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Abstract

Most neural compression models are trained on large
datasets of images or videos in order to generalize to un-
seen data. Such generalization typically requires large and
expressive architectures with a high decoding complexity.
Here we introduce C3, a neural compression method with
strong rate-distortion (RD) performance that instead overfits
a small model to each image or video separately. The result-
ing decoding complexity of C3 can be an order of magnitude
lower than neural baselines with similar RD performance.
C3 builds on Cool-chic [43] and makes several simple and
effective improvements for images. We further develop new
methodology to apply C3 to videos. On the CLIC2020 im-
age benchmark, we match the RD performance of VTM, the
reference implementation of the H.266 codec, with less than
3k MACs/pixel for decoding. On the UVG video benchmark,
we match the RD performance of the Video Compression
Transformer [60], a well-established neural video codec,
with less than 5k MACs/pixel for decoding.

1. Introduction

Most neural compression models are based on autoencoders
[5, 79], with an encoder mapping an image to a quantized
latent vector and a decoder mapping the latent vector back
to an approximate reconstruction of the image. To be prac-
tically useful as codecs, these models must generalize, i.e.,
the decoder should be able to approximately reconstruct any
natural image. Such a decoding function is likely to be com-
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Figure 1. Rate-distortion performance (BD-rate) vs. decoding
complexity on the Kodak image benchmark. Our method, C3,
achieves a better trade-off than existing neural codecs.

plex and expensive to compute. Indeed, while most neural
codecs enjoy very strong rate-distortion (RD) performance
[16, 31, 38], their decoding complexity can make them im-
practical for many use cases, particularly when hardware
is constrained, e.g., on mobile devices [45, 83]. As a re-
sult, designing low complexity codecs that offer strong RD
performance is one of the major open problems in neural
compression [89].

Recently, an alternative approach to neural compression
called COIN was proposed [20]. Instead of generalizing
across images, COIN overfits a neural network to a single
image. The quantized weights of this neural network (often
referred to as a neural field [86]) are then transmitted as a
compressed code for the image. As the decoder only needs
to reconstruct a single image, the resulting network is signif-
icantly smaller than traditional neural decoders [6, 16, 64],
reducing the decoding complexity by orders of magnitude.
However, while the decoding complexity of COIN is low,
its RD performance is poor, and it is therefore not a viable
alternative to other codecs.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Decoding the bitstream into an image with Cool-chic and C3. A. A latent entry ẑnij ( ) is autoregressively decoded by applying
the entropy network gψ to the context context(zn; (i, j)) ( ). B. The decoded latent grids at multiple resolutions are first upsampled and
then decoded into image space using the synthesis network fθ . Figure adapted from Leguay et al. [48].

More recently, Ladune et al. [43] introduced Cool-chic
which, in addition to learning a decoder per image like COIN,
also learns an entropy model per image. This led to signif-
icantly improved RD performance while maintaining low
decoding complexity. A recent extension of Cool-chic that
we refer to as Cool-chic v2 [48] exceeds the RD perfor-
mance of the widely used BPG/HEVC codec [8, 77] while
only requiring 2.3k MACs/pixel at decoding time, an order
of magnitude less than the most efficient neural codecs [29]
(decoding complexity is measured in number of multiply-
accumulate (MAC) operations, cf. App. B for details). De-
spite these impressive results, the performance of Cool-chic
still falls short of the latest classical codecs such as VTM
[11]. Further, Cool-chic has not been applied to video, where
low decoding cost is of greater importance as fast decoding is
required to maintain a satisfactory frame rate for streaming.

In this paper, we introduce C3, a neural compression
method that builds on Cool-chic but substantially improves
its RD performance while maintaining a low decoding com-
plexity (see Fig. 1). More specifically, we propose a series
of simple and effective improvements to the optimization,
quantization, and architecture of Cool-chic. These changes
reduce the BD-rate [9] compared to Cool-chic v2 by 22.2%
while matching VTM on the CLIC2020 benchmark [80].
To the best of our knowledge, C3 is the first neural com-
pression method to achieve RD performance matching VTM
on images while maintaining very low decoding complexity
(less than 3k MACs/pixel). Further, C3 is the state of the art
among neural codecs obtained from a single image.

Going beyond COOL-CHIC, which is only applied to
images, we also extend C3 to videos, making several cru-
cial methodological changes enabling the application of our
method to this modality. On the UVG benchmark [61], we
demonstrate strong RD performance that matches VCT [60]
while requiring 4.4k MACs/pixel, less than 0.1% of VCT’s

decoding complexity. We believe this is a promising step
towards efficient neural codecs trained on a single video.

2. Background: Cool-chic
Autoencoder based neural compression methods train an
encoder network (also known as analysis transform) to com-
press an image x into a quantized latent ẑ, and a correspond-
ing decoder network (also known as synthesis transform)
to reconstruct x from ẑ. Typically, the latent ẑ is the only
image-dependent component and is encoded into a bitstream
using a shared entropy model P [89].

In contrast, Cool-chic [43] and Cool-chic v2 [48] are
methods for single image compression, in which all compo-
nents are fit to each image separately. In the following we
provide further details on Cool-chic.
Overview. At a high level, the Cool-chic model consists of
three components (cf. Fig. 2): (i) a set of latent grids at dif-
ferent spatial resolutions z = (z1, . . . , zN ), (ii) a synthesis
transform fθ to decode these latents into an image, and (iii)
an autoregressive entropy-coding network gψ that is used to
convert the latents into a bitstream. Because the networks
do not need to be general, they can be very small, which
allows for low decoding complexity. Instead of an analysis
transform, Cool-chic uses optimization to jointly fit the la-
tents, the synthesis transform and the entropy network per
image. The gradient-based optimization acts on continuous
values but is quantization-aware as we describe below; for
the final encoding and decoding, the latent and the network
parameters are both quantized.
Latent grids. Cool-chic structures the latent z as a
hierarchy of latent grids (z1, . . . , zN ) at multiple spa-
tial resolutions to efficiently capture structure at differ-
ent spatial frequencies. By default they are of shape
(h,w), (h2 ,

w
2 ), . . . , (

h
2N−1 ,

w
2N−1 ), where h and w are the

height and width of the image, respectively.
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Synthesis. The synthesis transform fθ approximately re-
constructs the image x from these latent grids. First, each
latent grid zn is deterministically upsampled to the resolu-
tion of the image. Then, the synthesis network fθ uses the
resulting concatenated tensor Up(z) of shape (h,w,N) to
predict the RGB values of the image, xrec = fθ (Up(z))
(see Fig. 2B). Cool-chic v2 uses learned upsampling and a
small convolutional network to parameterize fθ.

Entropy coding. For transmission, the latent grids and
network parameters are quantized via rounding before being
entropy-encoded into a bitstream. As this coding cost is dom-
inated by the latent grids, an image-specific entropy model
gψ is learned to losslessly compress them. Cool-chic uses an
integrated Laplace distribution for entropy coding, where the
location and scale parameters (µnij , σ

n
ij) of the distribution

for each latent grid element znij are autoregressively pre-
dicted by the entropy network from the local neighborhood
of that grid element,

Pψ(z
n) =

∏
i,j P

(
znij ;µ

n
ij , σ

n
ij

)
(1)

µnij , σ
n
ij = gψ (context (zn, (i, j))) . (2)

Here, context(zn, (i, j)) extracts a small causally masked
neighborhood (5 − 7 latent pixels wide) around a location
(i, j) from latent grid zn (c.f. Fig. 2A). Individual grids are
modelled independently with the same network gψ , Pψ(z) =∏
n Pψ(z

n).
The entropy and synthesis model are both small networks

of depth ≤ 4 and width ≤ 40, and their parameters are quan-
tized after training using different bin widths. The bin width
with the best RD trade-off is chosen and added to the bit-
stream. The quantized network parameters θ̂ and ψ̂ are also
entropy-coded using an integrated Laplace distribution that
factorizes over entries with zero mean and scale determined
by the empirical standard deviation:

P (θ̂) =
∏
i P (θ̂i;µ = 0;σ = 1√

2
std(θ̂)) (3)

and similarly for ψ̂. Entropy coding for the latents and
network parameters is performed using a range coder [65].

Quantization-aware gradient-based optimization. The
latent (z) and parameters (ψ, θ) are fit to an image x by
jointly optimizing the following RD objective that trades off
better reconstructions and more compressible latents with an
RD-weight λ:

Lθ,ψ(z) = ∥x− fθ (Up(z)) ∥22 − λ
∑
n log2 Pψ(z

n). (4)

The optimization is made quantization-aware in several
ways and proceeds in two stages (cf. Tab. 1): in the (longer)
first stage, uniform noise u is added to the continuous latents
z; in the (shorter) second stage with low learning rate, the
latents z are quantized and their gradients are approximated

with the straight-through estimator, which is biased. More-
over, the rate term uses an integrated Laplace distribution.

Stage 1 ∇z,θ,ψLθ,ψ(z+ u); u ∼ Uniform(0, 1)

Stage 2 ∇θ,ψLθ,ψ(⌊z⌉) and ∇̃zLθ,ψ(⌊z⌉)

Table 1. Two-stage optimization; ∇̃z is straight-through estimation.

3. C3: Improving Cool-chic
We first present a series of simple and effective improve-
ments to Cool-chic, which we collectively refer to as C3
(Cooler-ChiC), that lead to a significant increase in RD per-
formance with similar decoding complexity. Maintaining the
core model structure (cf. Fig. 2), most of our improvements
fall into one of two categories: (1) improvements to the
quantization-aware optimization, and (2) improvements to
the model architecture. See App. A for full details on all im-
provements. Subsequently, we introduce the modifications
necessary to apply C3 to videos. We confirm with exten-
sive ablations in Sec. 5 and App. D that each contribution is
beneficial and that their improvements are cumulative.

3.1. Optimization improvements

We maintain the same two-stage optimization structure of
Cool-chic (see Tab. 1) but make several improvements in
both stages, most notably how quantization is approximated.

Soft-rounding (stage 1). We apply a soft-rounding func-
tion before and after the addition of noise [2]. Let sT be
a smooth approximation of the rounding function whose
smoothness is controlled by a temperature parameter T . For
large T , sT approaches the identity while for small T , sT
approaches the rounding function so that

limT→0 sT (sT (z) + u) = ⌊⌊z⌉+ u⌉ = ⌊z⌉. (5)

By varying T we can interpolate between rounding and
the simple addition of uniform noise u. Note that the soft-
rounding does not create an information bottleneck as it is an
invertible function. Therefore, adding noise is still necessary
for reliable compression [2].

Small T leads to a better approximation of rounding but
increases the variance of gradients for z. Following previous
work using soft-rounding, we therefore anneal the temper-
ature over the course of the optimization. See Fig. 3 for a
visualization and App. A.2.4 for details.

Kumaraswamy noise (stage 1). The addition of uniform
noise as an approximation to rounding has been motivated
by pointing out that for sufficiently smooth distributions,
the marginal distribution of the quantization error (z− ⌊z⌉)
is approximately uniform [5]. The approximation further
assumes that the quantization error and the input are un-
correlated. In practice, these assumptions may be violated,
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Figure 3. Approximating the round(z) function during Stage 1 of optimization. Cool-chic adds uniform noise u, whereas C3 uses
soft-rounding sT with varying temperatures T and Kumaraswamy noise of different strengths, ukum. We plot the mean and 95% interval.

suggesting that other forms of noise are worth exploring.
To that end, we replace uniform noise with samples from
the Kumaraswamy distribution [41] whose support is com-
pact on [0, 1]. This distribution is very similar to the Beta
distribution but has an analytic cumulative distribution func-
tion that allows for more efficient sampling. By controlling
its shape parameters we can interpolate between a peaked
(lower noise) distribution at beginning of stage 1 and a uni-
form distribution at the end. See Fig. 3 for a visualization
and App. A.2.5 for details.

Cosine decay schedule (stage 1). We found that a simple
cosine decay schedule for the learning rate of the Adam opti-
mizer performed well during the first stage of optimization.

Smaller quantization step (stages 1 & 2). Cool-chic quan-
tizes the latents by rounding their values to the nearest whole
integer; as a result the inputs to the synthesis and entropy
networks can become large (exceeding values of 50), which
can lead to instabilities or suboptimal optimization. We
found that quantizing the latents in smaller steps than 1 (and
correspondingly rescaling the soft-rounding in both stages)
empirically improved optimization.

Soft-rounding for gradient (stage 2). We apply hard
rounding/quantization to the latents z for the forward pass
of stage 2 following Cool-chic. For the backward pass,
Cool-chic v2 uses a straight-through gradient estimator and
multiplies the gradient by a small ϵ. This has the effect
of replacing rounding by a linear function (cf. Fig. 3) and
downscaling the learning rate of the latents. Instead we
use soft-rounding to estimate the gradients (with a very low
temperature) and start stage 2 with a low learning rate.

Adaptive learning rate (stage 2). We adaptively decrease
the learning rate further when the RD-loss does not improve
for a fixed number of steps.

3.2. Model improvements

We make a number of changes to the network architectures
to increase their expressiveness, support the optimization,
and allow for more adaptability depending on the bitrate.

Conditional entropy model. Cool-chic uses the same en-
tropy network to independently model latent grids of starkly
varying resolutions. We explored several options to increase
the expressiveness of the entropy model: first, we optionally
allow the context at a particular latent location to also include
values from the previous grid, P (zn|zn−1), as this informa-
tion may be helpful for prediction when different grids are
correlated. Second, we optionally allow the network to be
resolution-dependent by either using a separate network per
latent grid or using FiLM [67] layers to make the network
resolution-dependent in a more parameter-efficient way.

ReLU → GELU. As we are constrained to use very small
networks, we replace the simple ReLU activation function
with a more expressive activation; empirically we found that
GELU activations [33] worked better.

Shift log-scale of entropy model output. Small changes
in how quantities are parameterized can affect optimization
considerably. For example, how the scale of the entropy dis-
tribution is computed from the raw network output strongly
affects optimization dynamics, in particular at initialization;
we found that shifting the predicted log-scale prior to ex-
ponentiation consistently improves performance. With im-
proved optimization we can also use larger initialization
scales than Cool-chic to improve performance.

Adaptivity. We optionally sweep over several architecture
choices per image or video patch to find the best RD-trade-
off on a per-instance basis. We refer to this as C3 adaptive.
This setting includes an option to vary the relative latent
resolutions; e.g., it may be beneficial not to use the highest
resolution latent grid for low bitrates. Note that such adaptive
settings are also common in traditional codecs [37, 77].

3.3. Video-specific methodology

Cool-chic has been successfully applied to images but not
videos. Here we describe our methodology for applying
C3 (and Cool-chic) to video, which we use on top of the
improvements in Sec. 3.1 and Sec. 3.2.
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Figure 4. Visualization of entropy model’s context for images and
video (with and without custom masking).

2D → 3D. Given that videos have an extra time dimen-
sion compared to images, a natural way to extend C3 to
video is to convert 2D parameters and operations to their
3D counterparts. Namely, we use 3D latent grids z1, z2, . . .
of shapes (t, h, w), ( t2 ,

h
2 ,

w
2 ), . . . , and the entropy model’s

context context(zn, (τ, i, j)) is now a 3D causal neighbor-
hood of the latent entry znτij (cf. Fig. 4 video context).

Using video patches. Videos have orders of magnitude
more pixels than images, and a full HD video does not fit
into the memory of modern GPUs. We therefore split the
video into smaller video patches, and fit a separate C3 model
to each patch. We find that larger patches work best for lower
bitrates and smaller patches work best for higher bitrates.
Our patch sizes range from (30, 180, 240) to (75, 270, 320).

Wider context to capture fast motion. For video patches
with fast motion, the small context size that works well for
images (5-7 latent pixels wide) can be smaller than the dis-
placement of a particular keypoint in consecutive frames.
This means that for a target latent pixel, the context in the
previous latent frame does not contain the relevant informa-
tion for the entropy model’s prediction. Hence we use a
wider spatial context (up to 65 latent pixels wide) to enhance
predictions for videos with faster motion.

Custom masking. Naı̈vely increasing the context width
also increases the parameter count of the entropy model,
which scales linearly with the context size. However, most
of the context dimensions are irrelevant for prediction and
can be masked out. We use a small causal mask cen-
tered at the target latent pixel for the current latent frame,
and a small rectangular mask for the previous latent frame
whose position is learned during encoding time (cf. Fig. 4
video context with custommasking). See App. A.3 for
details of how the position of this mask is learned.

4. Related work

Neural compression by overfitting to a single instance.
COIN [20] introduced the idea of overfitting a neural net-
work to a single image as a means for compression. This has
since been improved with reduced encoding times through
meta-learning [21, 71, 76] and increased RD performance
via better architectures [13] or more refined quantization
[18, 26]. Further improvements to RD performance have
been achieved by pruning networks [46, 69, 71] and incorpo-
rating traditional compressive autoencoders [68, 72]. Recent
approaches using Bayesian neural fields directly optimize
RD losses, further improving performance [28, 32]. Despite
this progress, no approach yet matches the RD performance
of traditional codecs such as VTM.

For video, NeRV [14] overfits neural fields to single
videos, using a deep convolutional network to map time
indices to frames. Various follow-ups have greatly improved
compression performance [4, 15, 25, 42, 47, 53, 58], among
which HiNeRV [42] shows impressive RD performance that
closely matches HEVC (HM-18.0, random access setting)
on standard video benchmarks. While these models are typ-
ically smaller than autoencoder-based neural codecs, the
model size (and hence decoding complexity) is directly cor-
related with the bitrate (each point on the RD curve cor-
responds to a different model size), making it challenging
to design a low-complexity codec at high bitrates. Further,
these models are typically unsuitable for video-streaming
applications, as the entire bitstream needs to be transmitted
before the first frame can be decoded [81]. Note that C3 does
not suffer from this limitation – the very small synthesis and
entropy models can be transmitted first with little overhead,
and then be used to decode the bitstream for the latents that
can be synthesized into frames in a streaming fashion.

Given the generality of neural fields, codecs applicable
to multiple modalities have been developed [21, 24, 71, 72].
There also exist methods specialized to other modalities:
climate data [34], 3D shapes [19, 35, 55], NeRF scenes [24,
52, 78], audio [28, 44] and medical images [21, 23, 59, 73].

Instance adaptive neural compression. Several
autoencoder-based approaches adapt the encoder to each
instance through optimization but leave the decoder fixed
[12, 27, 54, 88]. Such methods generally perform worse
than approaches that optimize both the encoder and
decoder w.r.t. an RD loss [57, 62, 81, 82]. In particular,
Van Rozendaal et al. [81] introduce Insta-SSF, an instance
adaptive version of the scale-space flow (SSF) model [3] (a
popular autoencoder model for neural video compression).
For a fixed RD performance, the decoder of Insta-SSF is
much smaller and has lower complexity than the shared
decoder of SSF. Note that C3 and Cool-chic follow the
same principle for low complexity decoding. However,
there are key differences between C3/Cool-chic and the
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Figure 5. Rate-distortion curve and BD-rate on Kodak.

aforementioned instance adaptive methods: 1. we train from
scratch rather than learning an initialization from a dataset;
2. we use a neural field model (without encoder) instead
of an autoencoder, and show an order of magnitude lower
decoding complexity; 3. for videos, there is no explicit
motion compensation based on flows in our model.

Low complexity neural codecs. While the problem of
high decoding complexity in neural compression is well
established [89], most works to mitigate it are relatively
recent. Early methods reduced complexity at little cost in
RD performance by pruning network weights [39]. More
recently, He et al. [30, 31] replace traditional autoregressive
entropy models with checkerboard-based designs that allow
for more efficient and parallelizable entropy coding. Fur-
ther, Yang and Mandt [87] use shallow decoders to reduce
decoding complexity and offset the resulting decrease in RD
performance with iterative encoding. EVC [29] achieves RD
performance surpassing VTM on images with decoding at
30FPS on a GPU, by carefully choosing architectures and
using sparsity-based mask decay. Despite these impressive
results, the decoding complexity required for these models
is still an order of magnitude higher than C3.

For video, some prior works [45, 83] focus on providing
efficient neural components and entropy coding that run on
mobile devices. Due to these constraints, their RD perfor-
mance is not yet competitive with most neural video codecs
and their decoding complexity is an order of magnitude
higher than C3. ELF-VC [70], based on autoencoders and
flows, provides gains in efficiency by encoder/decoder asym-
metry and an efficient convolutional architecture. However
they do not report decoding complexity and are outperformed
by VCT [60] in terms of RD. AlphaVC [75] introduces a
technique to skip latent dimensions for entropy coding, im-
proving efficiency in flow-based autoencoder models and
surpassing VTM (low-delay) in terms of RD performance,
albeit with a high decoding complexity of 1M MACs/pixel.
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Figure 6. Rate-distortion curve and BD-rate on CLIC2020.

5. Results

5.1. Image compression

We evaluate our model on the Kodak [40] and CLIC2020
[80] benchmarks. Kodak contains 24 images at a resolu-
tion of 512× 768. For CLIC2020, we use the professional
validation dataset split containing 41 images at various reso-
lutions from 439×720 to 1370×2048, following Cool-chic
[43, 48]. We compare C3 against a series of baselines, in-
cluding classical codecs (BPG [8], VTM [11]), autoencoder
based neural codecs (BMS [6], a standard neural codec; CST
[16], a strong neural codec; EVC [29], a codec optimized
for RD performance and low decoding complexity; MLIC+
[38], the state of the art in terms of RD performance) and
Cool-chic v2 [48]. We measure PSNR on RGB and quantify
differences in RD performance with the widely used BD-rate
metric. See App. A for full experimental details and App. B
for full evaluation details.

Rate-distortion and decoding complexity. On
CLIC2020, C3 (with a single setting for its architec-
ture and hyperparameters) significantly outperforms
Cool-chic v2 across all bitrates (−20.8% BD-rate) and
matches VTM (−0.1% BD-rate), cf. Fig. 6. When adapting
the model per image, C3 even outperforms VTM (−2.9%
BD-rate). To the best of our knowledge, this is the first time
a neural codec has been able to match VTM while having
very low decoding complexity (below 3k MACs/pixel).
While C3 does not yet match the RD performance of state
of the art neural codecs such as MLIC+, it uses two orders
of magnitude fewer operations at decoding time, making it
substantially cheaper. Results are also strong on Kodak (see
Fig. 5), although, as is the case for Cool-chic, we perform
slighly worse on this dataset relative to VTM. In Fig. 1 we
compare the decoding complexity (measured in MACs/pixel)
and the achieved BD-rate for C3 and other neural baselines.
C3 has a similar complexity to Cool-chic but much better
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BD-rate, and codecs achieving similar BD-rate to ours
require at least an order of magnitude more MACs (even
ones optimized for low decoding complexity such as EVC).
See App. C.1 for comparisons with additional baselines
(including other autoencoder based and overfitted codecs) in
terms of RD performance and decoding complexity.

Decoding time. A concern with using autoregressive mod-
els is that runtimes may be prohibitive despite low computa-
tional complexity [63]. To address this, we time the decoding
process, which includes a full iterative roll-out of the autore-
gressive entropy model (and the upsampling and application
of the synthesis network). On CPU (Intel Xeon Platinum,
Skylake, 2GHz) these together take < 100ms (∼ 55ms
and ∼ 30ms, respectively) for an image of size 768× 512.
This does not account for the cost of range-decoding the bit-
stream (which is also a component of every classical codec).
We emphasize that these numbers are based on unoptimized
research code and can likely be improved substantially.

Encoding time. C3 faces the same limitations as Cool-
chic, in that it has very long encoding times. Here we re-
port encoding times on an NVIDIA V100 GPU. The largest
CLIC image at 1370× 2048 resolution takes 48s per 1000
iterations of optimization (i.e., excluding range-encoding)
with the slowest setting (largest architecture), and 22s per
1000 iterations with the fastest setting (smallest architecture).
While we train for a maximum of 110k iterations, we show
in App. D.3 that we can approach similar RD performance
with much fewer iterations. As we run unoptimized research
code, we believe the runtime can be greatly improved.

Ablations. In Tab. 2, we ablate our methodological contri-
butions on Kodak by starting with our best performing model
and sequentially removing each of our improvements, one
after another. We show the resulting BD-rate with respect
to the top row, demonstrating that our contributions stack to
yield significant improvements in RD performance. In Tab. 3,
we show BD-rate with respect to C3 when disabling indi-
vidual features. We find that soft-rounding, Kumaraswamy
noise and using GELU activations are responsible for the ma-
jority of the improvement. For the corresponding ablations
on CLIC2020, please refer to App. D.1.

Qualitative comparisons In Fig. 7, we compare recon-
structions from C3 and Cool-chic v2 on an image from
CLIC2020, showing that C3 has fewer artifacts. See App. E
for a more thorough comparison.

5.2. Video compression

We evaluate C3 on the UVG-1k dataset [61] containing
7 videos at HD resolution (1080 × 1920) with a total of
3900 frames. We evaluate PSNR on RGB, and compare
against a series of baselines, including classical codecs
(HEVC medium, no B-frames [77]), neural codecs based on
overfitting (HiNeRV [42], FFNeRV [47]) and autoencoder

Model variant BD-rate vs. C3 Adaptive

C3 (adaptive)

0% 10% 20% 30% 40%

0.0%
C3 2.2%

✗ Quantiz. step < 1 2.6%
✗ Adaptive lr (stage 2) 3.4%
✗ Shift log-scale 4.2%
✗ GELU 12.6%
✗ Kumaraswamy noise 23.6%
✗ Soft-rounding 39.8%

Table 2. Kodak ablation sequentially removing one improvement
after another. Note higher BD-rate means worse RD performance.

Removed feature BD-rate vs. C3

Soft-rounding 22.18%
Kumaraswamy noise 3.90%
GELU 3.27%
Shifted log-scale 0.87%
Adaptive lr (stage 2) 0.68%
Quantization step < 1 0.40%

Table 3. Kodak ablation knocking out individual features from C3
(fixed hyperparameters across all images). Note higher BD-rate
means worse RD performance.

C3 (ours)

0.3097 bpp

COOL-CHIC v2

0.3150 bpp

Figure 7. Qualitative comparison of compression artifacts for C3
and Cool-chic v2 at around 0.31 bpp with a PSNR of 30.28dB and
28.98dB, respectively. See App. E for the full image.

based neural codecs (DCVC [49], VCT [60], Insta-SSF [82],
MIMT [85]), among which MIMT reports state of the art RD
performance on the UVG-1k dataset. Note that extensions
of DCVC [50, 51, 74] also show strong RD performance
but report results on a subset of UVG frames, hence we do
not compare against them. See App. A for full experimental
details and App. B for full evaluation details.
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Figure 8. Rate-distortion curve and BD-rate on UVG.

Rate-distortion and decoding complexity In Fig. 8, we
show the RD performance of C3 compared to other baselines,
with more baselines shown in App. C.1. In Fig. 9, we show
the MACs/pixel count of each method vs the BD-rate using
HEVC (medium, no B-frames) [77] as anchor. In terms
of RD performance, we are on par with VCT [60], a com-
petitive neural baseline, while requiring 4.4k MACs/pixel,
which is less than 0.1% of VCT’s MACs/pixel. Among the
baselines that overfit to a single video instance (NeRV and
its followups) we are second best in terms of RD, widely out-
performing FFNeRV [47], the previous runner up. Although
C3 is behind stronger neural baselines such as HiNeRV and
MIMT in terms of RD performance, our decoding complex-
ity is orders of magnitude lower. Note that NeRV-based
methods have different model sizes (and hence different
MACs/pixel) for each point on the RD curve. For example,
the 5 points on the RD curve for HiNeRV correspond to
MACs/pixel values between 87k-1.2M [42]. In App. D.4
we show ablation studies showing the effectiveness of our
video-specific methodology.

Encoding times. We also report encoding times for video
patches on an NVIDIA V100 GPU. The slowest setting on
the largest video patch of size 75×270×320 resolution takes
457s per 1000 iterations of optimization, whereas the fastest
setting on the smallest video patch of size 30× 180× 240
takes 29s per 1000 iterations. We train for a maximum of
110k iterations but show in App. D.3 that we can approach
similar RD performance with much fewer iterations.

6. Conclusion, limitations and future work
We propose C3, the first low complexity neural codec on
single images that is competitive with VTM while requiring
an order of magnitude fewer MACs for decoding than state
of the art neural codecs. We then extend C3 to the video set-
ting, where we match the RD performance of VCT with less
than 0.1% of their decoding complexity. Our contributions
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Figure 9. BD-rate vs decoding complexity relative to HEVC
(medium) on UVG. For methods with varying MACs for different
bitrates (e.g., C3 and HiNeRV), we report the largest MACs/pixel.

are a step towards solving one of the major open problems
in neural compression — achieving high compression per-
formance with low decoding complexity — and ultimately
towards making neural codecs a practical reality.

Limitations. In this paper, we focused on maximizing RD
performance while minimizing decoding complexity. As
a result, the encoding of C3 is slow, making it impractical
for use cases requiring real time encoding. Yet, there are
several use cases for which paying a significant encoding
cost upfront can be justified if RD performance and decod-
ing time are improved. For example, a popular video on a
streaming service is encoded once but decoded millions of
times [1]. Further, the autoregressive entropy model used
during decoding is inherently sequential in nature, posing
challenges for efficient use of hardware designed for par-
allel computing. However, as shown in Sec. 5, even with
unoptimized research code, an image can be decoded rela-
tively quickly on CPU due to the very small network sizes.
Moreover, further optimizations and specialized implemen-
tations such as wavefront decoding [17] can likely speed
up decoding times significantly. Nevertheless, it would be
interesting to explore alternative probabilistic models that
can be efficiently evaluated on relevant hardware.

Future work. There are several promising avenues for
future work. Firstly, it would be interesting to accelerate
encoding via better initializations or meta-learning [21, 71,
76]. Secondly, improving decoding speed through the use
of different probabilistic models or decoding schemes is an
important direction. Further, while we took an extreme view
of using only a single image or video to train our models, it
is likely that some level of sharing across images or videos
could be beneficial. For example, sharing parts of the entropy
or synthesis model may improve RD performance.
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