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Figure 1. Left: we contribute the Habitat Synthetic Scenes Dataset (HSSD-200), a new dataset of high-quality, human-authored synthetic
3D scenes. Right: zero-shot ObjectNav performance on HM3DSem [41] for agents pretained on synthetic 3D scene datasets of different
scale and quality. Through a systematic analysis of scene dataset scale and realism our experiments show that the benefit of dataset scale
saturates quickly, and scene realism and quality become the bottleneck for improved ObjectNav agent generalization to realistic scenes.
Concretely, we find that agents trained on 122 scenes from HSSD outperform agents trained on two orders of magnitude more scenes from
the ProcTHOR [14] dataset (19.2 vs 12.5 success rate).

Abstract

We contribute the Habitat Synthetic Scenes Dataset
(HSSD-200), a dataset of 211 high-quality 3D scenes, and
use it to test navigation agent generalization to realistic
3D environments. Our dataset represents real interiors and
contains a diverse set of 18,656 models of real-world ob-
jects. We investigate the impact of synthetic 3D scene dataset
scale and realism on the task of training embodied agents
to find and navigate to objects (ObjectGoal navigation). By
comparing to synthetic 3D scene datasets from prior work,
we find that scale helps in generalization, but the benefits
quickly saturate, making visual fidelity and correlation to
real-world scenes more important. Our experiments show
that agents trained on our smaller-scale dataset can outper-
form agents trained on much larger datasets. Surprisingly,
we observe that agents trained on just 122 scenes from our
dataset outperform agents trained on 10,000 scenes from the
ProcTHOR-10K dataset in terms of zero-shot generalization
in real-world scanned environments.

1. Introduction

Recent years have brought considerable progress in embod-
ied AI agents that navigate in realistic scenes, follow lan-
guage instructions [2], find and rearrange objects [3, 9, 33,
36], and perform other tasks involving embodied sensing,
planning, and acting [10, 11, 26]. This progress is supported
by simulation platforms that enable systematic, safe, and
scalable training and evaluation of embodied AI agents be-
fore deployment to the real world [18, 20, 32, 34, 35].

Much of the success of simulation for embodied AI
relies on 3D scene datasets that mimic the real world.
To this end, the community has leveraged 3D reconstruc-
tions and synthetic datasets composed of arrangements
of human-designed 3D objects. Though reconstruction
datasets [7, 29, 39, 41] capture the diversity and complexity
of real-world arrangements, the reconstructed scenes are of-
ten noisy with missing geometry for thin structures or shiny
surfaces. Other prevalent artifacts include “holes” on walls
and other surfaces, as well as partially reconstructed object,
which can adversely impact the training of agents and lead
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Figure 2. Example scenes from HSSD-200. Our dataset provides high-quality 3D interiors that are fully human-authored. The scenes are
densely annotated with object semantic information and assets are prepared to enable performant embodied AI experiments. This dataset
will be open-sourced and distributed under a permissive academic research license (free of cost).

to overt specialization tailored to artifacts. In addition, the
acquisition and annotation of reconstructions is a significant
undertaking and is hard to scale. Furthermore, 3D recon-
structions are “monolithic” scene representations and do not
easily allow manipulations such as addition, removal, or state
changes of constituent objects (e.g., opening drawers). Such
manipulations are critical in tasks that require interaction
with the environment [3]. This has led to a recent trend in
embodied AI to lean more on synthetic 3D scenes which
represent real-world environments through composition of
human-authored 3D objects [14, 22, 33].

Despite the ubiquitous use of synthetic 3D scene datasets
in embodied AI experiments, there has been no systematic
analysis of the tradeoffs between dataset scale (number of
scenes and total scene physical size) and dataset realism
(visual fidelity and correlation to real-world statistics). Prior
work has largely treated extant datasets as “black boxes” for
training and evaluation, even in settings where generalization
to real-world setups is important. Moreover, procedural
scene generation [14] has enabled near-infinite dataset scale
but the value of such scale to task performance has not been
investigated in a focused manner.

In this paper, we contribute Habitat Synthetic Scenes
Dataset (HSSD-200): a human-authored 3D scene dataset
that more closely mirrors real scenes than prior datasets. Our

dataset consists of recreations of real houses modeled us-
ing a diverse set of 18,656 unique, high-quality 3D models
of real objects. This dataset will be open-sourced and dis-
tributed under a permissive academic research license free
of charge. We compare HSSD with prior synthetic datasets
to show it is closer to real-world scenes in terms of visual fi-
delity, scene dimensions, and object occurrence statistics.
We then perform a systematic study of scale vs realism
with this dataset and other synthetic scene datasets from
prior work. Our experiments show that the smaller-scale but
higher-quality HSSD dataset leads to ObjectGoal navigation
(ObjectNav) agents that outperform agents trained on sig-
nificantly larger datasets. In ObjectNav, an embodied agent
is spawned at a random location and orientation and has to
efficiently navigate to an instance of a goal category (bed, tv,
chair, etc.) [4, 40]. Surprisingly, we find that we can train
navigation agents with better generalization to real-world 3D
reconstructed scenes using two orders of magnitude fewer
scenes from HSSD than from prior datasets. Figure 1 shows
that training on 122 HSSD scenes leads to agents that gen-
eralize better to HM3DSem [41] and MP3D [7] real-world
scenes than agents trained on 10,000 ProcTHOR [14] scenes.
Beyond training navigation agents, HSSD enables work in
object manipulation and rearrangement [28, 43, 44]. This
is possible due to the compositionality of synthetic scenes
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allowing easy removal or addition of objects, operations that
are challenging in reconstructions as they require 3D object
segmentation and infilling of holes left by moved objects.

2. Related work
Progress in embodied AI has been driven by the availability
of 3D scene datasets that can be used with simulation plat-
forms to train and evaluate agents. We focus on analyzing
the transfer performance of ObjectNav agents trained on
synthetic data to real-world 3D scene scans.

ObjectGoal navigation. There are three families of ap-
proaches to this task: end-to-end reinforcement learning
(RL), imitation learning (IL), and modular learning (ML).
RL methods learn policies that map visual observations di-
rectly to action probabilities through hidden states of mini-
mal recurrent neural networks (RNNs) that serve as memory
[23, 27, 42]. These methods learn from taking actions and
getting rewards based on the progress they make towards the
goal object. On the other hand, IL methods learn navigation
from large-scale human demonstrations [30]. Modular ap-
proaches typically build and leverage scene semantic maps
to navigate to the goal object [9, 18]. Recent work has
tackled ObjectNav using modular approaches [1] and using
self-supervised training [26]. We choose ObjectNav as the
focus of our investigation since it can serve as a building
block for more complex or longer-horizon tasks, including
rearrangement [3] where the agent must first navigate in or-
der to manipulate an object or move it to another location.
Moreover, the ObjectNav task requires semantic information
about the objects present in the scene and involves reasoning
about spatial arrangement patterns of common object cate-
gories. Thus, the characteristics of the 3D scene datasets in
terms of visual fidelity and correlation to real-world object
occurrence and spatial arrangement patterns are important.

3D scene datasets. ObjectNav experiments have been con-
ducted in both scanned real-world environments [7, 29, 39,
41] and synthetic datasets [12, 14, 22, 33]. The perfor-
mance of ObjectNav agents depends on the scale of the
training data as well as the complexity of the environments
used for training and testing. There is a trend of training
with increasing number of environments, from small sin-
gle room environments [22] to ever larger multi-room envi-
ronments [7, 39, 41]. Despite the desire to train on larger
datasets, the number of available annotated semantically an-
notated real-world scans remains limited. While HM3D [29]
has 1000 scenes, only 216 have been semantically anno-
tated and can be used to train semantically-aware agents. In
addition, Ramakrishnan et al. [29] pointed out issues with
training ObjectNav agents on these scanned environments
due to holes in walls, ceilings, and floors. Most recently,

Deitke et al. [14] demonstrated improved performance on
ObjectNav and transfer to real-world scans by leveraging
procedurally generated scenes.

Despite this, there has been limited work investigating
the scale vs quality tradeoff of synthetic scenes for training
ObjectNav agents. This is partly due to the limited num-
ber of synthetic datasets available. Existing synthetic scene
datasets tend to be either limited to single rooms [22], num-
ber of scenes [12, 33], or incomplete [16]. For instance, 3D-
FRONT [16], while large, does not have populated kitchens
or bathrooms, and has interpenetration issues due to use
of algorithmic object asset replacement. In this work, we
investigate aspects of synthetic 3D scene datasets that are
important for transfer to real-world scans. Concretely, we
ask the following question for synthetic 3D scene datasets:
does large scale suffice, or is realism (match to real-world
scenes) also important? To do so, we contribute HSSD-200,
a high-quality 3D scene dataset that better matches real-
world scenes than prior synthetic datasets. While the number
of scenes is small compared to ProcTHOR, we show that
the high quality of this dataset allows for better transfer to
navigation in real-world environments.

3. HSSD-200: Habitat Synthetic Scenes Dataset
To enable our investigation, we develop and contribute a new
dataset providing high-quality synthetic 3D interiors. The
Habitat Synthetic Scenes Dataset (HSSD-200) consists of
211 houses containing 18,656 objects across 466 semantic
categories. These scenes were designed using the Floorplan-
ner1 web interior design interface. The layouts are predomi-
nantly re-creations of real houses by realtors. Individual ob-
jects are created by professional 3D artists and in most cases
match specific brands of real-world furniture and appliances.
HSSD is distinguished from prior work along several axes:
i) high-quality, fully human-authored 3D interiors; ii) fine-
grained semantic categorization corresponding to WordNet
ontology; iii) asset compression to enable high-performance
embodied AI simulation. See Figure 2 for example scenes
from the dataset, and Table 1 for a comparison against other
synthetic scene datasets in terms of overall statistics.

The preparation of this dataset involved several stages:
object extraction, decomposition, alignment, semantic cate-
gorization, and asset compression. We describe each here.
Object extraction. The original scenes are exported as a
single glTF asset from the Floorplanner database. We de-
compose each of these scene assets into constituent objects,
as well as architectural elements (walls, floors, ceilings) and
openings (doors or windows). We extract all objects and
deduplicate into unique glTF assets to create a shared 3D
object model database. This database of 18,656 objects in-
cludes a variety of objects which we semantically annotate.

1https://floorplanner.com – data licensed from Floorplanner
and made available for academic use.
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Total Average per scene

Dataset Scenes Objects Categories Nav area Nav area Nav comp Clutter Categories Instances

HM3DSem (scans) [41] 181 59,269 1,533 20.7K 114.4 9.7 4.0 103.9 327.5
MP3D (scans) [7] 90 50,851 1,658 29.6K 328.4 12.8 2.8 95.5 565.0
Gibson tiny (scans) [39] 35 2,397 35 4.9K 139.4 8.8 4.2 15.5 68.5

ReplicaCAD [33] 90 92 39 4.5K 49.8 7.2 4.8 14.3 25.5
iTHOR [22] 120 3,748 112 2.0K 17.1 2.4 9.6 28.2 46.2
RoboTHOR [12] 75 652 47 1.9K 25.9 8.1 5.8 28.8 38.4
ProcTHOR [14] 12K 1,547 95 808.4K 67.4 10.0 5.2 40.5 74.7
HSSD-200 (ours) 211 18,656 466 53.2K 252.2 13.7 5.9 61.5 329.7

Table 1. Scene dataset statistics. From left: number of scenes, number of unique objects, number of object categories, total navigable area
in m2, average navigable area per scene, navigation complexity as defined by Ramakrishnan et al. [29] with threshold of points 1m or more
apart, mean categories per scene, clutter as defined by Ramakrishnan et al. [29], object categories per scene, and instances per scene. Note
that numbers for RoboTHOR and HM3DSem do not include the hidden test sets, and we exclude architectural objects (e.g., walls).

Object decomposition. In some cases, a source 3D model of
an object represented multiple semantically-distinct objects
(e.g., a dining table with chairs, plates, and silverware). Four
graduate students annotated all 3D models into single object
or “multiple object” classes. A model has multiple objects
if there are distinct nameable components that can be easily
detached. We identified 1,791 such 3D models. We used an
interface based on Mao et al. [24] web UI to segment these
models. First, we use connected component analysis on the
3D mesh topology to obtain an initial segmentation. Then,
the four annotators decomposed 1,662 models resulting in
11,153 object parts. We then extracted submeshes, identified
duplicate geometry and computed alignment transforms to
correspond instances of the same object (e.g., chairs around a
table). We did this by fitting an oriented bounding box (OBB)
on each extracted part, initializing alignment using the OBB
parameters and then running ICP [5] for one iteration.
Object alignment. All objects including single objects are
then aligned to have semantically consistent orientations.
We aligned the objects to have a consistent up and front
orientation based on the interface of Mao et al. [24]. A total
of 2,883 object models required such manual alignment.
Semantic categorization. Each object was then annotated
with a semantic category label. The labels are from an aug-
mented set of WordNet [25] synsets that we call WordNetCo
(WordNet common objects). WordNet is a popular taxonomy
used to organize popular datasets such as ImageNet [15] and
ShapeNet [8]) but it is lacking in granularity for common
objects and modern devices (e.g., iPad, USB stick). We aug-
mented WordNet with synsets for several common objects
(e.g., potted plant, wall lamp) and initialize the object labels
by mapping internal tags provided by Floorplanner to Word-
NetCo synsets. We then asked the annotators to manually
check, correct, and refine the linked WordNet synsets. The
annotators also specified in what room category a particular
object is typically found (e.g., bed in bedrooms). Unlike

ProcTHOR-S (FPS ↑) ProcTHOR-L (FPS ↑)

Simulator 1 Proc 1 GPU 8 GPU 1 Proc 1 GPU 8 GPU

AI2-THOR [22]
240
±69

1,427
±74

8,599
±359

115
±19

6,280∗

±40
3,208
±127

Habitat [31, 33]
(uncompressed)

2,297
±447

6,374
±798

57,160
±4,917

1,007
±187

5,237
±1,130

39,510†

±6,345
Habitat [31, 33]
(compressed)

2,523
±300

7,363
±394

58,947
±1,804

1,233
±224

6,508
±495

46,674
±5,640

Table 2. Benchmark of navigation FPS. We optimize ProcTHOR
scenes similarly to HSSD and compare performance when the
assets are loaded in Habitat to the original scenes in AI2-THOR. We
observe close to an order of magnitude improvement in simulation
speed across most setups. ∗After correspondence with Deitke et al.
[14], the authors confirmed this number is a typo and the true
number is unknown. †ProcTHOR-L 8-GPU benchmark conducted
with 7 processes per GPU instead of 15 due to memory bottlenecks.

other datasets that use heuristics to estimate the real-world
size of the objects [13], our objects are already modeled with
real-world dimensions and consistently scaled.
Asset compression. After the above annotation was per-
formed, all object assets were compressed to reduce GPU
memory requirements during experimentation. We per-
formed quadric mesh simplification [17] to an error threshold
of 1e−3, reduced texture resolution to a maximum dimen-
sion of 256, and compressed all textures using the Basis2

supercompression algorithm. This compression resulted in
a 12.4x reduction of on-disk size and comparable on-GPU
memory consumption reduction.
Comparison with Habitat-optimized ProcTHOR assets.
To demonstrate the performance benefits of this pipeline
we converted and compressed all ProcTHOR [14] scenes
in the same way as HSSD. Table 2 benchmarks these Proc-
THOR assets in Habitat and compares with performance

2https://github.com/BinomialLLC/basis_universal
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Figure 3. Per-scene navigable area distribution in ProcTHOR,
HSSD and HM3DSem. HSSD (orange) more closely matches real-
world scans in HM3DSem, Gibson, and MP3D than ProcTHOR
(blue). Note that the MP3D area distribution is broader as it contains
larger-scale public and commercial spaces in addition to residences.

of the original assets in AI2-THOR. We use both the small
and large ProcTHOR sets from Deitke et al. [14], randomly
sample 50 scenes from each and take 2K steps in each scene
with a random navigation agent, rendering 224 × 224 × 3
RGB images. The 1 GPU benchmark uses 15 simulation
processes and the 8 GPU benchmark uses 15 processes per
GPU. Benchmarking is done on a server with 8 NVIDIA
RTX Quadro 4000 GPUs. Note that the AI2-THOR bench-
mark numbers were using RTX Quadro 8000 GPUs which
have higher memory and more CUDA cores. As we can see,
the asset compression and the use of the Habitat simulation
platform enable much higher performance. These optimized
ProcTHOR assets are independently valuable by enabling
faster training and evaluation on other embodied AI tasks.

4. Dataset analysis
Before carrying out experiments with HSSD, we character-
ize its properties by comparison against datasets from prior
work. We compare mainly against iTHOR [22] and Proc-
THOR [14], and use the HM3DSem [41] and MP3D [7] real
scan datasets as references since they are the basis of our
ObjectNav transfer experiments. We characterize the syn-
thetic datasets and HSSD along three axes: scale, realism,
and complexity.
Scale. The volume of scene data available for experiments
is naturally an important characteristic. We measure scale
in terms of scene and object counts, as well as navigable
area since that is a key attribute for the ObjectNav task. Ta-
ble 1 summarizes these statistics. HSSD has a relatively
small number of scenes but a high number of unique objects

HM3D Gibson MP3D

Dataset FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓
ProcTHOR 88.5 78.0± 1.6 95.6 82.6± 1.8 87.2 63.7 ±1.3
HSSD 65.2 57.0 ±1.4 73.0 61.7 ± 1.6 61.6 43.3 ±1.3

HM3D — — 18.4 12.7± 0.8 25.2 18.3 ±0.7
Gibson 18.4 12.8± 0.8 — — 38.4 26.2 ±1.2
MP3D 25.3 18.3±0.7 38.5 26.2± 1.2 — —

Table 3. Visual fidelity against real images from HM3D, Gib-
son, and MP3D. We render images from ProcTHOR and HSSD
using Habitat, and compute FID and KID to HM3D and Gibson
images. HSSD is closer to the real-world image datasets. See the
supplement for qualitative visuals.

(more than 18K), and significantly higher average navigable
area per scene (252.2 m2) than prior datasets. The aver-
age number of object categories and object instances per
scene is also significantly higher compared to prior synthetic
3D scene datasets, and closer to the real-world scenes in
HM3DSem [41], Gibson [39], and MP3D [7]. In Figure 3
we plot the distribution of navigable area per scene for Proc-
THOR and HSSD, and compare against the distributions for
these scan datasets. We see that ProcTHOR has a high peak
and narrow distribution with scenes that have relatively small
total navigable areas. In contrast, HSSD matches the per-
scene navigable area distribution of the scanned real-world
environments more closely.
Realism. The realism of scenes impacts agent perception.
Following Ramakrishnan et al. [29], we measure visual real-
ism using the FID [19] and KID [6] metrics. Both metrics
measure the perceptual similarity between two distributions
of images. We compare rendered images from the synthetic
datasets against images from real scenes. Table 3 shows
that HSSD is closer to real-world images from HM3D, Gib-
son [39], and MP3D [7]. Note that these metrics measure
realism of the dataset–renderer combination, and we are
using a simple, efficient rasterization-based renderer in Habi-
tat. Future improvements to rendering quality can lead to
improvements in visual fidelity. Moreover, this measure
of visual fidelity does not directly capture the higher-level
“semantic” realism of the scenes.

To measure semantic realism, we compute object co-
occurrence statistics. We select 28 common object cate-
gories found in all datasets (see supplement). These objects
span a range of sizes and vary in their placement on dif-
ferent surfaces (e.g., floor, countertop, tabletop, shelf). We
consider two objects to co-occur if the Euclidean distance
of the object centroids is less than 1m. Figure 4 shows
max-normalized co-occurrence heatmaps for the 28 object
categories. We see that the HSSD co-occurrence patterns
are qualitatively more similar to real-world scenes from
HM3DSem and MP3D than ProcTHOR. To quantify these
trends we also compute overall co-occurrence similarity met-

16388



ProcTHOR HSSD HM3DSem MP3D

sTHOR-HM3D = 0.14 sHSSD-HM3D = 0.40 sHM3D-HM3D = 1.00 sMP3D-HM3D = 0.72
sTHOR-MP3D = 0.07 sHSSD-MP3D = 0.28 sHM3D-MP3D = 0.45 sMP3D-MP3D = 1.00

Figure 4. Object category co-occurrence heatmap visualizations for 28 object categories in ProcTHOR, HSSD, and HM3DSem. We
observe that object co-occurrences in HSSD are closer to the real-world HM3DSem scenes relative to ProcTHOR scenes. We also quantify
this observation using a similarity metric measuring the mean Jaccard Index between cluster pairs of hierarchically clustered co-occurrences
(higher is better). The bottom two rows of values report the value of this metric with HM3DSem and MP3D as the reference point.

rics. The Spearman’s rank correlation coefficient for the
pairwise co-occurrences between HSSD and HM3DSem
is ρHSSD-HM3D = 0.219 compared to ρTHOR-HM3D = 0.083
(higher is better). The correlation coefficient with MP3D
is also higher for our dataset (ρHSSD-MP3D = 0.103) than
ProcTHOR (ρTHOR-MP3D = 0.017). To further quantify the
co-occurrences we also compute a hierarchical clustering on
the co-occurrence matrices and extract clusters at threshold
0.8. We then compute the mean Jaccard Index score between
cluster pairs (maximum score pairs chosen with the Hun-
garian algorithm). This gives a value of sHSSD-HM3D = 0.40
compared to sTHOR-HM3D = 0.14 for HM3D, and value of
sHSSD-MP3D = 0.28 compared to sTHOR-MP3D = 0.07 for
MP3D (higher is better).
Complexity. Most real-world houses are cluttered with
furniture items and other objects packed in relatively small
spaces. We characterize this aspect of real-world scene
complexity using object and scene statistics. In Table 1 we
see that HSSD has more than 4x object instances per scene
than the next highest dataset (329.7 vs 74.7 for ProcTHOR),
and about 4x more object categories in total (466 vs 112 for
iTHOR). These statistics are much closer to those of real-
world scenes from HM3DSem (327.5 object instances on
average and 1,533 categories total) and MP3D (565 object
instances on average and 1,658 categories total).

5. Experimental setup

We investigate the role of dataset scale and realism on Ob-
jectNav agent performance, focusing on zero-shot transfer.
Task. We adopt the Habitat ObjectNav 2022 challenge
setup [40], which we briefly summarize here. There are
6 goal categories: ‘bed’, ‘chair’, ‘sofa’, ‘tv’, ‘plant’, ‘toilet’.
The agent is successful if it predicts STOP action within 0.1m

Goal Category
LSTM

CLIP 
(frozen)

RGB

Pose (x, y, θ)

at at+1

FC

FC

FC

Figure 5. Architecture of the ObjectNav agent. The RGB obser-
vation is passed into a frozen CLIP backbone to produce a feature
embedding. The goal category, agent pose and previous action
are embedded into 32-dim vectors. All embeddings are fed to an
LSTM to predict the next action.

of a “viewpoint” around each goal. The agent is a LoCoBot
with base radius of 0.18m and height of 0.88m and possesses
an RGB sensor plus a compass and GPS sensor. The agent ac-
tion space consists of: STOP, MOVE_FORWARD, TURN_LEFT,
TURN_RIGHT, LOOK_UP, LOOK_DOWN, with forward step of
0.25m and turn angle of 30 degrees.

Agent architecture. At each step, the agent has access to
RGB observations, GPS and compass sensors, the object cat-
egory of the goal to navigate to as input. The RGB frames are
of resolution 224× 224. The GPS and compass sensors are
specified as in Yadav et al. [41]. The input goal is an integer
o corresponding to the object category and used to index into
an embedding matrix O to produce a 32-dimensional em-
bedding. We use an architecture similar to Khandelwal et al.
[21] (see Figure 5). The RGB frames are passed through a
frozen CLIP pre-trained ResNet 50 visual encoder to get a

16389



train val
Dataset S E/S T S E/S T

iTHOR [22] 64 2K 128K 13 30 390
ProcTHOR [14] 10K 1K 10M 1K 10 10K
HSSD 122 1K 122K 40 30 1.2K
MP3D [7] 56 16.5K 925K 10 65.8 658
HM3DSem [41] 145 50K 7.25M 36 30 1.08K

Table 4. Train/val scenes (S), episodes-per-scene (E/S) and total
(T) episode statistics. We generate ObjectNav episodes for the 6
object categories used in our experiments across available train and
val set scenes in each dataset.

2048 dimension feature vector. The agent also takes the pre-
vious action as input. Both the goal and action embedding
matrices (O,A) are learned during training. These embed-
dings are concatenated along with the outputs from the GPS
and compass sensors and passed through a 2-layer LSTM
network. The LSTM outputs are then passed through a linear
layer to produce action probabilities for the next step. We
train agents using DDPPO [37] with VER [38] on 4 NVIDIA
A40 GPUs and 24 environment workers per GPU.
Episode dataset generation. We split HSSD into
train/val/test following a ratio 60/20/20 ratio. We use the
standard splits for ProcTHOR [14], and HM3DSem [41].
For iTHOR [22], we start with the standard split (80 train,
20 val scenes) but filter out scenes that do not contain any of
the 6 goal categories or are too small for navigation. Follow-
ing prior work, we generate 2K training episodes per scene
for this dataset [22]. For ProcTHOR and HSSD, we use 1K
training episodes per scene. For HM3DSem, we follow prior
work and use 50K training episodes per scene for the 145
HM3DSem train scenes. For MP3D, we again follow prior
work but remove episodes with target objects that do not
belong to the 6 goal categories. This results in a dataset of
56 scenes with around 16.5K episodes each for training and
10 scenes with 658 total episodes for validation.

For the val set we use 30 episodes per scene in HSSD,
iTHOR, and HM3DSem scenes, and 10 episodes per scene
for ProcTHOR (see Table 4). The total number of episodes
per scene are uniformly divided across all object categories
and object instances within each category in each scene. See
the supplement for details on episode generation.

6. Results

We compare agents in terms of generalization performance
to HM3DSem and MP3D scenes when trained on synthetic
3D scene datasets of different scale and realism. We evaluate
generalization of agents trained on iTHOR [22], ProcTHOR-
10k [14], and HSSD. We also train agents on HM3DSem and
MP3D to provide a comparison point of agents trained on
reconstruction datasets. The trained agents for each dataset

are then evaluated on the validation sets of all datasets.
Zero-shot generalization. We train agents until conver-
gence on the train set and report the performance of the
checkpoints with highest val set SPL averaged across three
training runs in Table 5. The supplement provides training
plots for these experiments. As expected the best perfor-
mance in most cases is achieved by the agent trained on the
same dataset. Note that iTHOR and ProcTHOR scenes use
the same object assets and therefore agents tend to transfer
relatively well between them. Despite the much smaller over-
all dataset size of HSSD compared with ProcTHOR-10K,
zero-shot evaluation on HM3DSem results in higher suc-
cess (19.15% vs 12.53%) and SPL (7.71 vs 5.26). Similarly,
zero-shot evaluation on MP3D also results in higher success
(12.56% vs 8.26%) and SPL (4.56 vs 2.96). This indicates
that the much higher scale of ProcTHOR-10K does not trans-
late to improved zero-shot ObjectNav agent generalization.
Fine-tuned agents. In addition to the zero-shot general-
ization performance of agents, we carried out a number
of experiments where agents were fine-tuned on the target
dataset’s train split prior to evaluation on that dataset’s val
split. As expected, after finetuning the differences between
agents initialized from different training sets are reduced,
and agents converge to more similar levels of performance
on the target dataset. After finetuning, agents trained on
HSSD-122 achieve 48.23% success and 23.1 SPL compared
to ProcTHOR-10K agents achieving 48.32% success and
21.8 SPL. The gap in combined efficiency and success (as
measured by SPL) remains but is smaller compared to the
zero shot setting. This finding stands in contrast to the ap-
preciable gap in the zero shot generalization performance
which is more representative of real world deployment to
previously unseen environments. See the supplement for a
more complete summary of these fine-tuning experiments.
Disentangling scene dataset scale and realism. To disen-
tangle scene dataset scale and scene dataset realism in agent
generalization we create scale-matched datasets for HSSD
and ProcTHOR by varying the number of scenes and total
navigable area. We consider different total dataset scales
for HSSD (60 scenes, and all 122 training scenes) and Proc-
THOR (60, 122, and all 10K scenes). The 60 and 122 Proc-
THOR scene subsets match the navigable area distribution
in the HSSD counterparts. All the aforementioned datasets
have 1K episodes per scene. We refer to these subsets as
ProcTHOR-60 and ProcTHOR-122 (see supplement for de-
tails). Then, we compare zero-shot generalization of agents
on the MP3D and HM3DSem val sets. All agents are trained
until convergence (i.e. until training and validation success
saturate). The results are plotted in Figure 6. Agents trained
on HSSD-60 and HSSD-122 outperform agents trained on
the scale-matched ProcTHOR-60 and ProcTHOR-122 in
terms of both success rate and SPL. The difference in the 122
scene setting is particularly pronounced with HSSD-122 vs
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Eval dataset → iTHOR ProcTHOR HSSD MP3D HM3DSem

Train dataset ↓ Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑
iTHOR 78.06 ± 1.31 53.05 ± 0.59 29.8 ± 0.08 15.61 ± 0.08 13.43 ± 0.29 4.75 ± 0.11 6.18 ± 0.41 2.13 ± 0.27 6.16 ± 0.19 2.38 ± 0.22
ProcTHOR-10K 67.04 ± 4.31 36.32 ± 4.24 80.72 ± 0.43 46.44 ± 0.33 31.54 ± 1.42 12.94 ± 0.7 8.26 ± 0.73 2.96 ± 0.46 12.53 ± 0.49 5.26 ± 0.2
HSSD-122 27.5 ± 3.36 12.34 ± 2.08 9.57 ± 0.5 3.86 ± 0.24 54.81 ± 0.28 24.12 ± 0.14 14.44 ± 1.29 5.17 ± 0.48 19.15 ± 0.95 7.71 ± 0.47

MP3D 32.07 ± 1.22 14.73 ± 0.99 31.95 ± 1.17 13.13 ± 0.45
HM3DSem 30.8 ± 1.82 13.99 ± 0.89 48.1 ± 1.54 22.16 ± 0.05

Table 5. ObjectNav zero-shot generalization across datasets. Agents are trained on the training set of the dataset indicated in each row
and evaluated on the val set of the datasets in the columns. We report the average across three independent training runs, and the standard
error on this average. As expected, agents perform well when evaluated on the dataset on which they were trained. When looking at the
generalization trends, we observe that surprisingly HSSD-122 achieves better generalization performance on both MP3D and HM3DSem
compared to agents trained with the much larger scale ProcTHOR-10K.
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Figure 6. ObjectNav zero-shot generalization performance for agents trained with different dataset scales. The plots show zero-shot
performance of agents on the HM3DSem and MP3D val set. We see that agents trained on HSSD-60 and HSSD-122 outperform agents
trained on ProcTHOR-60 and ProcTHOR-122. Moreover, the much larger ProcTHOR-10K dataset does not lead to significant improvements
in ObjectNav generalization performance, with agents trained on it generalizing less well than ones trained with far fewer HSSD scenes.

ProcTHOR-122 agents achieving 19.15 vs 9.33 success and
7.71 vs 3.47 SPL, respectively on the HM3DSem val set (see
Figure 6 left column). The trend is even more pronounced
when evaluating on MP3D val: 14.44 vs 5.47 success and
5.17 vs 1.83 SPL, for HSSD-122 vs ProcTHOR-122 agents
respectively (see Figure 6 right column). Agents trained
on ProcTHOR-10K are only marginally better than agents
trained on the much smaller ProcTHOR-122 indicating the
limited value of larger scale by itself.
Limitations. Our investigation is limited to one type of
agent: monolithic pixels-to-actions agents trained end-to-
end in an RL fashion. A broader investigation including
agents designed using modular approaches [18] or imitation
learning [30] would offer insights into the comparative trends
between these families of approaches.

7. Conclusion
Our goal was to investigate the impact of scene scale and re-
alism on the generalization ability of ObjectGoal navigation
agents. To this end, we constructed HSSD: a high-quality,

human-authored synthetic 3D scene dataset. We carried out
a systematic analysis of how agents trained in this scene
dataset and other synthetic 3D scene datasets from prior
work generalize to realistic 3D scenes. We found that a
smaller number of higher-quality synthetic 3D scenes leads
to better generalization compared to larger numbers of pro-
cedurally generated 3D scenes or lower-quality scenes. We
hope our dataset and our findings enable future work on
Embodied AI agents for visual navigation and related tasks.
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