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Abstract

White balance (WB) algorithms in many commercial
cameras assume single and uniform illumination, leading
to undesirable results when multiple lighting sources with
different chromaticities exist in the scene. Prior research on
multi-illuminant WB typically predicts illumination at the
pixel level without fully grasping the scene’s actual light-
ing conditions, including the number and color of light
sources. This often results in unnatural outcomes lacking
in overall consistency. To handle this problem, we present
a deep white balancing model that leverages the slot atten-
tion, where each slot is in charge of representing individ-
ual illuminants. This design enables the model to generate
chromaticities and weight maps for individual illuminants,
which are then fused to compose the final illumination map.
Furthermore, we propose the centroid-matching loss, which
regulates the activation of each slot based on the color
range, thereby enhancing the model to separate illumina-
tion more effectively. Our method achieves the state-of-the-
art performance on both single- and multi-illuminant WB
benchmarks, and also offers additional information such as
the number of illuminants in the scene and their chromatic-
ity. This capability allows for illumination editing, an ap-
plication not feasible with prior methods.

1. Introduction
Color constancy, a unique human capability, allows us to
perceive the color of objects uniformly under any lighting
conditions. Similarly, a computational color constancy or
white balancing (WB) module is integrated into the image
processing unit, designed to compensate for the effects of
illumination to recover the original color of the objects.

Many WB studies have been conducted with the goal of
predicting the single chromaticity vector of the light source
for a given image, assuming uniform illumination. Tradi-
tional statistics-based methodologies [16, 19, 20, 43], in-
cluding gray world [10] and white patch [30] algorithms,
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Figure 1. Comparison of the AID framework (bottom) with exist-
ing approaches (top). Previous methodologies did not individually
consider illuminant profiles within the scene, resulting in unnatural
results. The AID framework outperforms previous works in illu-
mination estimation by estimating the chromaticity and pixel-wise
weight map of each individual illuminant and combining them.

used various statistics that could be obtained from images.
Data-driven methods [4, 24] worked by optimizing through
the white balance dataset. However, these algorithms pro-
duce distorted results when multiple illuminants affect the
scene simultaneously. For example, when a blue skylight is
coming in from the window into a room with warm-colored
lighting, applying a single white balance matrix to the entire
image may fail in recovering the scene color.

Accordingly, spatially varying white balance algorithms
have been proposed to deal with multi-illuminant scenes.
Early works estimate mixed illumination map by utilizing
auxiliary flash photography [25] or prior knowledge about
the chromaticity of illuminants [5, 23]. Recently, many
DNN-based methods have been introduced with the ad-
vancements in neural networks. Algorithms using patches
[8], GANs [42], U-Net [27] with transformer blocks [31]
have been proposed.

All previous multi-illuminant WB works directly gener-
ate patch- or pixel-level predictions of illumination maps
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using an encoder-decoder structure without any structural
constraints. These approaches often fail to satisfy the lin-
earity constraint [21, 23, 27] that the chromaticity of mixed
illumination can be expressed as a linear combination of
individual light source chromaticity under the Lambertian
image model. This may result in producing unnatural illu-
mination that does not exist in a scene (Fig. 1 top). In ad-
dition, as the previous methods cannot offer individual light
source profiles in a multi-illuminant scene, further tuning or
editing the illumination is not possible.

To overcome the limitations of the existing multi-
illuminant WB methods, we propose the Attentive Illumina-
tion Decomposition (AID) mechanism. AID shows strong
performance and is equipped with tunability for the spa-
tially varying multi-illuminant WB. Our framework works
in an end-to-end manner with a single given image. In other
words, it does not require any auxiliary images [25] or post-
processing procedures [25, 26] to decompose the illumina-
tion map. Our model is based on slot attention [33], to learn
the implicit representation of illuminant chromaticity in a
scene in the form of slot vectors. Specifically, we leverage
the slot vectors to represent the chromaticities of the light
sources in a scene, and use the attention map of each slot
as the pixel-wise weight map of corresponding illuminant
(Fig. 1 bottom). By doing so, we can enforce each pre-
dicted pixel-wise chromaticity to be a linear combination
of the slot chromaticities, and enable illuminant-wise tun-
ability. The way our model generates the final illumination
maps follows the linearity constraint so that our method can
properly tackle the problem of spatially varying WB. Fur-
thermore, we propose a novel loss called centroid-matching
loss, to effectively train our slot attention based model by
assigning specific color ranges to slots.

We validate the robustness of AID framework through
comprehensive experiments conducted on various datasets,
including the LSMI dataset [27], the Multi-Illumination
In the Wild dataset [34], and the well-established single-
illuminant dataset, NUS-8 [11]. The experimental results
consistently demonstrate superior performance compared to
previous models, achieving the state-of-the-art performance
across all of the aforementioned datasets.

Our contributions can be summarized as follows:
• By successfully leveraging the concept of the slot at-

tention, we propose a novel end-to-end framework AID,
which can infer the chromaticities of illuminants and their
pixel-level weight maps separately.

• We introduce the centroid-matching loss to enable more
effective updates of slots to represent specific color
gamuts.

• Our model not only demonstrates the state-of-the-art per-
formance in both single- and multi-illuminant white bal-
ance scenarios but also provides tunable WB, thanks to its
capacity to generate fully disentangled illumination maps.

2. Related work

2.1. Computational color constancy

Single-illuminant WB. Classical statistics-based algo-
rithms utilizing image statistics have been studied [10, 15,
30, 43] for computational color constancy. Additionally, nu-
merous WB datasets [11, 13, 17, 40] have been proposed
for data-driven research. Methodologies have been intro-
duced involving the learning of kernels to detect illuminant
chromaticity in the uv-histogram space [3, 4], utilizing con-
volutional features [7, 24, 36, 41], and employing various
learning techniques [32, 37, 45, 46]. In particular, FC4 [24]
employs a form of attention technique by inferring spatial
weighting coefficients, rather than uniformly using all spa-
tial features within the image. On the other hand, C4 [46]
demonstrated the capability for more accurate chromaticity
inference through iterative refinement process. While they
achieve impressive results for single-illuminant WB, they
cannot address the multi-illuminant WB cases. We found
that the incorporation of spatial attention maps and an itera-
tive refinement strategy, in conjunction with the concept of
slots outlined in Sec. 2.2, is highly suitable for addressing
the spatially varying multi-illuminant decomposition task.

Multi-illuminant WB. To solve the multi-illuminant WB
problem, several studies have been conducted to utilize ad-
ditional prior information such as the chromaticity of the
illuminant [5, 23], flash photography [25], and human face
[6]. Approaches that apply single-illuminant WB in a spa-
tially varying form have been introduced in [9, 21], and
a graph structure reflecting the characteristics of spatially
varying WB has been utilized in [35].

Following small-scale multi-illuminant datasets [5, 8, 9,
21] for testing spatially varying WB algorithms, several
large scale multi-illuminant datasets have been captured
[27, 34] and synthesized [22] recently. Deep learning-based
strategies such as using GANs [42], and leveraging trans-
former blocks with multi-task learning strategies [31] have
also been explored.

The base architecture for previous multi-illuminant WB
used the encoder-decoder structure to directly predict the
chromaticity of illumination for each individual pixel.
These models fall short in estimating and incorporating
the individual chromaticities of illuminants present in the
scene, leading to inconsistencies in the generated illumina-
tion map. (Fig. 1 top). While a model that estimates pixel-
wise weights for pre-specified WB presets [2] has been
proposed recently, the resulting weight maps do not accu-
rately reflect the the ground-truth illuminant-wise mixing
ratio due to its reliance on pre-defined WB presets. A sum-
mary of the comparison between our framework and previ-
ous works is presented in Table 1.
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Models
Mixed

illumination
Decomposed

illumination map
Controllable

WB

Single AWB × × ×

Multi-AWB
[2, 31, 42]

✓ × ×

AID (Ours) ✓ ✓ ✓

Table 1. Comparison between previous WB methods and our AID
framework. AID predicts a decomposed illumination map, en-
abling the inference of individual illuminant chromaticity and the
number of illuminants in a scene. This new feature enables con-
trollable WB, allowing for individual adjustment of the color of
each illuminant in a scene.

2.2. Slot attention

Slot attention [33] was introduced to solve the object-
centric learning (OCL), where the model needs to clus-
ter and compute the representation of objects from a given
scene without any human-annotated labels in an autoencod-
ing manner. Slot attention employs the concept of the slots,
a set of vectors, each of which captures the representation
of the object in a scene. Slots are initialized using Gaussian
random sampling and are subsequently evolved to capture
the representations of objects. Dot-product based attention
maps between slots and encoded visual feature maps are
used for updating the slots. By applying slot-wise softmax
mechanism on the attention map, slots are forced to com-
pete with each other to get more task-relevant representa-
tion, i.e. object-centric representation.

Due to the decomposition ability of the slot attention,
it has been widely applied to various domains in computer
vision such as object discovery [14, 28, 29, 33], novel view
synthesis [39], panoptic segmentation [47], and visual ques-
tion answering [44]. Slot attention acts like a soft k-means
clustering, where the slots are appropriately updated to rep-
resent the target sub-element. In this work, we adopt slot
attention to the task of multi-illuminant white balancing, en-
forcing slots to implicitly represent individual illuminants.
In addition, we introduce a novel loss function named cen-
troid matching loss, aimed at preventing all slots from in-
discriminately contributing to the inference. This improves
illumination decomposition accuracy by allocating the spe-
cific color ranges to each slot.

3. Method
3.1. Image formation model

In the Lambertian image model, the RGB value of each
pixel under single-illuminant condition can be represented
as follows:

I = kρ ◦ ℓ. (1)

Here I , ρ and ℓ are 3 × 1 vectors for observed RGB pixel,
surface reflectance, and normalized illuminant chromatic-

ity, respectively. The ◦ symbol represents element-wise
product and the scalar k represents the integrated scaling
term of illumination including the power of illuminant and
surface normal. In this paper, we normalize the illumi-
nant chromaticity so that the value of the green channel be-
comes 1. Previous works [21, 23, 27] suggest that if mul-
tiple illuminants are present in a scene, the chromaticity of
mixed illumination can be represented by the linear combi-
nation of the chromaticity of each illuminant. This property
has been used to calculate per-pixel illumination labels for
multi-illuminant datasets [5, 27].

Under the imaging model, the illumination chromaticity
value ℓ on a given location x of a single or multiple illumi-
nant scene can be generalized and expressed as follows:

ℓmixed(x) =

N∑
k=1

αk(x)ℓk,

where
N∑

k=1

αk(x) = 1, ℓk =

[
Rk

Bk

]
.

(2)

αk and ℓk represent the weight map and the normalized
chromaticity of illuminant k, respectively, and N is the
number of illuminants in the scene. As mentioned earlier,
we only consider the R and B channels of the illuminant
chromaticity ℓk, given that the G channel is normalized to
1. Since ℓk is the chromaticity of each light source, it does
not change with pixel location, and only the weight map α
is dependent on x.

3.2. Attentive illumination decomposition

To solve the multi-illuminant WB, we design the Attentive
Illumination Decomposition (AID) framework, which fol-
lows the imaging model described in Eq. (2). The proposed
method first predicts the weight map αk and the chromatic-
ity ℓk of each illuminant in the scene, and then the mixed
illumination map ℓmixed for WB is generated using Eq. (2).
It is important to highlight that this is the first approach to
separately predict the chromaticity and the weight map of il-
luminant for multi-illuminant WB, leading to enhancement
in performance.

To obtain αk and ℓk, our framework utilizes the slot at-
tention [33]. Different from the existing slot attention mod-
els, where slots are typically designed to capture object-
level features, we design the model to make the slots to rep-
resent illuminant-level information. More precisely, each
slot in our model allows us to infer both the chromatic-
ity and the weight map associated with the corresponding
illuminant. The overview of our framework is illustrated
in Fig. 2(a). Our model consists of three parts: 1) image
feature extraction, 2) iterative slot calibration process using
slot attention, and 3) weight map & illuminant chromaticity
fusion.
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Figure 2. (a) Overview of our framework. Image feature is extracted from the input using an U-Net encoder. Next, the slot attention
adaptively calibrates slot representation to be bound with illuminant chromaticity in each scene. Finally, the model fuses the chromaticity
and the weight map to generate the mixed illumination map. (b) Detailed generation flow of weight maps and calibrated slots, where
Q-Softmax denotes softmax application on the query dimension. (c) Illustration of the slot-wise loss using the centroid based Hungarian
matching under K = 4, N = 2 assumption.

Image feature extraction. For a given raw image I with the
resolution H × W , the feature encoder E extracts a latent
feature feat with the same spatial resolution as the image
and Dslot channels:

feat := E(I) ∈ RHW×Dslot , (3)

where Dslot represents the dimension of slots.
Iterative slot calibration by slot attention. After extract-
ing the image features, the iterative slot attention module
(Fig. 2(b)) is applied to calibrate representations of the illu-
minant chromaticity. The details of the calibration process
are as follows.

First, slots0 ∈ RK×Dslot are initialized as learnable pa-
rameters where K indicates the number of slots. The slot
attention module takes the image feature feat and the ini-
tialized slots as inputs to produce attention map attn:

attni,j :=
exp(Mi,j)∑
l exp(Mi,l)

, where

M :=
1√
Dslot

k(feat) · q(slotsn)T ∈ RHW×K ,

(4)

where k and q are MLPs for generating the key and query
representations in Dslot dimension, and slotsn represents
the state of the slots in the n-th iteration.

Subsequently, the intermediate representation vectors,
updates, are computed by aggregating the values through
spatially normalized attention map W :

updates := WT · v(feat) ∈ RK×Dslot ,

where Wi,j :=
attni,j∑N
l=1 attnl,j

,
(5)

where v is MLPs for generating value representation.
Finally, the calibrated slotsn+1 are refined by the GRU

[12], which takes updates as input and previous slotsn as
hidden state:

slotsn+1 = GRU(slotsn, updatesn). (6)

The process from Eq. (4) to Eq. (6) is repeated T times to
generate final calibrated slots, slotsT .
Weight map & Illuminant chromaticity fusion. In our
framework, we have carefully designed the output tensors
of the slot-attention module, slots and attn, to represent
the chromaticity of illuminants ℓ and the weight map α, re-
spectively. Specifically, the HW ×K shaped tensor attn,
represents the pixel-wise similarity score between feat and
each slot, enabling its direct use as the set of K weight
maps for each illuminant (α̂1 . . . α̂K). Also, chromatici-
ties for K illuminants (ℓ̂1 . . . ℓ̂K) can be generated through
passing calibrated slotsT to chromaticity conversion MLPs
c, where c(slotsT ) is a K × 2 shaped tensor. Finally, we
can fuse these two tensors to make mixed illumination map
ℓ̂mixed according to Eq. (2), by simply multiplicating them:

ℓ̂mixed =

K∑
k=1

α̂kℓ̂k = attn · c(slotsT ). (7)

Although the above equation utilizes the final calibrated
slots, slotsT , it is noteworthy that we can visualize the chro-
maticity ℓ̂k and weight map α̂k for each iteration by em-
ploying the respective slotsn of iteration n. Fig. 3 demon-
strates how the generated illuminant chromaticity ℓ̂k and
weight map α̂k changes as slots are itaratively calibrated.
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Figure 3. Slot calibration process. The chromaticity ℓ̂k and weight
map α̂k generated from each slotsn are iteratively calibrated to
their ground truth values.

3.3. Loss functions

AID framework is trained with two types of loss function:
1) mixed illumination loss, and 2) slot-wise loss, named as
centroid-matching loss. The total training objective is to
minimize the sum of these two loss functions.
Mixed illumination loss. Mixed illumination loss Lmixed

is simply defined by L1 distance between the predicted
mixed illumination map ℓ̂mixed and the ground truth
ℓmixed:

Lmixed =
∣∣∣ℓmixed − ℓ̂mixed

∣∣∣ . (8)

Centroid-based matching loss. The mixed illumination
loss alone does not provide a sufficient constraint that en-
sures our model activates the appropriate number of slots.
Instead, it may result in the activation of either all slots or
a random number of slots. As depicted in Fig. 2(a), the
scene involves two illuminants, yet the model employs four
slots to generate a mixed illumination map. Hence, it is nec-
essary to strategically select and supervise the slots which
are aligned with the ground-truth chromaticity and weight
map. In this context, we design the loss term based on two
assumptions that 1) each slot possesses its pre-defined clus-
ter (color-gamut), and 2) activation of the slot should occur
when the ground truth chromaticity lies within its cluster
boundary. To this end, we propose the centroid matching
loss and the calculation process of this loss is presented in
Fig. 2(c).

First let us denote a pre-calculated set of centroids as
µ = {µi}K1 , obtained by applying K-means algorithm
on the illuminant chromaticity distribution of the dataset.
These centroids serve as the centerpoints of each illuminant
chromaticity cluster, and in AID framework, each slot is re-
sponsible for representing one of these clusters. Next, we
obtain a set of matched indices σm that minimizes the L1
cost between the matched centroid chromaticitiy µ and the
ground truth chromaticity ℓ:

σm = argmin
σ

N∑
i

∣∣ℓi − µσ(i)

∣∣ , (9)

where N is the number of ground-truth illuminants in each

mean median

(a)

AWB [1] † 9.54 8.19
Patch CNN [8] † 4.82 4.24
AngularGan [42] † 4.69 3.88
TransCC [31] † 2.78 2.15
LSMI-U [27] 2.31 1.89
AID 2.04 1.73
AID + MDL 1.93 1.60

mean median

gal. son. nik. gal. son. nik.

(b)
LSMI-H [27] 3.06 3.21 2.99 2.54 2.89 2.61
LSMI-U [27] 2.68 2.15 1.92 2.17 1.74 1.54
AID 1.66 1.66 1.71 1.41 1.35 1.34

Table 2. Mean angular error (MAE) for the spatially varying illu-
mination map on LSMI dataset: (a) all-in-one (cross-camera), (b)
device-specific. † indicates that the results of [31] are referenced.

scene and σ is one of the combinations of N elements from
the set {1, · · · ,K}. Now we can define the loss term with
respect to the chromaticity and weight map of each matched
slots as follows:

Lcentroid =
∑

i

(∣∣∣ℓi − ℓ̂σm(i)

∣∣∣+ ∣∣αi − α̂σm(i)

∣∣), (10)

where the centroid-matching loss Lcentroid consists of both
L1 loss for chromaticity and weight map of the matched
slot indices. Here, the predicted weight map α̂k and the
illuminant chromaticity ℓ̂k, are the k-th channel of attn and
c(slotsT ), as previously shown in Eq. (7).

4. Experiments
4.1. Experimental setup

We validate the multi-illuminant WB performance of AID
using two datasets: the LSMI dataset [27] captured with
three cameras having different bit-depths and spectral sen-
sitivities, and the Multi-Illumination In the Wild dataset
(MIIW) [34], which is a versatile dataset covering various
illumination-related tasks, including multi-illuminant WB.

We use seven slots (K = 7), 64 latent channels for Dslot,
and calibrate slots three times (T = 3). For the evaluation,
the green channel was inserted (G=1) to the mixed illumi-
nation map ℓ̂mixed, and the mean angular error (MAE) in
degree was calculated with respect to the ground truth illu-
mination map. For more detailed information, please refer
to the supplementary materials.

4.2. Spatially varying white balance

Quantitative comparison. For the LSMI dataset, we eval-
uated AID under two settings to show the robustness of
the proposed method: all-in-one cross-camera and device-
specific setting. As shown in Table 2(a), AID achieves
the state-of-the-art performance compared to all previous
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LSMI [27] Galaxy Sony Nikon

single multi single multi single multi

LSMI-U [27] 2.85 2.55 1.92 2.34 1.49 2.30
AID 1.19 2.03 1.01 2.16 1.11 2.26

Table 3. Average MAE values obtained through experiments
on the LSMI test set, distinguishing between single and multi-
illuminant scenarios.

MIIW [34] Single (1) Multi (2,3) Mixed (1,2,3)

mean median mean median mean median

LSMI-U [27] 4.15 2.39 4.34 3.87 4.28 3.54
AID 1.07 0.73 3.14 2.81 2.46 2.11

Table 4. MAE values for predicting single-, multi-, and mixed-
illuminant scenario using the MIIW test set.

models in LSMI dataset. Here, we would like to inform
that LSMI-H and LSMI-U are the preceding state-of-the-art
models introduced in the LSMI dataset. LSMI-H employs
HDR-Net [18], while LSMI-U utilizes U-Net [38].

Moreover, as AID uses a concept of slots as an interme-
diate representation of the illumination, the model can be
easily extended to multi-domain learning (MDL). We sim-
ply make the slot initialization different depending on the
camera model (AID + MDL) and this slight modification
brings additional 5% performance enhancement. Further-
more, in the camera-specific setting (Table 2 (b)), AID out-
performs the LSMI baselines for all three cameras.

Since the LSMI dataset consists of one- to three-
illuminant scenes, we also tested device-specific models
with single and multi (two to three) illuminant subset, sep-
arately. As illustrated in Table 3, our framework consis-
tently outperforms the LSMI baseline [27] across all de-
vices in both single- and multi-illuminant settings. For the
single-illuminant case, we could observe that only one slot
is activated among 7 slots, and produces near-perfect global
uniform illumination, resulting in a significant performance
improvement over LSMI baseline.

We further demonstrate the robustness of our framework
using another large-scale dataset, Multi-Illumination in the
Wild [34]. Since no other algorithms have been applied to
MIIW dataset previously, we select LSMI-U as our base-
line. Table 4 demonstrates that AID outperforms LSMI-
U, which had previously shown the best performance on
the LSMI dataset, further highlighting the superior perfor-
mance of AID.

Qualitative comparison. Fig. 4 illustrates the qualita-
tive comparison between LSMI-U [27] and our method
AID. For better visibility, we apply the following post-
processing: 1) convert the result images in the top three
rows and input images in the bottom two rows to the sRGB
color space, and 2) scale down the green channel of the il-
lumination maps in the bottom two rows. Our model gen-

NUS-8 [11] Mean Med. Tri.
Best
25%

Worst
25% G.M.

CCC [3] 2.38 1.48 1.69 0.45 5.85 1.73
AlexNet-FC4 [24] 2.12 1.53 1.67 0.48 4.78 1.66
FFCC [4] 1.99 1.31 1.43 0.35 4.75 1.44
CLCC [32] 1.84 1.31 1.42 0.41 4.2 1.42
AID 1.57 1.03 1.16 0.37 3.67 1.21

Table 5. Three-fold cross-validation result on NUS-8 dataset, with
mean angular error in degrees.

erates more natural and ground truth-like WB results and
illumination maps compared to the LSMI-U. We contribute
the improvement of AID to the model design where the final
illumination maps are generated under the condition of the
physical image model Eq. (2), and also to the proposed loss
function that matches the predictions to the proper ground
truths.

We also provide the plots of chromaticity of the
pixel-wise illumination predictions with the ground truths.
Through the ground-truth illumination distributions of the
top three rows, illustrated in red, it can be confirmed that
each scene has a single, dual, or triple illuminant, respec-
tively represented as a point, a line segment, and a triangle.
It can be easily notified that the previous model generates
unrefined predictions whereas our model performs well on
reconstructing the actual distribution of the chromaticities
of the illumination. For additional visualizations, includ-
ing results related to the MIIW dataset, please refer to the
supplementary material.

4.3. Generalization using single-illuminant DB

We also assessed the generalizability of our framework us-
ing the established single-illuminant white balance dataset,
NUS-8 [11], which is a well-known benchmark widely used
in the literature. NUS-8 dataset comprises 8 camera sub-
sets, and we conducted three-fold cross-validation experi-
ment for each camera. We measured the following metrics
in the same way as previous studies [3, 4, 24]: mean, me-
dian, tri-mean, best 25%, worst 25%, and their geometric
mean (G.M.). For the model configuration, we use K = 5,
T = 3, and Dslot, Dattn = 64.

In Table 5, we report the angular error in degrees, along
with the performance of recent works. The result shows that
the proposed framework works robustly under both single-
and multi-illuminant environments.

4.4. Fully decomposed multi-illuminant WB

Since our model generates fully decomposed illumination
map, we can calculate the number of illuminants or the pre-
diction accuracy of individual illuminant’s chromaticity.
Count & chromaticity prediction result. We can also
evaluate the accuracy of the predicted number of illumi-
nants in the scene and the angular error of the chromatic-
ities of each individual illuminant, using decomposed illu-

25517



[Input] [LSMI-U] [AID] [GT] [LSMI-U] [AID]

GT
Pred

Figure 4. Qualitative comparison using LSMI test set. Top three rows show original raw image and corresponding WB results. The last two
rows show the sRGB input images and corresponding illumination maps. The two rightmost columns demonstrate that our model, which
infers illuminant-wise chromaticity and spatially mixes them, leads to more stable illumination plots compared to previous approaches.
The x-axis and y-axis of the plot represent the ratio of the illumination value of the R and B channels to the value of the G channel.

# of illum acc.
illuminant AE

mean median

Galaxy 0.800 1.71 1.25
Sony 0.871 1.50 0.86
Nikon 0.813 1.84 1.20

Table 6. Additional validation metrics. We measured 1) the ac-
curacy of predicted number of illuminants in the scene and 2) the
angular error (AE) between predicted and the GT chromaticities.

mination map. The number of illuminants was measured
by ignoring slots where the maximum value of the weight
map component was below the threshold of 0.3. Angular er-
ror of illuminant chromaticity was measured between chro-

maticity vectors with matched indices σm and their corre-
sponding GT vectors. Such additional information could be
utilized as an additional metric for how well the model un-
derstands and accurately decomposes the multi-illuminant
scene. Table 6 demonstrates that AID accurately predicts
the chromaticity and the number of each illuminant. One
thing to note is that it is impossible to measure this decom-
position performance in previous works as ours is the first
work to enable this illumination decomposition in multi-
illuminant scenes.

Controllable multi-illuminant WB. Unlike previous
multi-illuminant WB methods, AID can make fully-
decomposed results with illuminant-wise chromaticities
and weight maps. Therefore, we can leverage these decom-
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[Full WB][Input] [Decomp] [WB Illum1] [WB Illum2] [Illum manipulation]

Figure 5. Further applications of AID framework on LSMI test set examples. The separated weight map and the corresponding illuminant
chromaticity (Decomp) allow for individual white balance to be applied to each light (WB Illum1,2), and for the chromaticity to be adjusted
as desired (Illum manip). Full WB shows the results of applying white balance to all illuminants for reference. Gamma was adjusted for
all images to increase visibility, and the G channel was scaled down for the decomposed illumination map visualization.

posed information to provide additional features like ma-
nipulating the chromaticity of each light or selective WB.
Fig. 5 shows additional capabilities of AID framework.

4.5. Ablation study

As shown in the Table 7, we present three different abla-
tion studies: centroid-matching loss (Lm), the number of
slots (K), and the number of iterations in the slot attention
module (T ). The first section of the table shows that the
centroid-based matching loss helps the model to decompose
the mixed illumination with the proper number of slots, as
demonstrated by the illuminant number prediction accuracy
(# acc.). Absence of Lcentroid resulted in failure to effec-
tively decompose mixed illumination using slots, as all slots
were indiscriminately engaged to estimate the illumination,
yielding an decomposition accuracy of 0.288. The efficacy
of the centroid matching loss is more clearly demonstrated
in Section C and Fig. 11 of the supplementary material.
In addition, the second and the third section of the study
reveals that the model performance can deliver different re-
sults depending on the number of slots (K) and the number
of iterations in the slot attention module (T ).

Among the combinations of K and T , we choose to use
K = 7 and T = 3 combination by considering the accuracy
and the computational cost. Ablation studies are conducted
using the Galaxy camera subset of the LSMI dataset.

5. Conclusion and discussion
In this paper, we introduced a framework called AID, de-
signed to extract the chromaticity of individual illuminants
along with their corresponding weights, while satisfying the
linearity constraint of the Lambertian image model. To con-
struct our model, we incorporated the slot attention mod-

Lmixed Lcentroid K T
Mixed illum MAE Illuminant

mean median # acc. AE

✓ 7 3 1.58 1.26 0.288 -
✓ ✓ 7 3 1.66 1.41 0.800 1.71
✓ ✓ 5 3 1.82 1.37 0.744 2.40
✓ ✓ 7 3 1.66 1.41 0.800 1.71
✓ ✓ 9 3 1.84 1.42 0.488 1.49
✓ ✓ 7 2 1.85 1.46 0.688 1.79
✓ ✓ 7 3 1.66 1.41 0.800 1.71
✓ ✓ 7 4 1.92 1.44 0.720 1.84

Table 7. Results of ablation studies on the centroid-matching loss
(Lm), the number of slots (K), and the number of iterations of
GRU (T ) using the Galaxy camera subset of the LSMI dataset.

ule and applied the centroid-based matching loss, extending
upon previous multi-illuminant white balance methods.

We demonstrated the effectiveness of AID through var-
ious experiments, and we believe this marks as a step to-
wards more interpretable image enhancement, particularly
in the context of white balancing. However, we acknowl-
edge limitations in our proposed method, such as the re-
quirement for presets regarding the number of clusters.
Building model that can dynamically determine the num-
ber of clusters based on input images can be a promising
path for future research.
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Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Ob-
ject scene representation transformer. arXiv preprint
arXiv:2206.06922, 2022.

[40] Lilong Shi. Re-processed version of the gehler color con-
stancy dataset of 568 images. http://www. cs. sfu. ca/˜
color/data/, 2000.

[41] Wu Shi, Chen Change Loy, and Xiaoou Tang. Deep spe-
cialized network for illuminant estimation. In Proceedings

of Proceedings of European Conference on Computer Vision
(ECCV), pages 371–387. Springer, 2016.

[42] Oleksii Sidorov. Conditional gans for multi-illuminant color
constancy: Revolution or yet another approach? In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshop (CVPR - Workshop), pages 0–
0, 2019.

[43] Joost Van De Weijer, Theo Gevers, and Arjan Gijsenij. Edge-
based color constancy. IEEE Transactions on Image Process-
ing (TIP), 16(9):2207–2214, 2007.

[44] Ruocheng Wang, Jiayuan Mao, Samuel J Gershman, and Ji-
ajun Wu. Language-mediated, object-centric representation
learning. arXiv preprint arXiv:2012.15814, 2020.

[45] Bolei Xu, Jingxin Liu, Xianxu Hou, Bozhi Liu, and Guoping
Qiu. End-to-end illuminant estimation based on deep met-
ric learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3616–3625, 2020.

[46] Huanglin Yu, Ke Chen, Kaiqi Wang, Yanlin Qian, Zhaoxi-
ang Zhang, and Kui Jia. Cascading convolutional color con-
stancy. In AAAI Conference on Artificial Intelligence (AAAI),
pages 12725–12732, 2020.

[47] Yi Zhou, Hui Zhang, Hana Lee, Shuyang Sun, Pingjun
Li, Yangguang Zhu, ByungIn Yoo, Xiaojuan Qi, and Jae-
Joon Han. Slot-vps: Object-centric representation learn-
ing for video panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3093–3103, 2022.

25521


