (such as llm query). We use BLIP
[17] and GroundingDINO [18] as perception modules un-
derlying find (object detection), simple query (visual
question answering), and verify property (attribute
verification).

3.2. Reinforced Self-Training

Rather than use a frozen large language model as the program
generator pθ, we would like to optimize the parameters θ
of the language model so the accuracy of the synthesized
programs is higher. It is not obvious how to do this. We can’t
backpropagate through the execution engine ϕ(πθ(q), v) to
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Figure 2. VisReP can be applied to improve the visual synthe-
sis abilities of an LLM for a vision-language task using exist-
ing annotations for a vision-language task (e.g. an object descrip-
tion+image+bounding boxes). A key idea is to construct a coarse
reward by comparing the answer produced by a synthesized pro-
gram to the ground-truth answer.

directly optimize θ with respect to q or v. An alternative
might be to use human labor to build a dataset of high-quality
visual programs, and train the large language model πθ on
the manually-collected dataset. But collecting such a dataset
is very labor intensive, and not scalable. Instead, we explore
the idea of learning from experience by applying a simple
policy gradient method, REINFORCE [31].

We propose VisReP, which treats the program synthesis
task as a growing batch RL problem [15], inspired by ReST
[8]. We first define a coarse discrete reward function R(·)
from existing annotations for a vision-language task. We
then alternate Grow steps, in which we sample trajectories
(programs) from the policy (large language model), with
Improve steps, in which we apply behavioral cloning with a
reward-weighted negative-log likelihood loss to improve the
policy. A diagram of our approach is depicted in Fig. 2.

Grow Step The grow step corresponds to the acting step
in reinforcement learning, and can also be seen as synthetic
data generation. Let D = {(v1, q1, y1), . . . (vn, qn, yn)} be
a dataset for a vision-language task, where vi is an image, qi
is a textual query, and yi is ground-truth for the i-th triplet
(e.g. a string for VQA, bounding boxes for object detection).
We start with the frozen language model πθ(p | q), where
p is a synthesized program and q is a textual query. The
language model πθ represents our policy. We generate a
dataset of trajectories Dg by sampling many programs p
from the current policy πθ: p ∼ πθ(p | q) for q ∼ D.

Improve Step Our goal in this step is to use the dataset
of synthetic programs Dg to improve the policy πθ. First, we

define a binary-valued reward function R : p, v, y → {0, 1}
on a given program, image, annotation triplet,

R(v, p, y) =

{
1, if ϕ(p, v) = y

0, otherwise
(2)

where ϕ(p, v) is the result of executing the program p on
an image v. Note that y is not a program but an existing
annotation such as a string for VQA for a bounding box
for object detection. To apply behavioral cloning, we then
minimize the reward-weighted loss

J(θ) = E(q,p)∼Dg
[R(v, p)L(p, q; θ)] (3)

where L(p, q; θ) is the negative log-likelihood loss

LNLL(p, q; θ) = −E(q,p)∼Dg

[
T∑

t=1

log πθ (pt | p1:t−1, q)

]
(4)

over the pairs of textual queries q and synthetic programs p
in Dg .

Because the reward function only takes on binary values,
we can simplify this and implement it by: First, generating
a dataset of synthetic programs Dg = {πθ(q) : ∀q ∈ D}
using the LLM πθ on a dataset D. Next, filtering Dg to
obtain D′

g = {(q, v, p ∈ Dg : R(q, v, p) > 0}, which
corresponds to executing all synthetic programs and only
keeping those that give correct answers. Finally, we finetune
the language model πθ on the filtered dataset D′

g using the
standard causal language modeling loss. We then iterate the
process, initiating a new synthetic data generation step with
the improved policy π′

θ.
Iteration For the initial grow step, we use a frozen lan-

guage model as the initial policy. For example, we use the
pretrained codellama-7b-instruct-hf as the policy
in the initial grow step. In subsequent steps, we use the policy
trained in the previous improve step for the grow step.

4. Understanding Self-Training
Our goal in this section is to characterize the stability and
sample efficiency of VisReP. We want to understand:
1. How does applying VisReP change the accuracy of syn-

thesized programs?
2. What happens as VisReP is repeated?
3. How does data scarcity and diversity affect VisReP?

4.1. Implementation

We start off with the GQA [13] dataset for visual question
answering. We choose GQA because each question in GQA
was constructed programatically and is thus a good candidate
to be answered by program synthesis. GQA has over 2M
questions, each belonging to one of ≈ 100 question types.
We construct a training set by sampling 100 questions for
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image_patch = ImagePatch(image)
empty_basket_patches = image_patch.find("empty basket")
empty_basket_patch = empty_basket_patches[0]
plastic_patches = image_patch.find("plastic")
plastic_in_empty_basket = len(plastic_patches) > 0 and \

len(plastic_patches) == len(empty_basket_patches)
return bool_to_yesno(plastic_in_empty_basket)

image_patch = ImagePatch(image)
empty_basket_patches = image_patch.find("empty basket")
empty_basket_patch = empty_basket_patches[0]
return bool_to_yesno(
  empty_basket_patch.verify_property("empty basket", "plastic")
)

result: "yes"  result: "no"

Before After

Query: Was plastic used to make the empty basket?Visual Question Answering

Object Detection

image_patch = ImagePatch(image)
candidate_patches = image_patch.find("spoon")
verification_question = "Is this not made of wood?"
verified_patches = [_ for _ in candidate_patches
  if _.simple_query(verification_question) == "yes"
]
return verified_patches

image_patch = ImagePatch(image)
candidate_patches = image_patch.find("spoon")
verification_question = "Is this a wooden spoon?"
verified_patches = [
  _ for _ in candidate_patches
  if _.simple_query(verification_question) == "no"
]
return verified_patches

No Detections

Query: Find all objects �tting the description 'Spoons that are not wooden'.

result: result:

Image-Text Matching

image_patch = ImagePatch(image)
donuts_patches = image_patch.find("donut")
box_patches = image_patch.find("box")
meat_patches = image_patch.find("meat")
plate_patches = image_patch.find("plate")
if len(donuts_patches) == 1 and len(box_patches) == 1 \
  and len(meat_patches) == 1 and len(plate_patches) == 1:
  return "yes"
else:
  return "no"

image_patch = ImagePatch(image)
donuts_patches = image_patch.find("donuts")
donuts_patch = donuts_patches[0]
donuts_in_a_box = donuts_patch.verify_property("donuts", "in a box")
if not donuts_in_a_box:
  return "no"
meat_patches = image_patch.find("meat")
meat_patch = meat_patches[0]
meat_on_a_plate = meat_patch.verify_property("meat", "on a plate")
if not meat_on_a_plate:
  return "no"
return "yes"

result: "no"  result: "yes"

image_patch = ImagePatch(image)
meat_box_patches = image_patch.find("meat in a box")
donuts_plate_patches = image_patch.find(
  "donuts on a plate")
if len(meat_box_patches) > 0 and \
  len(donuts_plate_patches) > 0:
  return "yes"
else:
  return "no"

image_patch = ImagePatch(image)
meat_patches = image_patch.find("meat")
meat_patch = meat_patches[0]
meat_in_box = meat_patch.verify_property("meat", "in a box")
donuts_on_plate = image_patch.verify_property("donuts", "on a plate")
return bool_to_yesno(meat_in_box and donuts_on_plate)

result: "yes"  result: "no"

(Positive Caption)

(Negative Caption)

correct

correct

correct

wrong

wrong

wrong

Verify image matches text="A type of meat in a box and donuts on a plate"

Verify image matches text="Donuts in a box and a type of meat on a plate"

Figure 3. Self-training with VisReP produces qualitatively better programs. Here, we show programs written by the initial policy (on the
left) and the policy after 10 iterations of self-training on GQA (on the right). In VQA example, the initial policy does not specifically
check whether the empty basket is plastic. In the object detection example, the reasoning of the initial policy is correct, but it issues a
confusingly worded query to the simple query module, which returns the wrong answer. The learned policy uses simple query more
appropriately. In the image-text matching example, in the initial policy tries to use the object detector to search directly for “meat in a box”
and “donuts on a plate”, but this is too complicated for the object detector to localize. After self-training, the LLM policy no longer makes
this mistake.

each question type, for a total of ≈ 10k visual questions and
answers. We construct a validation set following Gupta and
Kembhavi [9]. We use the CodeLlama [22] family of models
as our initial policy. We use LoRA [12] adapters during the
Improve steps. We use the hyperparameters suggested by

Dettmers et al. [5]. Full implementation details are in the
supplement.
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Figure 4. Iteratively applying VisReP allows a LLM to self-improve improve on almost all of GQA’s ≈ 100 question types. The base of each
bar is set to the accuracy of the initial policy (codellama-7b-instruct). A green bar indicates question types on which the policy at iteration 10
improved over the initial policy, and a red bar indicates question types on which the policy at iteration 10 was worse than the initial policy.
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Figure 5. Supplying a small amount of human written corrections
as in-context examples during training can increase the stability of
the self-training process (green line). We show validation accuracy
on GQA through multiple iterations of self-training with a policy
instantiated from CodeLlama-7b. Without these corrections, pro-
liferating errors cause performance to degrade in later iterations
(red line). The translucent shading around each line indicates the
standard deviation over 5 evaluations on the validation set.

4.2. Persistent Errors Harm Iterated Self-Training

Applying the formulation of self-training in Sec. 3.2 results
in a improvement, but iterating it further results in program
synthesis quality degrading, rather than increasing (red line
in Fig. 5). This is due to the self-training process inadver-
tently reinforcing incorrect reasoning. A program that uses
flawed reasoning can occasionally produce a correct answer.
The language model can thus be rewarded for a program that
is right for the wrong reasons. If this goes uncorrected, the
language model will learn incorrect reasoning patterns.

We hypothesize that providing a small number of human-

written corrections for persistent reasoning errors can sta-
bilize the self-training process. We use the question type
annotations in GQA to identify question types for which
training accuracy decreases over time. These are question
types which the language model is not able to self-improve
on. We denote them Qhard. For each question type in Qhard,
we randomly sample one question q for which the language
model synthesized a program that produced the wrong an-
swer. We examine the reasoning in that program, and if the
reasoning is flawed, we correct it. We repeat this until we
have a program with correct reasoning for each question type
in Qhard, and denote the bank of correct programs as Pgold.

We then retrieve from Pgold during self-training for use
as in-context examples. If a question is annotated with a
question type in Qhard, we retrieve a correct human-written
program from Pgold and use it as an in-context example. If
a question is not annotated with a question type in Qhard,
we use a “default” in-context example which is the same for
all question types not in Qhard. We show in Fig. 5 (green
line) that this stabilizes self-training and allows the language
model to self-improve across all but a few question types
(Fig. 4).

4.3. Effect of Data Availability on Self-Training

Training With Less Data We explore this in a controlled
setting, by manipulating the number of samples per question
type in GQA. Recall that we originally sample 100 ques-
tions per question type for self-training. This dataset had
≈ 10k questions. We construct a training set with only 10
and 1 question per question type, for a total of ≈ 1000 and
≈ 100 questions respectively. Self-training improves upon
the baseline (Fig. 6) even when there is an order of magni-
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Figure 6. VisReP works even when the amount of available data is
reduced by an order of magnitude. We show validation accuracy on
GQA. The notation n× k indicates n samples per question type,
with k passes at each sample. For example 10 × 10 indicates 10
samples per question type, with 10 passes per sample. Although
10× 10 has 10x fewer unique samples than 100× 1, there is a <
2% accuracy difference between them, indicating that more passes
per instance can partially mitigate data scarcity.

tude decrease in training data (100 → 10) . Only when the
amount of available training data is reduced by two orders
of magnitude (100 → 1) does self-training fail to produce
an appreciable increase in performance.
Is it possible to mitigate data scarcity? We previously
showed that the benefits of self-training reduce when avail-
able data is reduced significantly. We now test whether we
can mitigate this data scarcity by allowing πθ multiple at-
tempts at a query q during the Grow step. Concretely, we
allow πθ a total of 10 tries at each query under the setting in
which we train with 1 and 10 samples per question type, for
a total of 1k and 10k total samples respectively. We show in
Fig. 6 that this mitigates the effect of reduced data. Although
the data poor 1 × 10 and 10 × 10 have 10x fewer unique
questions than 10 × 1 and 100 × 1, their performance is
within a standard deviation of their data rich counterparts.

4.4. Quantifying Changes in Syntactic Structure

How do the programs synthesized by the policy change
as self-training is iterated? We examine this by looking at
how many unique abstract syntax trees are produced during
the Grow step of each iteration. We parse the synthesized
programs into abstract syntax trees, and then normalize the
trees to remove irrelevant details such as variable names. In
the left panel of Fig. 7, we show that the diversity of syntactic
forms drops over time. At the beginning, the policy produces
a large number of syntactic forms, but appears to “hone in”
on a smaller number of forms as self-training continues, and
the number of unique syntactic forms drops by almost half.

A remarkably stable set of syntactic forms is conserved
from step to step, roughly ≈ 700 (row above diagonal in
right panel of Fig. 7). However, the syntactic forms produced
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Figure 7. As self-training is iterated, the LLM policy “hones in” on
a smaller set of syntactic forms, and gradually evolves away from
syntactic forms produced by the initial policy. Left Panel: Num-
ber of unique normalized abstract syntax trees seen during each
iteration of VisReP. Right Panel: Number of unique normalized
abstract syntax trees in common between each training step. For
example, the entry in row 1, column 6 corresponds to the number of
unique abstract syntax trees produced by both the policy in iteration
1 (initial policy) and the policy in iteration 6.

by the policy are gradually evolving away from the syntactic
forms the initial policy tries, which can be seen in the dark-
ening of the first row in Fig. 7. Despite the coarse reward
scheme, the LLM policy gradually explores and learns new
syntactic forms.

5. Evaluating Functional Correctness

We measure the functional correctness of the programs syn-
thesized by the self-trained LLM policy π′

θ across three
compositional tasks, with the aim of understanding whether:
1. Are the programs produced after self-training more func-

tionally correct than programs produced before self-
training?

2. Is it possible to exceed or match the performance of a
much larger proprietary LLM with self-training?
For compositional VQA, we use the GQA [13] dataset

for the reasons outlined in Sec. 4.1. For complex object de-
tection, we choose Omnilabel [24]. Omnilabel contains 28K
free-form object descriptions over 25K images, and is a chal-
lenging task for existing open-vocabulary object detectors
due to the complexity of the object descriptions. For composi-
tional image-text matching, we choose WinoGround [29] and
SugarCrepe [11]. State-of-art vision-language models have
trouble reaching above chance accuracy on WinoGround, but
SugarCrepe is substantially easier. However, both of these
tasks pose significant problems for the ImagePatch API,
because many of the relationships mentioned in the text are
challenging to detect with the available perception modules.
For all experiments, we use ViperGPT[28] as the backbone
and adopt their prompts. Due to space limitations, many
experimental details are in the supplement.
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VQA Object Detection Image-Text Matching

Method LLM GQA Omnilabel Omnilabel-Hard Winoground SugarCREPE

Frozen Proprietary LLM GPT-3.5-turbo 53.9 ± 0.8 40.0 ± 1.2 26.0 ± 1.1 45.6 ± 1.6 48.9 ± 0.7
Frozen Open LLM CodeLlama-7B 50.0 ± 1.7 37.3 ± 1.6 23.7 ± 1.4 41.3 ± 0.03 43.5 ± 0.8
Open LLM + VisReP CodeLlama-7B 59.2 ± 1.4 42.4 ± 1.0 28.1 ± 0.9 52.7 ± 0.6 58.7 ± 1.5

Table 2. An open LLM policy self-trained with our method substantially outperforms the open policy without self-training, and even
outperforms a gpt-3.5-turbo policy. All results use ViperGPT [28] as the backbone. ± numbers are the standard deviation over 5 runs. On all
datasets except Omnilabel, we report accuracy. On Omnilabel, we report Macro-F1. Higher is better.

X-Dataset Generalization X-Task Generalization

Code Generator VQAv2 OK-VQA Omnilabel SugarCrepe

Frozen Few-Shot (7B) 46.6 ± 1.1 12.6 ± 2.1 37.3 ± 1.6 43.5 ± 0.8
VisReP on GQA (7B) 61.0 ± 1.0 33.7 ± 1.9 39.9 ± 0.7 51.0 ± 1.5

VisReP Advantage +14.4 +21.1 +2.6 +7.5

Table 3. VisReP improves benchmark agnostic visual program
synthesis. A policy self-trained on GQA with VisReP writes better
programs for other VQA datasets and other task types.

5.1. Experimental Setup

For each task, we apply VisReP as described in Sec. 3.2, and
evaluate on a held-out subset. For a comparison with a large
proprietary LLM, we use gpt-3.5-turbo. We evaluate on a sub-
sampled version of each dataset to reduce token costs. Every
LLM is provided the same prompts. Each prompt consists of
the ImagePatch API specification used in ViperGPT [28],
and 3 in-context examples for each task except for object
detection, for which we provide 5 in-context examples.

We use GQA as described in Sec. 4.1. We prepare a
compositional subset of Omnilabel [24] by filtering out all
descriptions less than two words in length. We then sample a
subset of 500 for evaluation, and a subset of 500 for training.
To prepare Omnilabel-Hard, we use run a state of the art
open-vocabulary object detector (GroundingDINO [18]) on
the remaining OmniLabel samples, and select those which
GroundingDINO completely fails on (no detections) to ob-
tain a hard slice. We then sample a subset of 500 from the
hard slice for evaluation. For SugarCrepe [11], we sample
100 positives and their associated negatives from each of the
6 categories, for a total of 600 balanced image-text pairs for
validation. We sample 100 of the remaining instances from
each category for training. We use all of WinoGround, as
it is small enough that there is no need to subsample it. On
WinoGround[29], we evaluate the policy trained on Sugar-
Crepe rather than training on it. For VQAv2, we sample 10
questions for each of the top-50 most common answers from
the compositional subset curated by [25].

Examples of the inputs for each task are in Fig. 3. We
use nucleus sampling with identical parameters for all local
LLMs. We use the API default temperature for gpt-3.5-turbo.
More details are in the supplement.

5.2. Discussion

Across all three tasks, the policy trained by VisReP out-
performs both the gpt-3.5-turbo policy, and the initial
CodeLlama-7b policy (Tab. 2). On GQA, the self-trained pol-
icy achieves an absolute improvement of almost 9% over the
initial policy, and 5% over the gpt-3.5-turbo policy. On Omni-
label, self-training produces a 5% improvement in Macro-F1
score with only 500 training samples. On Omnilabel-Hard,
we demonstrate that the visual program synthesis paradigm
can localize objects that state of the art open-vocabulary
object detectors are unable to localize (Omnilabel-Hard was
constructed by selecting instances GroundingDino[18]) can-
not localize). Even on Omnilabel-Hard, the self-trained pol-
icy outperforms the others. WinoGround and SugarCrepe
are difficult to solve by visual program synthesis because
many of the relationships are hard to detect with the avail-
able perception modules. Despite the intrinsic difficulty of
compositional image-text matching for the ImagePatch
API, VisReP produces an increase of +15% over the base-
line policy. The policy trained on SugarCrepe transfers to
WinoGround, outperforming the baseline policy by +10%.

6. Conclusion & Future Work
While few-shot prompting of LLMs for visual program syn-
thesis has produced impressive results, it has limitations,
because writing good visual programs requires experience
with the visual world and the perception modules at ones
disposal. We presented VisReP, which improves a LLM’s
program synthesis abilities using feedback from executing
visual programs. We showed that VisReP produces strong
increases over baseline across multiple tasks, and is com-
petitive with gpt-3.5-turbo. Our work constructed a coarse-
valued reward from existing vision-language annotations.
Methods like RLAIF [2], ReST [8], and CodeRL [16] all
rely on a neural reward model that can provide fine-grained
rewards. Learning from fine-grained rewards is much easier
than learning from coarse rewards. An interesting direction
for future work would be to train a neural reward model
for visual program synthesis. Such a reward model could
provide fine-grained rewards, and open a broader range of
reinforcement learning methods.
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