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Figure 1. We study the Go to Any Thing (GOAT) task, which involves agents navigating to a sequence of open vocabulary goals specified
through any of the three modalities – category name, a language description, or an image. We propose GOAT-Bench, a benchmark for the
GOAT task, where we evaluate modular and monolithic, explicit and implicit map-based navigation approaches. In the above example, we
task the agent with sequentially navigating to 1) a recliner chair (from a closed set of k categories), 2) the oven shown in the picture, 3) “the
white book on the coffee table in the living room”, and some other objects in the scene. The goal of the benchmark is to facilitate progress
towards building such universal, multi-modal, lifelong agents.

Abstract

The Embodied AI community has made significant strides in
visual navigation tasks, exploring targets from 3D coordi-
nates, objects, language descriptions, and images. However,
these navigation models often handle only a single input
modality as the target. With the progress achieved so far, it is
time to move towards universal navigation models capable
of handling various goal types, enabling more effective user
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interaction with robots. To facilitate this goal, we propose
GOAT-Bench, a benchmark for the universal navigation task
referred to as GO to AnyThing (GOAT). In this task, the
agent is directed to navigate to a sequence of targets speci-
fied by the category name, language description, or image in
an open-vocabulary fashion. We benchmark monolithic RL
and modular methods on the GOAT task, analyzing their per-
formance across modalities, the role of explicit and implicit
scene memories, their robustness to noise in goal specifica-
tions, and the impact of memory in lifelong scenarios.
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1. Introduction

In recent years, the Embodied AI community has estab-
lished standardized evaluation metrics and benchmarks for
navigation [1–4] and developed novel algorithms and archi-
tectures [5–8]. Notably, four different variants of navigation
have emerged, depending on how the goal is specified –
point-goal navigation (PointNav) [9–12], object-goal navi-
gation (ObjectNav) [13–16], image-goal navigation (Ima-
geNav) [17–20], and langauge-goal navigation (referring
expression or step-by-step instructions) [3, 21].

While significant progress has been made in task-specific
solutions for these tasks, it is time to systematically study
universal navigation methods capable of seamlessly handling
goals across all of these modalities. Such a universal nav-
igation system is crucial, as it is infeasible to specify all
types of goals by a single modality. For instance, consider
image-goal navigation [18], where users specify the goal
using an image of the target object. Capturing images of all
objects within a house is infeasible if users intend to deploy
the robot in a household setting. In object-goal navigation
(e.g., [13]), providing the object category alone might lack
the required specificity. For instance, a user might need
a plate with a red pattern, and merely providing the plate
category is insufficient to convey this level of detail.

In addition, prior works on navigation have focused on
building solutions for episodic settings, i.e. in each episode
the agent is spawned in an indoor environment and tasked
with navigating to one instance of an object category with no
past memory from the environment. However, in real-world
scenarios these agents will predominantly operate in indoor
environments for extended periods of time (i.e. a lifelong
setting), where we expect them to leverage past experiences
within the same environment to become efficient over time.
Doing so requires the ability to recall previously encountered
objects and specific areas within houses, enabling them to
navigate more efficiently when a new goal is specified.

Towards developing a universal, multi-modal, lifelong
navigation system, we introduce a benchmark named GOAT-
Bench, designed to accommodate target object specifica-
tions across multiple modalities and be capable of leveraging
past experiences in the same environment i.e. operate life-
long. Fig. 1 illustrates an example episode in GOAT-Bench.
An embodied agent is spawned in a new environment and
tasked with locating a recliner chair (object category goal)
initially. Subsequently, it is directed to find an oven spec-
ified through an image (image goal). It is then instructed
to locate “the white book on the coffee table in the living
room” (language goal) and subsequently find other objects
throughout the scene. We construct GOAT-Bench using 181
HM3DSem [22] scenes, 312 object categories, and 680k
episodes. GOAT-Bench has two notable features:

• Open vocabulary, muti-modal goals: it is an open vocab-

ulary benchmark, enabling the incorporation of a broad
range of targets, including those not encountered during
training. This is a departure from prior work, that is often
limited to a small set of 6 to 21 categories [13, 14, 23, 24].

• Lifelong: each episode consists of 5 to 10 targets specified
through distinct modalities (i.e. image, object, or language
goal). This contrasts with most prior navigation bench-
marks where the scene is reset after a target is reached,
providing a benchmark for evaluating lifelong learning.

We compare two classes of methods in our benchmark: a.)
Sensors-to-Action using Neural Network (SenseAct-NN):
Neural network policies trained using end-to-end RL (with
and without implicit memory), b.) Modular Learning meth-
ods: chaining separate modules for each task component
(exploration, last-mile navigation, and object detection) to
solve the task (with explicit memory). We find SenseAct-NN
methods achieve overall higher success rates (2.9 � 4.6%
better) compared to modular methods, but achieve poor effi-
ciency (4.7�9.2% worse) as measured by Success Weighted
by Path Length (SPL). This can be attributed to the inability
of SenseAct-NN methods to build/leverage implicit map rep-
resentations. In contrast, modular methods which leverage
semantic maps are more effective. These results highlight an
area for future research - building effective memory repre-
sentations for SenseAct-NN methods.

Our comprehensive analysis underscores the general im-
portance of memory representations for improving efficiency
of both SenseAct-NN and modular methods on the GOAT
task. Specifically, we find that when given access to mem-
ory, the efficiency (SPL) of both SenseAct-NN and modular
methods improves for subtasks in later stages of an episode
(⇠1.9x for SenseAct-NN and ⇠1.5x for modular). We also
investigate how performance of these methods vary across
different modalities. We find these methods perform poorly
on language and image goals, particularly when relying on
CLIP [25] features. This suggests the inability of CLIP [25]
features in capturing crucial instance-specific and spatial
features in language and image goals. In addition, we also
study how robust these methods are to noise in goals speci-
fied to the agent – by adding gaussian noise to image goals,
paraphrasing language goals, and using synonyms for object
goals (e.g., sofa ! couch). We find SenseAct-NN methods
to be more robust to noise compared to modular methods,
with a smaller drop in performance ( Sec. 7.4).
To summarize, our contributions are:
• A novel reproducible benchmark for building and evaluat-

ing multi-modal lifelong navigation systems.
• Benchmarking of modular and end-to-end trained methods

with and without memory representations.
• A comprehensive analysis of these methods on memory de-

pendency, performance across modalities, and robustness
to noise.
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2. Related work
Navigation in virtual environments. In recent years, most
benchmarks have assessed navigation performance on in-
dividual goal types (image, object, language, and 3D coor-
dinates) [6, 7, 20, 26–32]. Methods on these benchmarks
often use modality-specific goal encoders or recognition
modules. For example, one-hot encodings or detections for
object goals, SuperGLUE-based keypoint matching [18, 33]
or cross-view consistent encoders [34] for image goals, or
linear projection for 3D coordinates [6]. These approaches
are tailored to individual modalities and are unable to gener-
alize across modalities out-of-the-box. In contrast, our focus
is to study the performance of general-purpose architectures
that can handle multiple modalities. Recent efforts [35] have
tackled this problem by leveraging advances in vision-and-
language aligned models (CLIP [25]) to bridge this gap by
using a single goal encoder for handling image and object
goals. However, [35] does not focus on longer natural lan-
guage descriptions that are required to disambiguate and
identify specific object instances. Additionally, as we show
in our experiments (Sec. 6.1), CLIP goal encodings don’t
help when navigating to specific object instances.
Embodied Multi-Modal Benchmarks. Existing embodied
tasks [36–39] require embodied agents to work with inputs
from multiple modalities (language, vision, audio, etc) but
they seldom have agents leveraging past experiences from
the same environment, i.e. through lifelong agent scenarios.
For example, ALFRED [36] involves following instructions
to achieve long-horizon tasks and EmbodiedQA [37] re-
quires an agent to answer a question by exploring or interact-
ing with the environment. Both of these tasks require agents
to leverage multi-modal inputs (language and image) but
they are studied in single episode settings. In contrast, our
primary focus is on navigation agents capable of understand-
ing multi-modal open-vocabulary goals in lifelong scenarios.
Most similar to our work is [40], where an agent is tasked
to navigate to multiple objects from a closed-set of object
categories in the same environment but a key difference in
our work is that goals in the GOAT task are multi-modal
(object category, image, and language description).
Concurrent Work. In tandem with our efforts, there is con-
current work that proposes the HM3D Open-Vocabulary Ob-
jectNav task [41]. In contrast to object category-based single-
goal-per-episode setup in [41], we focus on navigating to a
sequence of goals specified across three different modalities.
Similarly, there is concurrent work that proposes a modular
system for solving the GOAT task in real world houses for
a closed set of 15 object categories [42]. In contrast to [42],
our work focuses on a practical, open-vocabulary setting and
contributes a reproducible benchmark that the community
can use to facilitate progress towards universal navigation
agents. Having access to a reproducible benchmark in simu-
lation allows us to ask and answer questions about various

aspects of these universal navigation agents, such as the role
of effective memory representations, compare against ex-
isting and future methods, and analyze robustness of these
methods to noise across modalities. Such questions remain
unanswered in [42] due to the time-intensive nature of real
world evaluations. Furthermore, the efforts to construct such
a reproducible benchmark aligns with the objectives of [42]
and should be viewed as a complementary effort, meant to
augment, not replace, real-world benchmarking.

3. Task
In the Go to Any Thing (GOAT) task, an agent is spawned
randomly in an unseen indoor environment and tasked with
sequentially navigating to a variable number (in 5-10) of goal
objects, described via the category name of the object (e.g.
‘couch’), a language description (e.g. “a black leather couch
next to coffee table”), or an image of the object uniquely
identifying the goal instance in the environment. We refer
to finding each goal in a GOAT episode as a subtask. Each
GOAT episode comprises 5 to 10 subtasks.

We set up the GOAT task in an open-vocabulary setting;
unlike many prior works, we are not restricted to navigating
to a predetermined, closed set of object categories [13, 24, 40,
43, 44]. The agent is expected to reach the goal object gk for
the kth subtask as efficiently as possible within an allocated
time budget. Once the agent completes the kth subtask
by reaching the goal object or exhausts the allocated time
budget, the agent receives next goal gk+1 to navigate to. This
contrasts with most prior navigation benchmarks [13, 24, 44,
45] where the scene/episode is reset once the agent reaches
the goal. Chaining multi-modal navigation goals enables us
to benchmark lifelong learning methods that leverage past
agent experience in the same environment.

We use HelloRobot’s Stretch robot embodiment for the
GOAT agent. The agent has a height of 1.41m and base
radius of 17cm. At each timestep, the agent has access to
an 360 x 640 resolution RGB image It, depth image Dt,
relative pose sensor with GPS+Compass information Pt =
(�x, �y, �z) from onboard sensors, as well as the current
subtask goal gkt , k 8 {1, 2, ..., 5 � 10}. The agent’s action
space comprises MOVE_FORWARD (by 0.25m), TURN_LEFT
and TURN_RIGHT (by 30º), LOOK_UP and LOOK_DOWN
(by 30º), and STOP actions. A sub-task in a GOAT episode is
deemed successful when the agent calls STOP action within
1m euclidean distance from the current goal object instance
– within a budget of 500 agent actions (per sub task).

4. Dataset
In this section, we describe the procedure used to build an
open-vocabulary GOAT-Bench. We use real-world 3D scans
from HM3DSem [22], consisting of 145 training and 36
validation scenes. In total, GOAT-Bench consists of 264
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Figure 2. Preview of the GOAT-Bench dataset. We show multi-modal examples of goal instances from the dataset: images of objects
(blue), language descriptions (orange) and object category annotations (green).

TRAIN VAL SEEN VAL SEEN SYNONYMS VAL UNSEEN

Dataset Categories Goals Categories Goals Categories Goals Categories Goals

RoboTHOR Challenge [13] 12 420 12 105 � � � �
ObjectNav-MP3D [23] 21 7509 21 1316 � � � �
ObjectNav-HM3D [14] 6 5216 6 1168 � � � �
InstanceImageNav-HM3D [24] 6 3516 6 780 � � � �

OVON [41] 280 10987 79 2219 50 1177 49 1278

GOAT-Bench 193 13025 52 1760 31 877 36 1282

Table 1. Dataset statistics for popular embodied navigation
benchmarks. GOAT-Bench has at least ⇠9x more object categories
for training (21 vs 193) and about ⇠6x more for validation (21 vs
119) than prior closed-set navigation benchmarks.

training categories and a total of ⇠13k goal specifications
across a total of 725k training episodes (with 5k episodes per
training scene). This is in contrast with most prior embodied
navigation datasets that focus on a closed set of 6 to 21 object
categories – with goals for one modality. We compare the
scale of our dataset against prior work in Tab. 1. GOAT-
Bench has about 9x more object categories for training and
about 6x more for validation than prior closed-set datasets.
Next, we describe how we generate goals for each modality.
Open-Vocabulary ObjectNav goals (OVON). The OVON
task from HM3D-OVON [41] has embodied agents navi-
gate to object goals from an open vocabulary (as opposed
to from a fixed set). This involved extending the Object-
Goal Navigation task from [22, 44] to an open-vocabulary
setting with hundreds of categories by leveraging the dense
semantic annotations provided in HM3DSem [22]. Specif-
ically, HM3D-OVON[41] extends the 6 category OBJECT-
NAV dataset from [22] to 280 object categories for training
and 179 object categories for evaluation (similar to [41]). To
do so, they leverage the ground truth semantic annotations
from HM3DSem dataset [22] and sample objects which are
large enough to be visible, i.e. objects with frame coverage
� 5% from any viewpoint within 1m of the object. Frame
coverage refers to the ratio of goal object’s pixels to the total
number of pixels. We use these goals from [41] – including
both seen and unseen categories – to test generalization to
novel objects (see supplementary for full list).
Open-Vocabulary Instance-ImageNav goals (OVIIN). IN-

Figure 3. LanguageNav dataset generation pipeline. We automat-
ically generate language descriptions for object goals by leveraging
VLMs, LLMs and ground truth information from simulator. We
first capture an image of the goal object from a valid viewpoint.
Next, we retrieve spatial and semantic information of the nearby
objects from the simulator. We then prompt BLIP-2 [47] to extract
appearance attributes of the object. These are then combined to
prompt ChatGPT-3.5 to output a language description of the goal.

STANCE IMAGENAV [24] is the task of navigating to object
instances specified by images for the canonical 6 OBJECT-
NAV categories in HM3D scenes [22, 46]. However, in this
work, we are interested in studying generalization to a wide
variety of novel, unseen instances and categories of image
goals. We do so by extending the INSTANCE IMAGENAV
task to an open-vocabulary setting by creating training and
evaluation splits using same heuristics as OVON goals to
build the OVIIN goals. As a result, we generate a total of
7.7k image goal instances across 264 training categories and
2.9k instances across 164 validation categories for evalu-
ation. We show some samples from the OVIIN dataset in
Fig. 2. Refer Appendix A for details on goal image sampling.
Language goals (LanguageNav). LanguageNav involves
agents navigating to objects described by natural language
(e.g. “plate with a red flower pattern”). Prior works in
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language-based navigation either provide verbose step-by-
step instructions to reach a goal [3, 48] or limited human
annotations for evaluations [21, 36, 48] to describe the goals.
However, collecting human annotations for language descrip-
tions for thousands of object instances and scaling them with
increasing scene dataset size is challenging and expensive.
Generating descriptions for these objects in an automated
fashion, on the other hand, is also challenging. It requires
distilling object’s visual appearance, spatial, and semantic
context into coherent sentences. This includes information
about the object, its attributes (color, shape, material prop-
erties, etc.), its spatial relationship to surrounding objects,
what room it is in, etc. To tackle these challenges, we present
an automatic pipeline for generating language descriptions
by leveraging ground truth semantic and spatial information
from simulators along with reasoning capabilities of popu-
lar vision-and-language (VLM) and large language models
(LLM). As shown in Fig. 3, for each object goal instance in
OVON, we sample the viewpoint image of a goal with the
maximum frame coverage (i.e. ratio of goal object’s pixels to
total number of pixels), extract semantic and spatial informa-
tion from the simulator [9] such as names and 2D bounding
box coordinates of visible objects. For each sampled goal
instance, we prompt BLIP-2 [47] to extract attributes like
color, shape, material, etc. Finally, we combine the spatial
and semantic information from the simulator with object
attribute metadata from BLIP-2 [47] predictions and use that
to prompt ChatGPT-3.5 to output a language description of
the object instance. Using this pipeline, we generate a total
of 5.4k unique language goal instances from 225 training cat-
egories and 1.9k goal instances from 137 held out categories.
We show examples for these in Fig. 2 and Appendix B.

GOAT-Bench Dataset Episode Generation. Combining
the above mentioned open vocabulary datasets provides us
with (category name, language description, and image) tu-
ples associated with each goal object instance. These are
used to generate training and evaluation episodes with multi-
modal goal specifications for lifelong navigation. Each
episode consists of a scene, the agent’s starting position
(at timestep t = 0), and sequences of 5 to 10 (sub-task)
goals across three modalities. To generate each episode, we
first uniformly sample a number of subtasks between 5 to
10. For each subtask, we uniformly sample a goal modality
(category, description, or image), and then randomly sample
a goal instance – uniformly across all categories. We then
randomly sample a starting position that satisfies the follow-
ing constraints: a.) all subtask goal locations are on the same
floor as the starting position as we do not expect the agent
to climb stairs, and b.) distance to nearest goal location for
first subtask must lie between 1m to 30m. This is similar
to the episode generation process for the OBJECTNAV task
[43]. See Fig. 1 for an example of what goals for a single
episode look like. Following this procedure, we generate 5k

train GOAT episodes (25 to 50k subtasks) per scene for 145
training scenes. For the validation set, we generate 10 GOAT
episodes (50 to 100 subtasks) per scene for 36 val scenes.
Evaluation Splits. To test generalization of navigation
agents we evaluate these agents in unseen environments,
which means each goal instance is novel. In addition, to test
generalization to objects at different levels, we generate 3
evaluation splits: VAL SEEN, VAL SEEN SYNONYMS, and
VAL UNSEEN by manually segregating object categories
depending on whether they were observed during training.
• VAL SEEN - goals generated using object categories seen

during training.
• VAL SEEN SYNONYMS - goal categories synonymous

to those seen during training (i.e. “couch” category seen
during training, evaluated on “sofa” during evaluation).

• VAL UNSEEN - goals generated using object categories
not seen during training.

5. Baselines
In this section, we present multi-modal policies trained on
the GOAT task using the HM3DSem [22] scene dataset in the
Habitat simulator [9]. We benchmark two types of methods:
1) Modular methods: semantic mapping and planning-based,
and 2) Reinforcement Learning: sensor-to-action using neu-
ral network (SenseAct-NN) policies trained using RL.

5.1. Modular Baseline
Modular navigation approaches have emerged as a popu-
lar paradigm for training policies for various Embodied AI
tasks [7, 15, 20, 49–56]. The key idea in these approaches
is to decouple low-level control for navigation from goal
recognition. This allows us to have separate modules dedi-
cated for each task component (like detection, exploration,
last-mile navigation), which are then chained to solve the
task. Prior work [50] builds a top-down semantic map by
projecting first-person semantic predictions with depth. It
then selects an exploration goal on the semantic map using
the goal query through a learned or heuristic exploration
policy, and plans low-level actions to the goal.
Modular GOAT [42] extends prior modular navigation
methods [7, 20, 49] to handle multi-modal goal prompts
(i.e. object category, language, and image goals). Specifi-
cally, they build an instance-specific memory (alongside the
semantic memory) by clustering together projected pixels
of same categories on the semantic (top-down) map [42].
This instance memory captures egocentric views and CLIP
features of object instances seen during exploration. Depend-
ing on the current goal modality, the agent then matches the
current goal (image or CLIP embedding of description) with
object instances – through keypoint-matching for image-to-
image matching and cosine similarity for language-to-image
feature matching. Instances with the best matching score are
then localized and marked as goals for the agent to navigate
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to. Note that this method assumes access to the object cate-
gory information to filter out instances during goal matching.
Modular CLIP on Wheels (CoW). Similar to [42], we also
present results with CoW [57], that uses only CLIP features
to match (image, object, and language) goals against all of
the images seen during exploration to localize the goal.

5.2. SenseAct-NN Baselines
In addition to evaluating modular approaches, we also train
sensor-to-action neural network policies using RL for the
GOAT task. Specifically, we consider two methods:
SenseAct-NN Skill Chain. Learning a single sensor-to-
action neural network (i.e. monolithic policies) using end-to-
end RL for GOAT task is difficult due to the long horizon
nature of the task. As an alternative, we train individual
navigation policies for each GOAT subtask – OBJECTNAV,
INSTANCE IMAGENAV, and LANGUAGENAV. We combine
these using a high level planner which executes one of the
available policies based on the navigation goal modality at
each timestep. Specifically, we extend the policy architecture
from [58] and use a simple CNN+RNN policy architecture.
To encode RGB input (it = CNN(It)), we use a frozen
CLIP [25] ResNet50 [59] encoder. The GPS+Compass in-
puts, Pt = (�x,�y,�z), and Rt = (�✓), are passed
through fully-connected layers pt = FC(Pt), rt = FC(Rt)
to embed them to 32-d vectors. Finally, we convert the
goal observation to d-dimensional vector using a modality-
specific goal encoder g(m)

t = ENC(G(m)
t ). All of these input

features are concatenated to form an observation embedding,
and fed into a 2-layer, 512-d GRU at every timestep to pre-
dict a distribution over actions at - formally, given current
observations ot = [it, pt, rt, gt], (ht, at) = GRU(ot, ht�1).
For each subtask type in GOAT task we ablate the choice
of visual encoder and goal encoder for training task-specific
policies and choose the one which performs the best for
that subtask (refer Sec. 6.1 for results). For OBJECTNAV
goals, we use a frozen CLIP [25] text goal encoder and
CLIP ResNet50 [59] visual encoder, and for LANGUAGE-
NAV, we use a BERT [60] sentence goal encoder and CLIP
ResNet50 [59] visual encoder. For INSTANCE IMAGENAV,
we use the recently released CroCo-v2 [34] to generate cross-
view consistent goal and visual embeddings. We train each
of these policies using VER [61] till convergence on task-
specific datasets (refer Appendix C.1 for training details).
SenseAct-NN Monolithic Policy. We also benchmark a
monolithic sensor-to-action neural network policy trained us-
ing RL for the GOAT task. Training an effective multi-modal
policy capable of leveraging past experience from previous
GOAT subtasks requires two important properties: a.) a mul-
timodal goal encoder which can map goals from different
modalities into a common latent space for the policy (e.g.
CLIP), and b.) an implicit or explicit memory representation
for capturing past experience. For encoding the goals, we

use CLIP [25] text and image encoders. Because CLIP is
trained with a vision-and-language alignment loss, we ex-
pect it to output meaningful representations in a common
latent space for effective goal encoding. Next, to leverage
past experience we carry forward hidden state of the policy
from last subtask h(st�1)

T as initial hidden state for a new
subtask h(st)

0 in a single GOAT episode. Wijmans et al. [62]
showed blind agents modeled using RNNs are capable of
building map-like representations for the PointNav [45] task.
Motivated by these experiments, we expect maintaining an
RNN hidden state across subtask provides our policy with
a implicit memory representation which can be effectively
used for efficient navigation. Towards this end, we extend the
policy from [58] to train a monolithic policy with CLIP as
our goal encoder g(m)

t = ENC(G(m)
t ) and maintain hidden

states across subtasks during training. We train this policy
using VER [61] for 500 million steps on GOAT train dataset;
refer Appendix C.2 for more details.

6. Results
For our experiments, we report two metrics – success rate
(SR) and Success Weighted by Path Length (SPL). Success
rate represents the percentage of sub-tasks where the agent
successfully navigates to a goal. Efficiency, on the other
hand is measured using SPL [2] – where the shortest path
for each sub-task is considered from the final location of the
agent from the previous sub-task to the goal location for the
current sub-task. For the first sub-task, this corresponds to
the starting position of the episode.

6.1. Modular vs. SenseAct-NN approaches
We present comparisons between modular approaches (with
explicit maps) and SenseAct-NN RL approaches (with and
without implicit maps) in Tab. 2. In terms of success rate,
we observe that the SenseAct-NN Skill Chain baseline (row
3) outperforms all other baselines (that do not use ground
truth semantics, shown in row 1) across all three validation
splits. It also appears to be generalizing better to unseen
instances and categories – performing better than the modu-
lar baselines (row 2) by at least an average margin of about
4% across all splits. However, this baseline does not do as
well on SPL – on average 6.6% lower than the best modu-
lar (GOAT) baseline. This is because it does not maintain
any memory across sub-tasks to keep track of previously
encountered objects and regions of the scene. Specifically,
as we have separate navigation policies for each modality,
the policy hidden state is not propagated across sub-tasks.

On the other hand, the Modular GOAT [42] (row 2),
which maintains an explicit semantic and instance map of the
environment, does much better on SPL (6.6% than SenseAct-
NN Skill Chain and 10.9% better than SenseAct-NN Mono-
lithic). After the agent has sufficiently explored the scene,
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VAL SEEN VAL SEEN SYNONYMS VAL UNSEEN

Method SR (") SPL (") SR (") SPL (") SR (") SPL (")

GOAT-GTSem [42] 56.7 40.3 58.4 43.5 54.3 41.0

Modular GOAT [42] 26.3 17.5 33.8 24.4 24.9 17.2
Modular CLIP on Wheels [57] 14.8 8.71 18.5 11.5 16.1 10.4

SenseAct-NN Skill Chain 29.2 12.8 38.2 15.2 29.5 11.3
SenseAct-NN Monolithic 16.8 9.4 18.5 10.1 12.3 6.8

Table 2. Results. Comparison of end-to-end RL and modular
methods on GOAT-Bench HM3D benchmark on 3 evaluation splits:
1) VAL SEEN, 2) VAL SEEN SYNONYMS, 3) VAL UNSEEN.
it is able to leverage this memory for localizing new goal
instances in already seen parts of the map and navigating to
them directly. Modular GOAT also does better than the mod-
ular CLIP on Wheels (CoW) baseline (row 3) – highlighting
the usefulness of maintaining an instance-specific memory,
using category information to filter instances, and relying
on image keypoints instead of CLIP features for matching
against image goals. To decouple limitations of Modular
GOAT’s perception module (for object detection and map
building) from the instance-to-goal matching, heuristic plan-
ning, and last-mile navigation, we also show its results with
ground truth semantics (row 1). This reflects an average
improvement of ⇠30% in success and ⇠22.0% in SPL.

We also observe that the SenseAct-NN Monolithic pol-
icy (row 4) does not perform well compared to the other
baselines. We hypothesize this is due to: 1.) CLIP’s limited
efficacy in capturing instance-specific features for language
and image goals, 2.) difficulty of learning effective long
horizon navigation using RL. Later, in Sec. 7.1, we also see
that this policy performs much worse on image and language
goals. This shows that policy is having difficulty improving
on these sub-tasks, causing the average performance (across
all sub-tasks to be low). This trend of poor instance-specific
image-goal performance is also evident when comparing
image-goal policies trained using CLIP features vs. CroCo-
v2 image features [34] (refer Sec. 7.1 for additional analysis).

7. Analysis
Here, we further analyze the performance of the best-
performing modular method against SenseAct-NN methods.

7.1. How do agents perform on each modality?
To understand how effective these agents are across the
three modalities, we also plot modality-wise success rate
and SPL numbers for the baselines on the VAL SEEN dataset
in Fig. 4. For object goals, we observe that Modular GOAT
[42] performs better on success rate than the SenseAct-NN
Skill Chain and Monolithic baselines (29.4% vs 25.8% and
25.7%). In terms of efficiency, we see that both Modu-
lar GOAT and SenseAct-NN Skill Chain perform equally
well, and better than the SenseAct-NN Monolithic baseline.
For language goals, Modular GOAT performs better than
SenseAct-NN Skill Chain on both – success (about 5% bet-
ter) and SPL (more than 2x better). This speaks to limitations

Figure 4. Performance across types of modalities. We breakdown
the performance of all 3 baselines by modalities used subtask type:
object category, language or image.
of CLIP embeddings for capturing instance-specific features.

For image goals, we see that the CroCo-v2 Instance Ima-
geNav policy used in the SenseAct-NN Skill Chain baseline
outperforms Modular GOAT on success rate – by a huge
margin of about 15%. On SPL, however, Modular GOAT
does better because of its persistent memory. The SenseAct-
NN Monolithic baseline, on the other hand, significantly
underperforms on both success and SPL. As shown in Fig. 4,
the ranks of the baselines using average performance is not
indicative of performance across each modality. This is be-
cause, task-specific policies trained for SenseAct-NN Skill
Chain baseline outperform other methods on OVIIN task
and is comparable on OVON.

7.2. How important is memory for efficient naviga-
tion?

Memory or the ability to remember previously seen objects
or parts of the house can enable agents to be more efficient
at navigation. For instance, an agent that has already seen
the kitchen is expected to navigate directly to it (without
exploring) when asked to find an oven. For methods using
memory (i.e. modular GOAT and monolithic policies), we
evaluate the importance of memory towards success rate and
efficiency by dropping the memory after each subtask. For
Modular GOAT, we do this by building the map from scratch
for each subtask, whereas for the SenseAct-NN Monolithic
policy, we do this by dropping the hidden state between
subtasks. This forces the policies to explore the environ-
ment from scratch for each subtask, and does not allow it to
leverage past experience in the scene. As shown in Fig. 5,
this results in a significant drop in SPL for Modular GOAT
– by a factor of approximately 2x – from 17.6 to 9.4. The
success rate also reduces by around 5% (from 26.4 to 21.2).
As highlighted in [42], success rate drops because a prebuilt
scene memory leads to improved instance-to-goal matching.
The SenseAct-NN Monolithic policy, on the other hand, sees
only a minor drop in SPL (from 9.4 to 9.0) and success (from
16.8 to 14.9) when memory is dropped. This suggests an in-
ability (or lack of expressiveness) of the policy’s hidden state
to capture useful information about the explored scene. Dur-
ing evaluation, we often find the agent continuing to explore
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Figure 5. Usefulness of memory: We benchmark the drop in
performance for when no memory is maintained across subtasks for
modular GOAT [42] and SenseAct-NN Monolithic RL baselines.

Figure 6. Average performance over time in a GOAT episode.
We plot the success rate and SPL of memory based baselines against
the number of subtasks completed in a GOAT episode.

the scene when asked to navigate to an object it has seen
previously (see Appendix D for qualitative visualizations).

7.3. Does success and efficiency improve over time?
As agents perform more subtasks in the same environment, it
is reasonable to expect them to get better over time. Efficient
agents will ideally keep track of already seen objects and
areas of the house and will have an internal model of paths
to follow to reach already seen goals. To evaluate this, we
plot average success and SPL over number of subtasks in an
episode for these methods in Fig. 6.

We observe that for Modular GOAT, the success rate does
not improve over subtasks, whereas the SPL does see gains
over the first three subtasks (from 12.4 to 18.7) before it
roughly saturates (at 18.4). For the SenseAct-NN Monolithic
policy, both SPL and success rate does see gains over time,
from 5.6 to 10.6 on SPL and 10.6% to 20.0% on success.
These results highlight the importance of having effective
memory representations (implicit or explicit) to perform
efficiently on the GOAT task.

7.4. How robust are these methods to noise in goal
specifications?

Goal specifications in real-world scenarios can often con-
tain a lot of noise. Images of goal object can be noisy (for
example in low-lit scenes), users might use uncommon syn-
onyms to describe object categories, or they might phrase
descriptions of instances differently. To simulate this type
of noise in goal specifications, we perturb the goal inputs of

Figure 7. Robustness to noise. We breakdown the effect of noise
on performance of different baselines by goal modality.

the three modalities in the following ways. We add gaussian
noise (µ = 0, � = x ⇠ U(0.1, 2.0)) to goal images, replace
object category names with corresponding synonyms and
paraphrase language descriptions of instances (using Chat-
GPT). We evaluate the baselines on the VAL SEEN split of
the dataset and report their performance and robustness to
noise – across three modalities – in Fig. 7.

For object goals, we observe that Modular GOAT faces
the biggest drop in performance when the object categories
are replaced with synonyms. We find that this is because
the object detector (DETIC [63] here) performs poorly on
detecting these relatively uncommon synonyms. On the other
hand, the skill chain and monolithic baselines don’t suffer
as much because they use CLIP goal embeddings (which
capture these concepts better). For language goals, all three
baselines suffer a reasonable drop in success rate. This can
be attributed to the lack of instance-specific expressiveness
of CLIP embeddings that are used as goal embeddings for
the RL baselines and for goal matching in Modular GOAT.
For image goals, the SenseAct-NN methods suffer very little
with gaussian noise. This speaks to the robustness of the
visual features from cross-view consistent representations
from the CroCo-v2 encoder [34] used for the SenseAct-NN
Skill Chain baseline and CLIP used for the monolithic policy.
Overall, we observe that SenseAct-NN Skill Chain baseline
is the most robust to noise (with a 25% average drop in
success), whereas GOAT is the least robust (53% drop).

8. Conclusion
In this work, we propose GOAT-Bench, a novel reproducible
benchmark for building and evaluating multi-modal lifelong
navigation systems. We believe, this benchmark is a step
towards building general purpose navigation agents that
can handle multi-modal goals (e.g. image of an object,
language description, and object categories) and leverage
past experiences in the environment to perform the task
efficiently. On GOAT-Bench, we benchmark two classes
of methods, modular and end-to-end trained methods with
and without memory representations. We find methods with
effective memory representations perform well on GOAT
task and achieve higher efficiency compared to methods
without memory. In addition, we present a comprehensive
analysis of dependency of these methods on memory,
performance across modalities, and robustness to noise in
goals specified via different modalities.
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