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Abstract

Federated learning often suffers from slow and unsta-
ble convergence due to the heterogeneous characteristics of
participating client datasets. Such a tendency is aggravated
when the client participation ratio is low since the informa-
tion collected from the clients has large variations. To ad-
dress this challenge, we propose a simple but effective fed-
erated learning framework, which improves the consistency
across clients and facilitates the convergence of the server
model. This is achieved by making the server broadcast a
global model with a lookahead gradient. This strategy en-
ables the proposed approach to convey the projected global
update information to participants effectively without addi-
tional client memory and extra communication costs. We
also regularize local updates by aligning each client with
the overshot global model to reduce bias and improve the
stability of our algorithm. We provide the theoretical con-
vergence rate of our algorithm and demonstrate remarkable
performance gains in terms of accuracy and communication
efficiency compared to the state-of-the-art methods, espe-
cially with low client participation rates. The source code
is available at our project page1.

1. Introduction

Federated learning (FL) [27] is a large-scale machine learn-
ing framework that learns a shared model in a central server
through collaboration with a large number of remote clients
with separate datasets. Such a decentralized learning frame-
work achieves a basic level of data privacy because the data
stored in local clients are unobservable by the server and
other clients. On the other hand, federated learning algo-
rithms are particularly sensitive to communication and com-
putational costs due to limited resources on many clients,
such as mobile or IoT devices.

A baseline algorithm of federated learning, FedAvg [27],
updates a subset of client models using a gradient descent
method based on their local data. The resulting models are

*indicates equal contribution.
1 https://github.com/geehokim/FedACG

then uploaded to the server for estimating the global model
parameters via model averaging. As extensively discussed
in the convergence of FedAvg [3, 37–39, 46], multiple local
updates conducted before server-side aggregation provide
theoretical support and practical benefits of federated learn-
ing by reducing communication costs significantly.

Despite its initial success, federated learning faces two
key challenges: high heterogeneity in training data dis-
tributed over clients and limited client participation rates.
Several studies [15, 49] have shown that multiple local up-
dates in the clients with non-i.i.d. (independent and iden-
tically distributed) data lead to client model drift, in other
words, diverging updates in individual clients. Such a phe-
nomenon introduces a high variance issue in FedAvg steps
for global model updates, which hampers convergence to
the optimal average loss over all clients [13, 17, 25, 26, 41,
42]. The challenge related to client model drift is exacer-
bated when the client participation rate per communication
round is low.

To properly address the issue of client heterogeneity, we
propose a novel federated learning algorithm, Federated av-
eraging with Accelerated Client Gradient (FedACG), which
conveys the momentum of the global gradient to clients and
enables the momentum to be incorporated into the local up-
dates in the individual clients. Specifically, FedACG trans-
mits the global model integrated with the global momentum
in the form of a single message, which allows each client to
perform its local gradient update step along the landscape
of the global loss function. This approach is effective in re-
ducing the gap between global and local losses. In addition,
FedACG adds a regularization term in the objective func-
tion of clients to make the local gradients more consistent
across clients. We show that subtle differences in federated
learning algorithms can have a significant impact on the fi-
nal results and discuss the behavior of FedACG together
with related methods.

The main contributions of this paper are summarized as
follows.

• We propose a simple yet effective federated optimization
algorithm, called FedACG, that proactively adjusts the
initial local model using a lookahead gradient and aligns
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the gradients of individual clients with that of the server.
• FedACG is free from additional communication costs, ex-

tra computation in the server, and memory overhead of
clients; these properties are desirable for the real-world
settings of federated learning.

• FedACG demonstrates its outstanding performance in
terms of communication efficiency and robustness to
client heterogeneity, especially with the low client par-
ticipation rates.

• We introduce a federated learning benchmark1 to facili-
tate the evaluation of federated learning algorithms. The
benchmark contains the implementations of various algo-
rithms including FedACG.

The rest of the paper is organized as follows. We first
review the prior works in Section 2. Section 3 discusses the
technical details of the proposed approach. Section 4 vali-
dates its effectiveness. We conclude our paper in Section 5.

2. Related Work

Federated learning is first introduced by McMahan et al.
[27]. They formulate the problem and propose FedAvg as
a solution to address main challenges in federated learning,
such as massively distributed clients and partial client par-
ticipation. Subsequent works attempt to address the chal-
lenge of non-i.i.d. client data in federated learning empir-
ically [49] and derive convergence rates depending on the
level of heterogeneity [13, 17, 25, 26, 41, 42].

There exists a long line of research on client-side opti-
mization aimed at reducing the divergence of clients from
the global model. FedProx [25] penalizes the difference be-
tween the server and client parameters, while FedDyn [1]
and FedPD [48] adopt cumulative gradients of each client
for dynamic regularization of local updates. FedDC [10]
introduces the auxiliary drift variables of each client to re-
duce the impact of the local drift on the global objective.
Another line of work adopts variance reduction techniques
in client updates to eliminate inconsistent updates across
local models. SCAFFOLD [15] and Mime [16] use con-
trol variates for local updates, while FedDANE [24] adds
a gradient correction term based on the server gradient.
FedPA [2] reduces the bias in client updates by estimat-
ing the global posterior on the client side. On the other
hand, some approaches adopt a contrastive loss [23, 28, 35],
knowledge distillation [19, 22], logit calibration [47], fea-
ture decorrelation [36], or a generative model [50] to en-
sure the similarity between the representations in the global
and local models. FedSAM [32] and FedASAM [4] ap-
ply SAM [9] as a client-side optimizer to reduce the gap
between global and local losses. However, most of these
methods require full participation [18, 28, 48], additional
communication costs [7, 10, 15, 16, 24, 45, 50], or extra
client storage [1, 10, 15, 23], which are problematic in real-

istic federated learning scenarios.
Momentum-based optimization techniques have also

been explored for the stability and speed-up of convergence.
These approaches incorporate a momentum SGD [14, 40]
or an adaptive gradient-descent method [4, 33] into server
model updates while FedCM [45] and FedADC [30] em-
ploys global momentum to correct gradients in local up-
dates. STEM [18] and FedGLOMO [7] apply the STORM
algorithm [6] to both server- and client-level SGD proce-
dures to reduce variance in server model updates. Although
these methods require additional communication over-
head to transmit the global momentum for local updates,
FedACG saves the costs by broadcasting the momentum-
integrated model as a single message.

Meanwhile, there is another set of works that aims to
reduce the communication costs per round by compress-
ing the transmitted model. FedPAQ [34], FedCAMS [43],
and FedCOMGATE [11] use low-bit precision to quantize
the communicated messages, while FedPara [29] reparam-
eterizes the model parameters using a low-rank Hadamard
product. These works are orthogonal to ours but can be in-
tegrated into our algorithm.

3. Proposed Approach

3.1. Preliminaries

Problem setup Let Li(✓) := E(x,y)⇠Di
[`i((x, y); ✓)] be

the empirical loss function of the client Ci 2 {C1, . . . , CN}

with a local dataset denoted by Di. Then, our goal is to
train a model that minimizes the average loss of all clients
as follows:

min
✓

(
L(✓) :=

NX

i=1

!iLi(✓)

)
, (1)

where ✓ is the parameter of the global model and !i is the
normalized weight of the ith client, which is proportional to
the size of the local dataset |Di|. We focus on the non-i.i.d.
data setting, where local datasets have heterogeneous distri-
butions. Note that the communication of raw data between
clients and the server is strictly prohibited in principle due
to privacy concerns.

FedAvg algorithm FedAvg [27] is a standard solution of
federated learning, where the server simply aggregates all
the participating client models to obtain the global model.
Specifically, in the tth communication round, the server
broadcasts the latest global model, represented as ✓t�1 to
the active clients in St ✓ {C1, . . . , CN}. Each participating
client optimizes its local model by using the global model
as its initial point, i.e., ✓ti,0 := ✓t�1. After K iterations
of the local training, each client uploads its local updates
�t

i := ✓ti,K � ✓ti,0 to the server, and then the server aggre-
gates them as �t :=

P
i2St

!i�t
i. The server constructs
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Figure 1. An illustration of the proposed accelerated client gra-

dient method. We first partially update the global model in the
direction of the global momentum (orange) and then aggregate lo-
cal updates (gray), resulting in the server model in the next round
(blue). This anticipatory update aligns individual local updates
with the global gradient, achieving speed-up of convergence.

the next server model ✓t := ✓t�1 + �t for broadcasting
in the next round. Due to non-i.i.d. data and limited client
participation rate in each round of training, FedAvg suffers
from client drift [15]. Such a phenomenon results in the in-
consistent updates of client models caused by overfitting to
local data of individual clients, which consequently leads to
the high variance of the global model. This tendency is ag-
gravated over multiple communication rounds in federated
learning because each client initializes its parameters using
the global model.

3.2. Federated averaging with Accelerated Client

Gradient (FedACG)

To reduce the inconsistency between the local models and
the divergence of the resulting global model, we incorpo-
rate global momentum into the local models to guide local
updates.

Accelerated client gradient The main idea of FedACG is
to revise the initialization of client models using the global
model integrated with a global gradient, allowing more ef-
fective and stable updates of local models. Since the di-
rect computation of the global gradient is impractical in FL,
we utilize the global momentum mt�1 as a viable approx-
imation, which is updated as mt�1 := �mt�2 + �t�1, at
each round. Specifically, in the tth communication round,
the server augments the recent global model ✓t�1 with the
global momentum mt�1. As illustrated in Figure 1, The
server then broadcasts this accelerated global model, repre-
sented as ✓t�1 + �mt�1, as a single message to the active
clients in St ✓ {1, . . . , N}. Note that � 2 [0, 1) controls
the importance of the global momentum. Each participat-
ing client optimizes its local model from the momentum-
integrated initialization. This proactive initialization allows
each client to find its local optimal solution along the tra-
jectory of the global gradient, which improves the consis-

Algorithm 1 FedACG
Input: �, �, initial server model ✓0, number of clients N ,

number of communication rounds T , number of lo-
cal iterations K, local learning rate ⌘

Initialize global momentum m0 = 0
for each round t = 1, 2, . . . , T do

Sample subset of clients St ✓ {C1, . . . , CN}

Server sends ✓t�1+�mt�1 for all clients in St

for each client Ci 2 St, in parallel do

Initialize local model ✓ti,0  ✓t�1+�mt�1

for each local iteration k = 1, 2, . . . ,K do

Compute mini-batch loss
fi(✓ti,k�1) `i(✓ti,k�1)

+�
2 k✓

t
i,k�1 � (✓t�1 + �mt�1)k2

✓ti,k  ✓ti,k�1 � ⌘rfi(✓ti,k�1)

end

�t
i  ✓ti,K � ✓ti,0

Client sends �t
i back to the server

end

In server:

�t =
P

i2St
!i�t

i

mt = �mt�1 +�t

✓t = ✓t�1 +mt

end

Return ✓t

tency of local updates in FedACG. Our approach has a sim-
ilar motivation with meta-learning [8], where a meta-learner
identifies the optimal point to facilitate the optimization in
all target tasks. After K iterations of local training, the
server updates its momentum and constructs the next server
model, denoted as ✓t := ✓t�1 +mt, in preparation for the
next round. Algorithm 1 outlines the procedure of FedACG.

Regularization with momentum-integrated model In
addition to the initial acceleration for local training, we
augment the client’s loss function with the quadratic term
�
2 k✓

t
i,k � (✓t�1+�mt�1)k2 which penalizes the difference

between the local online model ✓ti,k and the accelerated
global model ✓t�1 + �mt�1. Note that, � controls the in-
tensity of the penalty. The penalized term takes advantage
of the global gradient information �mt to reduce the vari-
ations of client-specific gradients, �t

i. This regularization
term further enforces the local model not to deviate from
the accelerated point, preventing each client from falling
into biased local minima.

3.3. Discussion

While our formulation has something in common with the
existing works that also address client heterogeneity using
global gradient information for local updates, FedACG has
major advantages. First, unlike [10, 15, 45], the server and
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clients in FedACG communicate only model parameters
without imposing additional network overhead for transmit-
ting gradients and other information; the server broadcasts
(✓t�1 + �mt�1) as a single message and each client sends
�t

i to the server. This is a critical benefit because the rise
in communication cost challenges many practical federated
learning applications involving clients with limited network
bandwidths. Second, FedACG is robust to the low partici-
pation rate of clients and allows new-arriving clients to join
the training process without a warm-up period because, un-
like [1, 10, 15, 23], clients are supposed to neither store their
local states nor use them for model updates.

Comparison with FedAvgM Although FedACG appar-
ently looks similar to FedAvgM in the sense that both meth-
ods employ the global momentum for optimization, they
have critical differences. To analyze the difference between
the two algorithms, we decompose the process of updat-
ing the global model in FedACG into two steps: 1) up-
dating the previous global model, ✓t�1, with the global
momentum term, �mt, and computing the interim model
�t�1 = ✓t�1+�mt�1, and 2) updating the interim model
with the aggregated local gradients, �t

|�t�1 , to derive the
new global model, ✓t = �t�1 +�t. While FedAvgM per-
forms the local updates from the previous global model, i.e.,
�t := �t

|✓t�1 , FedACG computes the local updates from
the interim model parameter, i.e., �t :=�t

|�t�1 . In other
words, the two algorithms have different initializations,
✓t�1 vs. �t�1, for training local models. As will be dis-
cussed in Section 4.3, FedACG’s lookahead initialization
results in more robust models compared to FedAvgM. Such
a difference accumulates over multiple rounds communica-
tion rounds and eventually leads to significant performance
gaps.

3.4. Convergence analysis of FedACG

We now discuss the convergence of the FedACG algo-
rithm in general non-convex FL scenarios. To establish
the convergence analysis for FedACG, we make three as-
sumptions; (1) the local loss function Fi(·) is L-smooth,
(2) its stochastic gradient rfi(x) := rFi(x;Di) is unbi-
ased and possesses a bounded variance, i.e., EDikrfi(x)�
rFi(x)k < �2, and (3) the average norm of local gradi-
ents is bounded by a function of the global gradient magni-
tude as 1

N

PN
i=1 krFi(x)k

2
 �2

g +B2
krF(x)k2, where

�g � 0 and B � 1. These assumptions are widely used for
analyzing the non-convex loss functions in FL in the pre-
vious works [1, 15, 16, 32, 33, 45]. Note that our conver-
gence proof is free from the bounded gradient assumption
of the global or local loss while it is commonly used for the
proofs in momentum-based or adaptive optimization meth-
ods [33, 44, 45].

We now state the convergence result of FedACG; the de-

tailed proof is provided in Section D in the supplementary
document.

Theorem 1. (Convergence for non-convex functions) Sup-
pose that local functions {Fi}

N
i=1 are non-convex and L-

smooth. By setting ⌘  (1��)2

64KL(B2+1) , FedACG satisfies

min
t=1,...,T

E
��rF

�
✓t�1 + �mt�1

���2

 O

0

@ M1

p
LDp

TK|St|
+

�
LD(1� �)2

� 2
3 M

1
3
2

(T + 1)
2
3

+
B2LD

T

1

A ,

where M2
1 := �2 +K

⇣
1� |St|

N

⌘
�2
g , M2 := �2

K + �2
g , and

D :=
F(✓0)�F(✓⇤)

1�� .

Theorem 1 provides the convergence rate of FedACG,
which matches the best convergence rate of existing FL
methods [15, 16].

4. Experiments

We present empirical evaluation results of FedACG and
competing federated learning methods. Refer to the sup-
plementary document for more details about our implemen-
tation including hyperparameter setting and results from ab-
lation studies.

4.1. Experimental setup

Datasets We conduct a set of experiments on three
datasets, CIFAR-10 [20], CIFAR-100 [20], and Tiny-
ImageNet [21], with different levels of data heterogeneity
and participation rates. We generate i.i.d. data splits by
randomly assigning training examples to individual clients
without replacement. For non-i.i.d. datasets, we simulate
the data heterogeneity by sampling the label ratios from
a Dirichlet distribution with a symmetric parameter, 0.3
or 0.6, following the strategies in Hsu et al. [14]. In
both i.i.d. and non-i.i.d. cases, each client holds the same
number of examples as in other works [19, 45]. We ex-
tend our experiments to the widely adopted FL benchmark,
LEAF [5], known for its realistic settings. LEAF introduces
heterogeneity in class distribution, data quantity, and fea-
ture alignment. For FEMNIST, CelebA, and ShakeSpeare,
we use the non-i.i.d. data splits provided by LEAF.

Baselines We compare our method, FedACG, with state-
of-the-art federated learning techniques, which include Fe-
dAvg [27], FedProx [25], FedAvgM [14], FedADAM [33],
FedDyn [1], FedCM [45], MOON [23], FedMLB [19], Fed-
NTD [22], FedLC [47], FedDC [10], and FedDecorr [36].
The standard ResNet-18 [12] is employed as our backbone
network for all experiments after replacing the batch nor-
malization with the group normalization, following Hsieh
et al. [13].
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Table 1. Results on three benchmarks with two different federated learning settings. For (a) a moderate-scale experiment, the number of
clients and the participation rate, are set to 100, and 5%, respectively, while (b) a large-scale setting has 500 clients with a 2% participation
rate. The Dirichlet parameter is commonly set to 0.3. Accuracies at the target round and the communication round to reach target test
accuracy are based on exponential moving averages with parameter 0.9. The arrows indicate whether higher (") or lower (#) is better.
FedCM† and FedDC‡ require 50% and 100% additional communication costs at each communication round, respectively.

(a) Moderate-scale: 100 clients, 5% participation

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 81% 85% 500R 1000R 47% 55% 500R 1000R 35% 38%

FedAvg [27] 74.36 82.53 840 1000+ 41.88 47.83 924 1000+ 33.94 35.37 645 1000+
FedProx [25] 73.70 82.68 826 1000+ 42.43 48.32 881 1000+ 34.14 35.53 613 1000+
FedAvgM [14] 80.56 85.48 519 828 46.98 53.29 515 1000+ 36.32 38.51 416 829
FedADAM [33] 72.33 81.73 908 1000+ 44.80 52.48 691 1000+ 33.22 38.91 658 945
FedDyn [1] 84.82 88.10 392 646 48.38 55.79 424 883 37.35 41.18 344 573
MOON [23] 83.32 86.30 371 686 53.15 58.37 284 640 36.62 40.33 410 627
FedCM† [45] 78.92 83.71 624 1000+ 52.44 58.06 293 747 31.61 37.87 694 1000+
FedMLB [19] 74.98 84.04 714 1000+ 47.39 54.58 490 1000+ 37.20 40.16 415 539
FedLC [47] 78.37 84.79 680 1000+ 42.74 47.23 980 1000+ 35.03 35.95 500 1000+
FedNTD [22] 76.05 83.78 685 1000+ 43.22 49.29 721 1000+ 33.91 37.33 547 1000+
FedDC‡ [10] 86.52 87.47 323 519 54.25 59.01 333 553 40.32 45.51 340 403
FedDecorr [36] 76.62 83.40 728 1000+ 43.52 49.17 767 1000+ 33.40 34.86 1000+ 1000+
FedACG (ours) 85.13 89.10 319 450 55.79 62.51 260 409 42.26 46.31 226 331

(b) Large-scale: 500 clients, 2% participation

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 73% 77% 500R 1000R 36% 40% 500R 1000R 24% 30%

FedAvg [27] 58.74 71.45 1000+ 1000+ 30.16 38.11 842 1000+ 23.63 29.48 523 1000+
FedProx [25] 57.88 70.75 1000+ 1000+ 29.28 36.16 966 1000+ 25.45 31.71 445 799
FedAvgM [14] 65.85 77.49 753 959 31.80 40.54 724 955 26.75 33.26 386 687
FedADAM [33] 61.53 69.94 1000+ 1000+ 24.56 34.36 1000+ 1000+ 21.88 28.08 648 1000+
FedDyn [1] 65.49 77.92 732 936 31.58 41.01 691 927 24.35 29.54 483 1000+
MOON [23] 69.15 78.06 617 872 33.51 42.41 601 828 26.69 31.81 382 741
FedCM† [45] 69.27 76.57 742 1000+ 27.23 38.79 872 1000+ 19.41 24.09 975 1000+
FedMLB [19] 58.68 71.38 1000+ 1000+ 32.30 42.61 643 803 28.39 33.67 382 579
FedLC [47] 60.16 70.10 1000+ 1000+ 29.58 36.78 936 1000+ 22.14 26.83 676 1000+
FedNTD [22] 60.65 73.20 991 1000+ 28.95 36.31 995 1000+ 24.67 32.16 475 800
FedDC‡ [10] 71.86 83.49 518 686 34.64 45.93 569 741 25.72 28.92 420 1000+
FedDecorr [36] 60.01 72.83 1000+ 1000+ 30.56 38.20 850 1000+ 24.34 30.28 499 959
FedACG (ours) 73.61 82.80 484 605 35.68 48.40 505 616 31.47 38.48 246 447

Evaluation metrics To evaluate the generalization per-
formance of the methods, we use the entire test set of
CIFAR-10, CIFAR-100, and Tiny-ImageNet. Since both
the training speed as well as the final accuracy are impor-
tant factors in federated learning, we measure: (i) the per-
formance achieved at a specified number of rounds and (ii)
the number of rounds required for an algorithm to attain the
desired level of target accuracy, following Al-Shedivat et
al. [2]. For the methods that fail to achieve the target accu-
racies within the maximum communication round, we ap-
pend a + sign to the communication round number.

4.2. Main results

We first present the performance of the proposed approach,
FedACG, on CIFAR-10, CIFAR-100, and Tiny-ImageNet

by varying the number of clients, data heterogeneity, and
participation rate. Our experiments have been performed in
two different settings; one is a moderate scale, which in-
volves 100 clients with a 5% participation rate per round,
and the other is with a large number of clients, 500 with
a participation rate of 2%. Because the number of clients
in the large-scale setting is five times higher than that in
the moderate-scale experiment, the number of examples per
client is reduced by 80%.

Table 1a demonstrates that FedACG improves accuracy
and convergence speed significantly and consistently com-
pared with other federated learning methods in most cases.
This is partly because FedACG allows each client to look
ahead in the direction of the potential global update and
aligns the local model updates with the global gradient tra-

12389



Table 2. Results from reduced participation rates (2% for 100 clients, 1% for 500 clients) on CIFAR-10 and CIFAR-100 with the Dirichlet
parameter 0.3. FedCM† and FedDC‡ require 50% and 100% additional communication costs for each communication round, respectively.

Method

CIFAR-10 CIFAR-100

100 clients 500 clients 100 clients 500 clients
Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)

500R 1000R 78% 500R 1000R 68% 500R 1000R 44% 500R 1000R 35%

FedAvg [27] 65.92 78.13 977 54.71 68.96 949 38.19 44.62 924 26.94 35.69 950
FedProx [25] 65.78 75.82 1000+ 55.18 69.80 919 36.69 45.16 921 26.92 35.41 963
FedAvgM [14] 68.09 79.91 748 57.82 71.12 812 39.24 53.47 504 29.29 39.36 755
FedADAM [33] 68.09 78.61 978 48.26 54.60 1000+ 40.95 51.14 592 18.21 23.70 1000+
FedDyn [1] 74.27 80.20 660 54.86 70.78 858 38.94 48.88 716 27.86 36.31 896
MOON [23] 71.52 75.42 1000+ 64.55 73.89 645 39.91 46.51 730 28.29 36.37 886
FedCM† [45] 52.45 64.50 1000+ 49.21 60.38 1000+ 14.52 23.06 1000+ 16.32 22.59 1000+
FedMLB [19] 65.85 79.45 899 52.81 66.86 1000+ 40.09 53.34 565 29.78 39.64 724
FedLC [47] 72.90 80.90 736 54.89 68.31 967 39.70 42.10 1000+ 27.73 35.24 918
FedNTD [22] 69.11 80.43 797 54.53 68.69 961 38.13 48.03 708 27.56 35.86 932
FedDC‡ [10] 77.76 82.86 473 60.56 75.06 681 41.50 51.37 670 29.14 38.84 789
FedDecorr [36] 71.29 78.99 817 56.62 70.24 845 39.42 48.45 718 31.03 38.70 705
FedACG (ours) 76.36 84.73 543 63.70 76.45 618 49.56 56.89 358 31.74 45.18 581

Table 3. Results on the Dirichlet (0.3) split of CIFAR-100 with
dynamic client updates during training: we maintain 250 clients
but each client is replaced with a probability of 0.5 at every 100
rounds. The experiment runs for 10 stages and the client partici-
pation ratio is 4%.

Method Acc. (%, ") Rounds ( #)
500R 1000R 30% 38%

FedAvg [27] 28.61 35.87 577 1000+
FedProx [25] 28.17 35.89 602 1000+
FedDyn [1] 29.45 38.47 517 941
MOON [23] 30.88 39.57 430 852
FedNTD [22] 28.45 36.26 578 1000+
FedDC‡ [10] 31.35 36.82 469 1000+
FedACG (ours) 32.70 41.51 376 769

jectory. Note that FedCM and FedDC respectively require
1.5⇥ and 2⇥ network costs for each communication round
since they communicate the current model and the associ-
ated gradient information per round, while the rest of the
algorithms only need to transmit model parameters.

For the large-scale setting, Table 1b illustrates the out-
standing performance in the three benchmarks, except for
the accuracy at 1K rounds on CIFAR-10. A noticeable ob-
servation is that the overall performance is lower than the
case with a moderate number of clients. This is because the
number of training data for each client decreases and each
client suffers more from heterogeneous data distributions.
Nevertheless, we observe that FedACG outperforms other
methods consistently in most cases; the accuracy gap be-
tween FedACG and its strongest competitor becomes larger
in these more challenging scenarios. The results from the
large-scale experiments exhibit the robustness of FedACG
to the data heterogeneity and low client participation rates.
We present more comprehensive results for the convergence

Table 4. Contribution of individual components in FedACG. The
results are measured after 1K rounds on CIFAR-10 and CIFAR-
100 with 2% participation rate over 500 clients.

Server update
w/ momentum

Accelerated
gradient

Local
reg. CIFAR-10 CIFAR-100

71.45 38.11
X 70.75 36.16

X 77.49 40.54
X X 76.16 44.64
X X 82.20 46.80
X X X 82.80 48.40

of FedACG in the supplementary document.

4.3. Analysis

Effect of low participation rate One of the critical chal-
lenges in federated learning is the partial participation of
clients, which can slow down the convergence of the global
model. To verify the robustness of FedACG to low client
participation rates, we conduct experiments with 500 clients
and a participation rate as low as 1%. Since the numbers
of local epochs and iterations are set to 5 and 50, respec-
tively, each client has little training opportunity with few
training examples and client heterogeneity increases signif-
icantly. As shown in Table 2, FedACG outperforms the
other methods in most cases, with the performance gap be-
tween FedACG and the second best method, FedDC, being
even more significant than when the participation rate is 2%
with 500 clients, from -0.69%p to 1.39%p on CIFAR-10
and from 2.47%p to 6.34%p on CIFAR-100 at round 1000.
This is partly because the local states in FedDC become
stale quickly in this scenario, requiring extra iterations for
convergence, whereas FedACG is not affected by this issue.
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FedAvgM FedCM FedACG

(a) Visualization of global training loss surfaces

(b) Weight divergence (c) Layer-wise CKA values

Figure 2. Benefit of accelerated client gradient. For FedAvgM, FedCM, and FedACG (without local regularization for fair comparisons)
on CIFAR10, we visualize (a) global training loss surfaces with three local models as black circles in the parameter space, (b) weight
divergence, and (c) layer-wise CKA values. In (c), the x-axis denotes the layer index of ResNet-18 while the y-axis corresponds to CKA
values measured on the global validation set.

Evaluation on dynamic client set Since FedACG does
not require storing local model history for local updates, it
is conceptually better suited for scenarios with newly partic-
ipating clients. To validate this property, we conduct an ex-
periment, where we maintain 250 clients in each round but
replace half of the clients on average every 100 rounds by
setting the replacement probability of each client to 0.5. The
experiment has been performed on CIFAR-100 with Dirich-
let (0.3) splits, assuming a participation ratio of 4% for each
communication round. Table 3 shows that FedACG outper-
forms FedAvg and FedDyn. Note that FedDyn performs
worse than FedAvg since the client models suffer from het-
erogeneity and divergence when new clients have no infor-
mative local states.

Ablation study Table 4 presents the contributions of in-
dividual components in the experiment on CIFAR-10 for
the large-scale setting. We observe that the accelerated
client gradient for local training makes a more critical im-
pact on accuracy after 1,000 rounds. It is worth noting that
the proposed regularization term in the local loss function
shows a larger performance gain when used with the ac-
celerated client gradient while employing the regularization
term alone does not necessarily lead to a beneficial outcome
on CIFAR-10 and CIFAR-100.

Comparison with FedAvgM and FedCM To better un-
derstand the effectiveness of the accelerated client gradient,

we compare two momentum-based algorithms, FedAvgM
and FedCM, by visualizing global loss surfaces, weight di-
vergence, and layer-wise CKA values during training. Fig-
ure 2a highlights a better generalization of FedACG’s lo-
cal models to global loss compared to other methods. Fig-
ures 2b and 2c reveal that the local models of FedACG ex-
hibit less divergence in the parameter space and more con-
sistent feature representations, respectively. These findings
demonstrate that the accelerated client gradient in FedACG
effectively mitigates client drift stemming from data hetero-
geneity.

Hyperparameters We test the accuracy of our algorithm
for the Dirichlet (0.3) and i.i.d. splits by varying the values
of � and �, which control the momentum integration of the
server model and the weight of the proximal term, respec-
tively. As shown in Table 5a, the performance of FedACG
remains stable in a range of � values from 0.75 to 0.9. De-
spite minor fluctuations, the accuracy remains high, peaking
at � = 0.85. Table 5a also shows that the accuracy is stable
with respect to �.

Integration into quantization approaches Our frame-
work is orthogonal to quantization-based FL algorithms,
which enables seamless integration with such approaches.
Table 6 presents consistent and remarkable improvements
when combining FedACG with quantization-based algo-
rithms, such as FedPAQ [34].
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Table 5. Ablation study for � (a) and � (b), w.r.t the accuracy at
1K th round on CIFAR-10 with 2% participation and 500 clients.

(a) Sensitivity of FedACG with respect to �

� 0.75 0.8 0.85 0.9

Dir(0.3) 81.32 82.52 82.80 82.64
i.i.d. 85.52 86.82 86.83 86.16

(b) Sensitivity of FedACG with respect to �

� 0.001 0.01 0.1 1

Dir(0.3) 82.10 82.80 82.32 82.44
i.i.d. 86.54 86.83 86.72 85.92

Table 6. Integration of FedACG into quantization-based feder-
ated learning approach under non-i.i.d. settings on CIFAR-100;
5% participation rate for 100 clients and 2% for 500 clients. The
Dirichlet parameter is commonly set to 0.3.

Method 100 clients 500 clients
500R 1000R 500R 1000R

FedAvg [27] 41.88 47.83 30.16 38.11
FedPAQ [34] 36.57 41.99 23.80 30.21
FedACG + FedPAQ 43.04 50.53 31.94 39.55

4.4. Experiments on realistic datasets

We conduct experiments on additional realistic datasets,
FEMNIST and CelebA in LEAF [5], which include other
kinds of non-i.i.d. scenarios such as feature skewness and
data imbalance between clients. For these experiments,
we set the number of clients to 2,000, with data splits fol-
lowing [5], and randomly select 5 clients to participate in
training during each communication round. We employ a
two-layer CNN for FEMNIST and a four-layer CNN for
CelebA. Table 7 illustrates that FedACG also outperforms
other baselines on both datasets for most cases, highlighting
its robustness to heterogeneity with data quantity and fea-
ture alignment. Note that, while FedACG requires 20 more
communication rounds than FedDC to reach the target ac-
curacy on FEMNIST, it sends 56.8% fewer parameters than
FedDC.

We also evaluate FedACG in a different domain, next
word prediction task, on the ShakeSpeare in LEAF, which
also involves a significant data imbalance between clients.
We adopt an LSTM as the backbone network, and the client
participation rate per round is set to 5%. Table 7 presents
that FedACG is also effective for the language domain,
while FedCM exhibits poor performance even with exten-
sive hyperparameter tuning.

5. Conclusion

This paper addresses a realistic federated learning scenario,
where a large number of clients with heterogeneous data

Table 7. Results on the realistic datasets involving feature skew-
ness and data imbalance between clients. FedCM† and FedDC‡

require 50% and 100% additional communication costs per com-
munication round, respectively.

Method
FEMNIST CelebA

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 78% 500R 88%

FedAvg [27] 78.38 328 89.92 134
FedProx [25] 78.34 328 89.90 132
FedAvgM [14] 78.37 256 89.85 113
FedADAM [33] 75.96 500+ 87.00 500+
FedDyn [1] 79.80 227 89.74 126
MOON [23] 78.33 336 87.95 500+
FedCM† [45] 72.79 500+ 88.89 222
FedNTD [22] 78.42 330 89.31 122
FedDC‡ [10] 80.11 149 88.97 126
FedACG (ours) 80.61 169 90.09 108

Table 8. Results in the language domain on the next word predic-
tion task under non-i.i.d. setting using the ShakeSpeare dataset.

Method Acc. (%, ") Rounds (#)
500R 1000R 42% 45%

FedAvg [27] 45.01 46.55 94 500
FedProx [25] 45.09 46.29 99 477
FedAvgM [14] 44.63 45.91 63 690
FedADAM [33] 44.89 44.30 68 1000+
FedDyn [1] 39.23 44.10 749 1000+
MOON [23] 42.02 42.65 499 1000+
FedCM† [45] – – – –
FedNTD [22] 45.01 46.5 94 513
FedDC‡ [10] 30.62 44.27 926 1000+
FedACG (ours) 46.36 48.23 57 290

and limited participation constraints hinder the convergence
and performance of trained models. To tackle these issues,
we proposed a novel federated learning framework that ag-
gregates past global gradient information for guiding client
updates and regularizes the local update directions aligned
with the global information. The proposed algorithm pro-
vides global gradient information to individual clients with-
out incurring additional communication or memory over-
head. We made a formal proof of the convergence rate of the
proposed approach. FedACG demonstrates the effective-
ness in terms of robustness and communication efficiency in
the presence of client heterogeneity through extensive eval-
uation on multiple benchmarks.
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