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Abstract

While replacing Gaussian decoders with a conditional
diffusion model enhances the perceptual quality of recon-
structions in neural image compression, their lack of in-
ductive bias for image data restricts their ability to achieve
state-of-the-art perceptual levels. To address this limita-
tion, we adopt a non-isotropic diffusion model at the de-
coder side. This model imposes an inductive bias aimed
at distinguishing between frequency contents, thereby fa-
cilitating the generation of high-quality images. Moreover,
our framework is equipped with a novel entropy model
that accurately models the probability distribution of la-
tent representation by exploiting spatio-channel correla-
tions in latent space, while accelerating the entropy de-
coding step. This channel-wise entropy model leverages
both local and global spatial contexts within each channel
chunk. The global spatial context is built upon the Trans-
former, which is specifically designed for image compres-
sion tasks. The designed Transformer employs a Laplacian-
shaped positional encoding, the learnable parameters of
which are adaptively adjusted for each channel cluster.
Our experiments demonstrate that our proposed frame-
work yields better perceptual quality compared to cutting-
edge generative-based codecs, and the proposed entropy
model contributes to notable bitrate savings. The code
is available at https://github.com/Atefeh-Khoshtinat/Blur-
dissipated-compression.

1. Introduction
Image compression is a crucial tack in image processing
which aims to decrease the amount of data required for stor-
ing or transmitting without significant loss of visual con-
tent. Recently, learning-based image compression methods
[13, 25, 42, 45] have demonstrated the potential to surpass
classical hand-engineered codecs in terms of rate-distortion
performance. Learned image compression commonly com-
prises three steps: transformation, quantization, and loss-
less entropy coding, which resemble the components found
in the traditional transform coding paradigm [44].
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Figure 1. Overview of our proposed neural codec. The quantized
semantic latent variable ŷ is utilized by a diffusion-based decoder
to generate realistically reconstructed image.

Neural image compression methods are typically trained
with two primary objectives: minimizing distortion be-
tween the original input image and its reconstructed version
and reducing the bitrate for efficient data transmission or
storage [38]. However, solely optimizing for rate-distortion
may lead to blurry reconstructions. To address this is-
sue, various generative-based codecs [4, 11, 28, 42] have
emerged, aiming to generate reconstructions that are not
only faithful to the original data but also visually realistic
to human observers.[28] introduced HiFiC, an image com-
pression network based on GANs that aims to achieve a bal-
ance between fidelity and perceptual quality. The network
demonstrated substantial advantages for human observers,
surpassing BPG even when using half the bits. However,
HiFiC faces challenges due to the instability of GAN train-
ing and necessitates various design adjustments. Inspired
by the achievements of Denoising Diffusion Probabilistic
Models (DDPMs)[17] in generative modeling, authors in
[42] replaced the Gaussian decoder of VAEs with a con-
ditional diffusion model to mitigate the issue of blurriness
in decoded images. Despite the impressive performance of
diffusion-based network, its diffusion and denoising pro-
cesses do not explicitly incorporate the inductive biases in-
herent to natural images. The imposing inductive biases,
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such as the multi-scale nature of images, enable the genera-
tion of high-quality samples [20].

In addition to enhancing the quality of reconstructed im-
ages, accurate entropy estimation of latent representations
is vital for boosting compression efficiency. The more the
estimated entropy gets closer to the actual entropy of the la-
tent, the lower the bitrate required for generating bitstream
file. In this respect, several works have been proposed.
Ballé et al.[5] introduced an entropy model that is condi-
tioned on an additional latent variable, named the hyper-
prior, to capture the existing spatial redundancies within
the latent space. Studies [24, 30] introduced a sequential
autoregressive block into the entropy model. This block
leverages causally adjacent latent elements to estimate the
distribution of the current latent, which results in slow-
ing down of the decoding step. He et al.[13] utilized a
two-way parallel context model as a substitute for the se-
quential autoregressive context model, aiming to acceler-
ate the decoding of latent code. In another realm of stud-
ies, to mitigate the slow decoding times, authors in [29]
introduced channel-wise context modeling as an alterna-
tive to serial spatial context. To expedite the extracting
of the channel-conditional context model, He et al. [14]
exploited an unevenly segmented channel-wise autoregres-
sive model, wherein the channels are divided into vary-
ing sizes. Strengthening the entropy model through self-
attention was initially proposed in [32]. This approach em-
ployed a global reference model to identify the most suit-
able spatial context, which doesn’t have to be confined to
the local scope. The idea of integrating global context into
the entropy model was subsequently refined in a later work
[33], where a specially crafted transformer-based entropy
model was employed. This entropy model is equipped with
the diamond-relative position encoding to effectively model
long-distance dependencies. The diamond-shaped relative
positional encoding is devised based on the clip function,
which relies on the pre-defined threshold to characterize an
effective receptive field. This approach is effective in com-
puting context based on the positions of latent elements;
yet, it cannot provide an optimal receptive field due to its
reliance on the clip function. Recent works[21, 23] focused
on developing adaptive context models to extract both chan-
nel and spatial correlations within the latent space while ex-
pediting the entropy decoding step. Authors in [21] pro-
posed an entropy model named MEM, aiming to capture
both local and global spatial correlations in each channel
segment by using a parallel bidirectional context approach.
However, despite MEM’s attention to spatio-channel corre-
lations, it appears to overlook the crucial role of positional
encoding in computing long-range spatial dependencies.

To address the aforementioned challenges, we propose
a conditional diffusion-based decoder in the neural com-
pression pipeline to enhance the realism of reconstructed

images. The traditional diffusion models are generalized
into a conditional non-isotropic diffusion model to incorpo-
rate an inductive bias, considering the relative importance
of each frequency component of images. As a result, each
frequency component of an image undergoes diffusion at
distinct rates, leading to the generation of decoded images
in a coarse-to-fine manner. Furthermore, a novel channel-
conditional autoregressive entropy model is introduced to
efficiently take into account both local and global spatial de-
pendencies within each channel chunk of the latent space.
To leverage global spatial context, a Transformer block is
designed which incorporates a Laplacian-shaped positional
encoding within checkerboard-shaped self-attention mod-
ule. The effective Laplacian-shaped receptive field for each
channel chunk is dynamically determined by learning the
positional encoding parameters during the optimization of
the entire neural codec.

2. Related Works

2.1. Learned Image Compression

Neural image compression methods adopt a non-linear
transform coding paradigm which is founded on the vari-
ational autoencoders (VAEs) [12]. Within this scheme, the
encoder initially maps the input image x to a compact latent
representation y. Subsequently, quantization is applied to
this latent representation, leading to discrete symbols that
minimize the bit requirement. Afterward, entropy coding
generates bit strings using an entropy model. Ultimately,
the reconstructed image x̂ is generated by applying the de-
coder to the quantized latent representation ŷ. This frame-
work is commonly trained with a trade-off between the rate
and distortion, such as Mean Squared Error (MSE) [38].

Recent studies have attempted to enhance the realism of
reconstructed images by optimizing neural codecs using a
triple rate-distortion-perception loss [4, 28, 43]. Blau and
Michaeli [7] explored the essential balance between distor-
tion and realism, demonstrating that within a given rate, im-
proving distortion comes at the cost of decreasing the per-
ceptual quality of a reconstructed image. In line with this
premise where perceptual quality is measured as the differ-
ence between the image distribution and the distribution of
reconstructions, Mentzer et al. [28] employed a conditional
GAN within an autoencoder-based compression model to
enhance perceptual quality. In a similar vein, [15] intro-
duced a model that aimed to improve the realism by en-
riching the loss function with an adversarial perceptual loss
using LPIPS [46], along with a patch-based style loss [10].
Recently, Agustsson et al. [4] developed a Multi-Realism
model that merges the ELIC codec [14] and PatchGAN [8],
showing improved performance compared to HiFiC.
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2.2. Diffusion Models

Diffusion models [17, 22, 37], which belong to the family of
score-based generative models, acquire the data distribution
through a gradual iterative denoising process, starting from
a Gaussian distribution and progressing towards the actual
data distribution. Recently, they have received considerable
attention owing to their training stability and high quality
image generation compared to GANs. Diffusion models are
adopted in various domains, including image and video gen-
eration [18, 19, 34], super-resolution [36], inpainting [27],
deblurring [41], compression [11, 39, 42] .

In the domain of image compression, several diffusion-
based codecs have been proposed. The research conducted
by Theis et al. [39] involved employing a general uncondi-
tional diffusion model for transmitting Gaussian samples in
a lossy manner. Their approach leverages a reverse channel
coding concept, which stands apart from the conventional
transform coding scheme. Although their methodology per-
forms well, it suffers from high computational cost which
makes it unfeasible for dealing with high-resolution images.
Yang and Mandt [42] introduced a neural codec, called
CDC, in which the decoder takes the form of a DDPM, con-
ditioned on a quantized latent representation. Ghouse et al.
[11] began by optimizing an autoencoder network using a
rate-distortion loss. Subsequently, they train a conditional
diffusion model on the output of the decoder, with the goal
of enhancing its perceptual quality.

2.3. Neural Entropy Model

The main purpose of the entropy model is to estimate the
joint probability distribution over the quantized latent rep-
resentation. When the learned entropy model precisely
matches the true distribution of the latent representation, a
lower bit-rate is required to generate a compressed file. En-
tropy estimation can take advantage of two key principles:
backward and forward adaptation. Forward adaptation uses
an extra latent variable, called hyper-prior [5], as a side in-
formation to capture spatial dependencies between elements
of the latent representation. Backward adaptation, on the
other hand, employs an autoregressive-based context model
which leverages the previously decoded elements of the la-
tent to predict the probability of the current element. The
context model of backward methods can extract relation-
ships between the current symbol and previously decoded
symbols in various dimensions, including spatial and chan-
nel axes [13, 14, 21, 23, 29, 30, 32, 33, 47].

Minnen et al.[30] incorporated a local spatial context
with a hyper-prior network to precisely predict distribution
of the latent. This type of context model can exploit local
correlations between the current latent and its neighboring
causal elements using masked convolutions, which conse-
quently necessitates the adoption of serial decoding. To
expedite the decoding process, He et al.[13] evenly parti-

tioned the latent into two groups: anchors and non-anchors.
The anchors are exclusively decoded using the hyper-prior,
while the non-anchors utilize both the hyper-prior and the
local context model. This approach allows for the parallel
decoding of both anchors and non-anchors.

An alternative strategy for parallelizing the decoding
process is to extract inter-channel dependencies. In [29]
the latent code is divided into evenly sized chunks along
the channel dimension, with each of these chunks being de-
coded using information from previously decoded ones. To
speed up the channel-wise context extraction, He et al.[14]
partitioned channels of the latent into an uneven set of
groups, allocating fewer channels to the initial groups and
more channels to the subsequent ones. This uneven division
is motivated by the observation that the earlier channels pos-
sess higher entropy compared to the remaining channels.

Some works introduced adaptive context models which
focus on capturing long-range spatial correlations. Qian
et al.[32] devised a global reference context model which
assesses throughout previously decoded elements to detect
the most similar one to the current latent. The authors in
[33] employed a Transformer-based entropy model, called
Entroformer, for capturing long-range contexts. The En-
troformer benefits from diamond-relative position encoding
and a top-k self-attention mechanism, both of which con-
tribute to providing an efficient receptive field.

3. Methods
In this work, we develop our decoder based on the blurring
diffusion model [20], which is conditioned on the discrete
latent representation and enables the differentiation among
the frequency components of an image throughout the dif-
fusion and denoising processes. The architecture of decoder
will be explained in Appendix. Moreover, a novel entropy
model is employed that efficiently encodes the quantized la-
tent representation into a binary stream.

3.1. Blurring Diffusion Model

We can define the blurring diffusion model as a traditional
diffusion model in the frequency space, but with distinct
schedules for each dimension of data [20]. The specifics of
the schedules for vectors αt and σt are crucial in this type
of model, which will be discussed.
Diffusion Process: The diffusion process [17] progres-
sively degrades the clean image, transforming it into nearly
pure Gaussian noise over the course of T time steps. Each
step of the diffusion process in frequency space can be for-
mulated as:

q(ft|fx) = N (ft;αtfx,σt
2I), (1)

where ft and fx are defined as V T zt and V Tx, respec-
tively. In such a model, each frequency component could
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undergo diffusion at varying rates, with the modulation of
these rates being determined by the values present in the
vectors αt and σt.
Denoising Process: The true denoising process in the fre-
quency space, which is equal to the deblurring operation in
the time domain, can be expressed as:

q(ft−1|ft,fx) = N (ft−1;µt→t−1,σ
2
t→t−1I), (2)

where σt→t−1 = σt|t−1σt−1/σt and µt→t−1 =
(αt|t−1σ

2
t−1/σ

2
t )ft + (αt−1σ

2
t|t−1/σ

2
t )fx.The actual

denoising process can be approximated using a learned de-
noising distribution to generate data. Thus, by considering
the epsilon reparametrization of Eq. 2, we can derive the
expression for the learned denoising process in frequency
space:

pθ(ft−1|ft) = N (ft−1;µt→t−1(f̂x, ft),σ
2
t→t−1I)

Re-parametrization : f̂x = (1/αt)(ft − σtf̂ϵ). (3)

By substituting the approximation of f̂x into the true
denoising distribution, the mean of the denoising
network can be derived by (αt|t−1σ

2
t−1/σ

2
t )ft +

(αt−1σ
2
t|t−1/σ

2
tαt)(ft − σtf̂ϵ).

Optimization: According to [17], the loss function is sim-
plified as bellow:

Et,x,ϵ[||fϵ−f̂ϵ||2] = E[||V T (ϵ−ϵ̂)||2] ≈ Et,x,ϵ[||ϵ−ϵ̂||2],
(4)

where ϵ̂ = ϕθ(zt, t) and zt = V (αtV
Tx + σtV

T ϵ).
The ϵ̂ = ϕθ(zt, t) signifies that the neural network ϕθ takes
zt as input and predicts ϵ̂. This formulation satisfies the
requirement for neural networks to perform effectively in
a standard pixel space. After prediction, it is sufficient to
transition back and forth between frequency space and pixel
space using the DCT matrix V T and its inverse V .

3.2. Schedules of Blurring Diffusion Model

The schedules for the blurring diffusion model, denoted as
αt and σt, are obtained by combining a standard Gaus-
sian noise diffusion schedule (with scalar values σt and αt)
along with a blurring schedule dt. Each element of the vec-
tor σt shares the same value, as identical noise is added to
all frequency components. Therefore, it becomes adequate
to present a schedule for a scalar value σt [20]. The noise
schedule is chosen based on a variance-preserving cosine
[31], specifically σt

2 = 1 − αt
2, where αt = cos(tπ/2T )

for t ∈ [0, T ]. Following [35], the blurring schedule is then
defined as:

σB,t = σB,maxsin(tπ/2T )
2, (5)

where σB,max represents a hyperparameter equal to the
maximum level of blur applied to the image. This sched-
ule, in turn, corresponds to the dissipation time through

τt = σ2
B,t/2. Based on the formulation discussed in the

Appendix, the blurring schedule dt, which is employed for
αt, is defined as follows:

dt = exp(−λτt), (6)

where λ represents the vector containing squared frequen-
cies, and τt corresponds to the dissipation time. To achieve
a more gradual amplification of high frequencies during the
denoising process, the blurring schedule dt is adjusted to
(1− dmin) exp(−λτt) + dmin, where dmin is set to 0.001.
Finally, by combining the Gaussian noise schedule with the
blurring schedule, resultant schedule is as follows:

αt = αt.dt,σt = 1σt. (7)

3.3. Blurring Diffusion Model for Compression

The rate-distortion objective in end-to-end compression re-
sembles the loss function of a β-VAE, where a hyperparam-
eter λ is utilized to balance the trade-off between the bit-rate
(R) and distortion (D):

L = D + λR = Eỹ[− log px|ỹ(x|ỹ)− λ log pỹ(ỹ)]. (8)

While many neural codecs commonly employ Gaussian or
Laplacian decoders, we introduce a novel approach using a
conditional blurring diffusion model as the decoder. This
approach aims to yield new distortion metrics that deviate
from those based on Mean Squared Error (MSE) or Mean
Absolute Error (MAE). In this framework, our proposed
neural codec leverages two distinct types of latent variables:
a semantic latent variable y and texture latent variables
z1:T . The semantic latent variable captures and encodes the
overall content and meaning of the image. In contrast, the
texture latent variables are tailored to carry finer details and
intricate patterns that might not be fully represented by the
semantic variable alone. Notably, unlike the semantic latent
variable, the texture latent variables are not compressed but
synthesized during the decoding phase.

The forward and backward processes of the conditional
blurring diffusion model can be expressed as:

q(ft|ft−1) = N (ft;αt|t−1ft−1,σ
2
t|t−1I),

pθ(fx, f1:T |ỹ) = p(fT )pθ(fx|f1, ỹ)

T∏
t=2

pθ(ft−1|ft, ỹ),

p(fT ) = N (fT ;0, I)

pθ(ft−1|ft, ỹ) = N (ft−1;µθ(ft, ỹ, t),σ
2
t→t−1I)

(9)

where ft = V T zt and fx = V Tx = V T zo. As shown
in Eq. 8, distortion is equivalent to the negative marginal
likelihood of input data − log px|ỹ(x|ỹ), and minimizing it
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is analogous to minimizing the negative marginal likelihood
of the frequency representation of the data pfx|ỹ(fx|ỹ) =∫
p(fx,f1:T |ỹ)df1:T . Since computing the marginal like-

lihood is intractable, we employ its ELBO with the speci-
fied diffusion and de-blurring distributions. Following this
substitution, the rate-distortion objective, through the appli-
cation of Jensen’s inequality, can be formulated as follows:

Eỹ[− log px|ỹ(x|ỹ)− λ log pỹ(ỹ)]

≤Eỹ[−ELBO− λ log pỹ(ỹ)],
(10)

where ELBO = Eq[
pθ(fx,f1:T |ỹ)
q(ft|ft−1)

]. As explained in Ap-
pendix, the optimizing of ELBO can be simplified to:

ELBO ≈ Et,x,ϵ,ỹ[||ϵ− ϕθ(zt, t, ỹ)||2], (11)

where zt = V αtV
Tx + σtϵ. Similar to [28], an LPIPS

loss [46]is incorporated into the rate-distortion loss to en-
hance the perceptual quality of the reconstructed image.
As the initial image at any time step can be decoded as
a function of the texture latent variable zt, the seman-
tic latent variable y, and the time step t, i.e., x̂t =
V (1/αt)(V

T zt−σtV
T ϵ̂), the total loss becomes as:

Et,x,ϵ,ỹ[(1− β)||ϵ− ϕθ(zt, t, ỹ)||2

− λ log pỹ(ỹ) + βdLPIPS(x, x̂t)],
(12)

where the λ and β represent hyperparameters that control
the trade-off between rate, distortion, and perception.
Decoding Process: After the training, we utilize entropy
decoding on ŷ through the entropy model which estimates
the distribution pŷ(ŷ). We then employ ancestral sampling
to conditionally decode the image x, which is equal to z0,
and starts from pure Gaussian noise zT∼N (0, I):

zt−1 ← V (µ̂t→t−1 + σt→t−1V
Tϕθ(zt, t, ŷ)) (13)

where µ̂t→t−1 =
αt|t−1σ

2
t−1

σ2
t

V T zt +
σ2

t|t−1

αt|t−1σ
2
t
(V T zt −

σtV
Tϕθ(zt, t, ŷ)). The latent variables z1:T are not stored

but produced during the decoding.

3.4. Proposed Entropy Model

The main goal of the proposed entropy model’ context is to
exploit both channel-wise and spatial correlations, while ex-
pediting the decoding process. Inspired by the ELIC [14],
we adopt an uneven grouping of latent channels, allowing
most low entropy channels to depend on high entropy chan-
nels. The latent representation ŷ, with M channels, is clus-
tered into five chunks along the channel dimension: 16, 16,
32, 64, and M - 128 channels, respectively. In this setup,
each chunk depends on all its previous decoded chunks.

The Fig. 2(a) illustrates our proposed entropy model as
applied in the j-th chunk. Within each chunk, we use spatial
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Figure 2. Diagram illustrating the application of the proposed en-
tropy model for decoding the j-th chunk ŷ(j). (b) Global Spatial
Context Block. (c) An example of a checkerboard-shaped mask.

context in conjunction with channel context to model cor-
relations along both the channel and spatial dimensions. To
expedite the decoding step, we employ a parallel bidirec-
tional spatial context model which is capable of capturing
both local and global spatial relationships. So, the anchor
part is decoded in parallel by using solely the hyperprior
and channel context, while the decoding of the non-anchor
part relies on the hyperprior, as well as both the spatial and
channel contexts.

3.4.1 Spatial Context

The spatial context design captures both local and global
spatial correlations within the latent representation ŷ. Fol-
lowing the decoding of the anchor group, a checkerboard-
shaped convolution is applied to this group, generating lo-
cal context for all non-anchor elements in a parallel manner.
Furthermore, the acquired local contexts of the non-anchor
part are subsequently fed into a Transformer-based block
to efficiently extract the global spatial context. This Trans-
former block takes advantage of positional encoding that
is customized specifically for the compression task, along
with a checkerboard-based attention mechanism.

3.4.2 Transformer-based Spatial Context

We adopt the Swin Transformer [26] blocks, includ-
ing a masked window-based multi-head self-attention (W-
MSA) and a masked shifted-window-based multi-head self-
attention (SW-MSA), as our global spatial context model
which shown in Fig. 2.(b). This selection enables us to
strike a balance between computational efficiency and mod-
eling capacity. The checkerboard-based self-attention in W-
MAS and SW-MSA can be expressed:

Atten(Q,K,V ) = softmax(QKT ⊙M)V , (14)
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Figure 3. The procedure for acquiring Laplacian relative position
encoding for a window with a size of 2× 2.

where Q,K,V ∈ RN2×d are the query, key, and value
matrices, respectively. N2 denotes the number of patches in
a window and d is the dimension of query/key/value. M ∈
RN2×N2

represents a checkerboard-shaped mask.

3.4.3 Relative Positional Encoding

The authors in [13, 33] have shown that the bitrate is im-
pacted by the the distance of neighboring latents within the
spatial context modeling of currant latent. Based on this
insight, we introduce a receptive field-aware self-attention
mechanism that employs a learnable Laplacian-shaped po-
sitional encoding for calculating spatial context. In our pro-
posed approach, each channel chunk possesses its own re-
ceptive field during self-attention computation, which dy-
namically adjusts in response to changes in entropy of
chuncks. In the j-th chunk, the checkerboard-based atten-
tion of W-MSA and SW-MSA is refined to receptive field-
aware self-attention as follows:

Atten(Qj ,Kj ,Vj) = softmax(Qjkj
T⊙M+PLap,j)Vj ,

(15)
where PLap,j represents the learnable Lapalacian relative
position encoding for chunk j. To create the Laplacian rela-
tive position encoding for the j-th chunk, which comprises
spatial windows with a size of N × N (i.e. including N2

patches), three steps need to be taken. Firstly, We generate
a 2D relative position table, where each coordinate of the
relative position lies in the range [−N + 1, N − 1]. Sub-
sequently, we derive the relative position matrix for each
patch. As shown in Fig. 3, the first patch’s relative dis-
tance coordinate of (0, 0) (relative distance with its posi-
tion) is located at the top-left of the orange box, while the
last patch’s relative distance of (0, 0) is positioned at the
bottom-right of the green box. Afterward, each relative po-
sition matrix is flattened and stacked together. Finally, we
apply the 2D Laplacian function to each element of the re-
sulting matrix to generate a Laplacian relative position en-
coding PLap,j with learnable parameters Aj and σj , whose
size is RN2×N2

. The 2D Laplacian function is defined as:

fLap(x, y) = Aj
2exp((−1/2σj

2)(|x|+ |y|)), (16)

where x ∈ {−N +1, ..., N −1}, y ∈ {−N +1, ..., N −1}.
Aj and σj are learnable parameters which are determined

for each chunk through optimization. The value of them is
associated with the wideness of the effective receptive field.

4. Experiments
4.1. Implementation Details

To train our learned image compression network, we uti-
lize a merged dataset that includes high-resolution images
from the DIV2K, Flickr2K, and CLIC [1] datasets. These
images are randomly cropped to a size of 256 × 256 dur-
ing the training phase. The model parameters of all ar-
chitectures were optimized using the Adam optimizer for
a total of 2.4 million steps, with a batch size of 8. The
initial learning rate was configured to be 1 × 10−4 and
was progressively reduced until the conclusion of training,
reaching 1 × 10−7. In order to cover a broad spectrum
of bitrates, we selected a hyperparameter λ from the set
{0.0004, 0.005, 0.01, 0.02, 0.04, 0.016}. The hyperparam-
eter β which specifies the contribution of perceptual loss
is considered 0.9 for all models.The parameter T , repre-
sents the required time steps for diffusion-based decoder,
is consistently set to 500. To evaluate the performance of
our compression approach, we select the Kodak dataset [2],
which comprises 24 high-quality images with a resolution
of 768 × 512, and the CLIC2020 test set (428 images) with
varying resolutions.

4.2. Comparison with the SOTA Methods

We compare our model with state-of-the-art generative
based image compression networks, including both GAN-
based and diffusion-based codecs, as well as a state-of-
the-art hand-crafted codec such as VVC-Intra (VTM) [3].
Additionally, we choose two VAE codecs for comparison:
DGML [9] and NSC [40]. Specifically, within the domain
of GAN-based image compression approaches, we select
HiFiC [28] and Multi-Realism [4] frameworks for compar-
ison. Furthermore, we assess our method against diffusion-
based models, namely DIRAC [11] and CDC [42]. This
comparison is performed with respect to both rate-distortion
and rate-perception tradeoff. The distortion is measured by
the Peak Signal-to-Noise Ratio (PSNR) metric and percep-
tual quality are quantified via Frechet Inception Distance
(FID) [16] and Learned Perceptual Image Patch Similarity
(LPIPS). As shown in Fig. 4, our model shows superior
performance compared to all other codecs in terms of rate-
perception. However, this heightened realism comes at the
cost of distortion where other methods, except for the CDC
model, either exhibit better performance or remain compet-
itive.

4.3. Visual Quality

Fig. 5 illustrates reconstructed images (kodim20.png,
kodim07.png) generated by our proposed model, as well as
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PSNR [Kodak] FID [Kodak] LPIPS [Kodak]

FID [CLIC]PSNR [CLIC] LPIPS [CLIC]

bpp bpp bpp

Figure 4. Comparison of our method with other codecs in terms of rate/distortion [bpp ↓ / PSNR ↑] and rate-perception, including [bpp ↓ /
FID ↓] and [bpp ↓ / LPIPS ↓], for both the CLIC2020 test set and the Kodak dataset.

Original 8bpp

Original 8bpp

HiFiC 0.136bpp CDC 0.125bpp Ours 0.112bpp

HiFiC 0.227bpp 0.198bppCDC Ours 0.17bpp

Figure 5. Visual comparison of our method to HiFiC and CDC models shows that our model achieves superior reconstruction quality,
particularly at lower bit-rates. In addition, our model displays fewer artifacts compared to both the HiFiC and CDC models.

the CDC [42] and HiFiC [28] frameworks. Perceptually-
oriented neural codecs, such as HiFiC and CDC, are crit-
icized when their decoding process encounters semantic
content, such as text within the compressed image. Our
model effectively addresses this challenge, as depicted in
Fig. 5. It enhances perceptual quality through a diffusion-
based decoder and imposes a strict inductive bias via the

de-blurring diffusion process, resulting in both high per-
ceptual quality and better text-preserving reconstructions.
Additional qualitative comparisons are provided in the Ap-
pendix.
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4.4. Ablation Study

Maximum Blurring: To explore the impact of the blurring
schedule, we vary the values of σB,max and compare the
performance of the resulting models. It is evident that the
model with σB,max=0 is equivalent to a standard denoising
diffusion model. As indicated in Table 1a, blurring diffu-
sion models with higher maximum blur levels σB,max = 25
generate higher-quality reconstructed images compared to
other variant models in terms of FID score.

Table 1. Ablation Study: all models are optimized with λ = 0.01.
(a) Investigating the impact of maximum blurring σB,max. (b)
Exploring the effects of different types of positional encoding

σB,max FID
0 3.94
5 3.78

15 3.56
25 3.45

(a)

Position Enc. bpp
– 0.2811

Relative Pos. 0.2643
Diamond Relative Pos. 0.2512
Laplacian-shaped Pos. 0.2347

(b)

Positional Encoding: We investigate the influence of var-
ious types of positional encoding in the Transformer-based
entropy model. As shown in Table 1b, the 2D diamond
relative positional encoding, which is implemented using a
clip function, demonstrates better performance than the rel-
ative position encoding. However, adopting the Laplacian-
shaped positional encoding results in even more significant
bitrate savings compared to the 2D diamond relative posi-
tional encoding. As depicted in Fig. 6, distinct values of A
and σ are obtained for each channel chunk. As we progress
towards the final chunks, the receptive field becomes nar-
rower. As observed in [14], the last chunk of channels,
conditioned on all previous chunks, exhibits lower entropy.
Their entropy can be estimated by considering only a small
neighborhood, corresponding to a narrower receptive field
in our proposed relative positioning. Conversely, to provide
a reasonable estimate of entropy of the first channel chunks,
a wider receptive field gathers more information over a large
context to compared to mentioned last chunks.
Analysis of Context Blocks: We conducted a compari-
son of the inference latency for entropy parameters dur-
ing entropy decoding, as well as the bitrate savings of
our proposed entropy model compared to other backward
adaptation-based entropy models. For a fair comparison,
all the models are equipped with a same encoder compris-
ing of ResNet blocks and convolution layers to transform
the input image x ∈ RH×C×3 to a latent representation
y ∈ RH/16×W/16×256. As reported in Tabel 2, our en-
tropy model’s speed is notably improved by employing un-
evenly grouped channels and implementing a bidirectional
context model, as compared to the sequential spatial con-
text modeling. Moreover, our findings clearly indicate that
incorporating spatial global context results in superior per-

Figure 6. Receptive fields are extracted for each channel chunk.

Table 2. The Bjøntegaard-delta-rate (BD-rate) [6] and inference
latency of entropy parameter estimation during entropy decoding
(Dec.) for different context-based models on the Kodak dataset
using a GPU (RTX A6000). The BD-Rate is computed relative to
VVC. ([P]:parallel, [S]:Serial)

Method Context Model Dec.(ms) BD-RateChannel Spatial
Minnen et. al.[30] - Local[S] > 103 -3.24
Minnen et. al.[29] Even - 67 -3.96

He et. al.[13] - Local[P] 28.2 -2.91
Qian et. al.[33] - Global[S] > 103 -4.89
He et. al.[14] Uneven - 37.2 -3.12
He et. al.[14] Uneven Local[P] 156.9 -5.71

Jiang et. al.[21] Uneven Local[P]+Global[P] 207.4 -7.89
Ours Uneven Local[S]+Global[S] > 103 -9.38
Ours Uneven Local[P]+Global[P] 196.3 -8.25
VVC - - - 0.00

formance when contrasted with utilizing only local con-
text. The evaluation emphasizes that the integration of both
global and local context enhances the precision of captur-
ing spatial correlations, ultimately leading to a more accu-
rate entropy model. In addition, our results verify that in-
corporating Laplacian-shaped positional encoding enhances
the compression efficiency compared to MEM, which does
not consider positional encoding in computing global spa-
tial context.

5. Conclusion

We developed a neural image compression model which im-
proves perceptual image quality using a non-isotropic diffu-
sion decoder. This decoder’s inductive bias effectively sepa-
rates frequency components, leading to the creation of high-
quality images. Moreover, we introduce an innovative en-
tropy model that optimizes the trade-off between compres-
sion efficiency and decoding speed. This entropy model,
founded on the Transformer architecture with Laplacian-
shaped positional encoding, establishes a strong global spa-
tial context. Our results underscore the efficacy of lever-
aging diffusion models and advanced entropy modeling to
achieve outstanding image compression performance.
Acknowledgement: This research is based upon work sup-
ported by the National Aeronautics and Space Administra-
tion (NASA), via award number 80NSSC21M0322 under
the title of Adaptive and Scalable Data Compression for
Deep Space Data Transfer Applications using Deep Learn-
ing.
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