
Data-Efficient Unsupervised Interpolation
Without Any Intermediate Frame for 4D Medical Images

JungEun Kim1* Hangyul Yoon1* Geondo Park1 Kyungsu Kim2† Eunho Yang1,3

1Korea Advanced Institute of Science and Technology (KAIST)
2Massachusetts General Hospital and Harvard Medical School 3AITRICS

{jungeun122333, hangyulmd, geondopark, eunhoy}@kaist.ac.kr kskim.doc@gmail.com

Abstract

4D medical images, which represent 3D images with
temporal information, are crucial in clinical practice for
capturing dynamic changes and monitoring long-term dis-
ease progression. However, acquiring 4D medical images
poses challenges due to factors such as radiation expo-
sure and imaging duration, necessitating a balance be-
tween achieving high temporal resolution and minimizing
adverse effects. Given these circumstances, not only is data
acquisition challenging, but increasing the frame rate for
each dataset also proves difficult. To address this challenge,
this paper proposes a simple yet effective Unsupervised
Volumetric Interpolation framework, UVI-Net. This frame-
work facilitates temporal interpolation without the need for
any intermediate frames, distinguishing it from the major-
ity of other existing unsupervised methods. Experiments on
benchmark datasets demonstrate significant improvements
across diverse evaluation metrics compared to unsuper-
vised and supervised baselines. Remarkably, our approach
achieves this superior performance even when trained with
a dataset as small as one, highlighting its exceptional ro-
bustness and efficiency in scenarios with sparse supervi-
sion. This positions UVI-Net as a compelling alternative
for 4D medical imaging, particularly in settings where data
availability is limited. The code is available at UVI-Net.

1. Introduction
Video Frame Interpolation (VFI) has been a cornerstone
in the realm of video processing, enriching motion visu-
alization by generating intermediate frames. This method
primarily relies on intermediate frame supervision, where
known frames are used as references to create new inter-
mediate frames. However, applying these VFI methods to
4D medical imaging is not trivial. While the principles of
frame interpolation hold the potential for enhancing med-
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ical diagnostics and treatments [5, 21, 23, 41, 42, 66, 70],
the unique constraints and requirements of medical imaging
present challenges.

One significant challenge lies in obtaining a sufficient
dataset. Unlike general domain videos, 4D medical images
are captured for specific clinical purposes from a relatively
small pool of individuals. Similarly, acquiring intermediate
frames per image is also hampered by limitations and risks
associated with medical imaging modalities.

Computed tomography (CT) exposes patients to ele-
vated radiation levels, potentially increasing the risk of sec-
ondary cancer [67]. Similarly, magnetic resonance imaging
(MRI) faces the obstacle of lengthy scan times, lasting up
to an hour [56], presenting both logistical challenges and is-
sues related to patient comfort. Furthermore, the quality of
ground truth intermediate frames in medical imaging is of-
ten compromised due to factors such as patient movement,
unstable breathing, and the difficulty of maintaining a sta-
ble position during prolonged scans [7, 45], limiting data
variety and accessibility for research.

In light of these challenges, we present the following
question: “Can a VFI model be trained without depending
on any ground truth intermediate frames?”. Unlike other
previous unsupervised approaches in the 2D general do-
main [36, 39, 54] that interpolate frames given the multi-
ple frame sequences, we address the task of freely interpo-
lating between two given frames without any intermediate
frames. To achieve this, we propose a straightforward yet
effective framework to VFI in medical imaging. By inter-
polating the flow between two frames with a two-stage pro-
cess and cycle-consistency constraint, our framework can
effectively operate even with a video composited with two
frames (i.e., only images of the start and end points exist),
entirely in an unsupervised manner. In the initial stage, vir-
tual samples are generated from the two real input images.
Subsequently, the real images are reconstructed based on
these virtual intermediate samples. This reconstruction pro-
cess incorporates the candidate images and warped contex-
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tual information in multiple scales from the input images.
Through this cyclic interpolation approach, we successfully
minimize discrepancies between the generated and the ac-
tual images by using the real images as a form of pseudo-
supervision.

Our proposed method has achieved state-of-the-art re-
sults in unsupervised VFI for 4D medical imaging, out-
performing the existing techniques with a substantial gap.
Our approach also consistently outperforms even for ex-
isting supervised methods. Remarkably, our model shows
competitive or even superior performance when trained
with a minimal training dataset size of just one, contrast-
ing with other baselines that require full datasets, typically
exceeding 60 in size. Additionally, the unsupervised na-
ture of our model allows for further performance enhance-
ments through instance-specific optimization. This process
involves briefly fine-tuning the model using each test sam-
ple during the inference stage, potentially yielding even
more refined results.

In summary, our contributions are three-fold:
• We introduce a simple yet effective unsupervised VFI ap-

proach for 4D medical imaging. Our methodology lever-
ages cycle consistency constraints within the temporal di-
mension, thereby obviating the need for ground truth data
typically required for interpolated images.

• Our approach achieves state-of-the-art performance, sur-
passing other unsupervised and supervised interpolation
methods. This is accomplished without the instance-
specific optimization, which could be employed as a vi-
able option to enhance performance.

• The robustness of our model is particularly evident under
conditions of limited data availability, as demonstrated by
the increasing performance margin relative to other meth-
ods when the dataset size is reduced.

2. Related Works

2.1. Video interpolation

Many studies in the field of video interpolation have been
conducted, with a significant emphasis on frame rate up-
sampling for natural scene videos [43, 50, 53]. These stud-
ies typically rely on ground truth intermediate frames for
training [11, 25, 26, 49, 51, 71, 75, 78]. While some stud-
ies have explored alternative approaches that do not rely
on ground truth intermediate frames, they involve synthe-
sizing frames between a given sequence of intermediate
frames [36, 39, 54] or utilize the information from special-
ized devices, such as event camera [19]. Consequently, ap-
plying these methods in settings like our study presents a
challenge, as there are no intermediate frames available for
synthesis. Furthermore, validation of these methods is re-
stricted to 2D frames, and they encounter challenges when
directly applied to volume sequences. This is primarily at-

Data Type Name # of Total Inter

2D Natural

UCF101 [64] 2,374,290
X4K1000FPS [59] 277,704
Adobe240-fps [65] 79,768
Vimeo90K [72] 73,171
ATD-12K [61] 12,000

3D Medical ACDC [6] 2,556
4D-Lung [22] 648

Table 1. Comparison of representative 2D VFI datasets with 3D
medical VFI datasets in our study. The last column indicates the
total number of intermediate frames, representing the sum of in-
termediate frame counts across each dataset.

tributable to the markedly lower availability of intermediate
frames within such datasets, as elucidated in Tab. 1.

Medical 4D image interpolation. To address the above
challenges, frame interpolation methods specifically fo-
cused on 4D medical images are driven. Several recent
works [16, 17] have attempted to interpolate medical 4D im-
ages, but these methods rely on the availability of ground-
truth intermediate images for training. Although Kim and
Ye [30] proposed an interpolation approach without us-
ing the authentic intermediate frames, they do not incorpo-
rate an unsupervised learning technique for the interpolated
samples. Instead, their method involves a post-hoc multi-
plication of the flow calculation model, which is prone to
spatial distortion. This weakness arises since the underly-
ing network does not account for the structural smoothness
between two samples during network training. As a result,
the scaled calculated flow fails to capture the spatial con-
tinuity of intermediate samples beyond the samples pro-
vided by authentic frames. Furthermore, since the method
focus solely on warping without incorporating image syn-
thesis, they encounter specific issues if a voxel is displaced
to a new location without replacement at the original site.
Specifically, it results in the voxel appearing twice in the
backward-warped frame [37, 40], or a hole at the original
location in the forward-warped frame [48]. To overcome the
limitation of nonexistent training for intermediate images
and warping procedure, we propose a novel network incor-
porating pseudo-supervision, including an image synthesis
network to ensure the integrity of intermediate images.

2.2. Learning optical flow

Optical flow learning is crucial in the video and medical
domain. Various learning methods have been extensively
investigated [8, 63, 74] aiming to estimate optical flow.
However, they require a ground truth optical flow for train-
ing, which is limited in availability. To address this limita-
tion, some methods [2–4, 24, 27, 28, 31, 32, 35, 38, 69]
have been developed to compute the similarity between the
warped image and a fixed reference to train networks, al-
lowing training without ground truth optical flow.
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3. Background
We first briefly introduce the necessary background on the
flow calculation model in Sec. 3.1 and the existing unsuper-
vised interpolation approaches in Sec. 3.2.

3.1. Flow calculation model

Suppose we are given two input images I0 and I1 at time
T = 0 and T = 1, respectively. Our main objective is
to predict the intermediate image Ît at time T = t within
the range of 0 to 1, given I0 and I1, without explicit su-
pervision. An intuitive approach is to train a neural net-
work to directly generate voxel values of Ît without ex-
plicitly computing coordinate transformation. However, the
generation models such as generative adversarial networks
(GAN) [12, 46, 47, 73] typically require a large amount
of training data, making them impractical for the medical
domain where data is limited. In contrast, flow calculation
models [25, 54, 71] can generate 3D images using only two
real input images. Given these advantages, we employ flow-
based methods for this task, as they are capable of generat-
ing 3D images using only two real input images.

Flow-based interpolation approaches employ a flow cal-
culation model Fθ with model parameters θ to obtain a co-
ordinate transformation map between two target samples.
Given I0 and I1, the flow calculation model Fθ takes I0
and I1 as sequential inputs and provides a coordinate trans-
formation map ϕθ0→1. The objective of the flow calculation
model Fθ is to warp I0 into Î0→1 := I0 ◦ ϕθ0→1 such that it
matches I1, where ◦ indicates spatial transformation.

To train flow calculation models, a warping loss
Lwarp (I0, I1) is used, which ensures the quality of com-
puted optical flow. The warping loss is defined based on the
warped images I1 ◦ϕθ1→0 and I0 ◦ϕθ0→1, which corresponds
to I0 and I1, respectively. Lwarp can be expressed as

Lθwarp(I0,I1) = Lsmth(ϕθ0→1) + Limage(I1, I0 ◦ ϕθ0→1)

+ Lsmth(ϕθ1→0) + Limage(I0, I1 ◦ ϕθ1→0), (1)

where Lsmth is a smoothness term that promotes similar
flow values among neighboring voxels, and Limage ensures
alignment between two images. Typically, we utilize the
sum of normalized cross-correlation (NCC) [3] and Char-
bonnier [9] losses as the Limage, since NCC has exten-
sively used is 3D medical flow calculation works [3, 58, 77],
and Charbonnier loss is a common choice in previous VFI
works [26, 33, 51, 58, 68, 77]. The losses are defined as:

Lsmth(ϕ) = ∥∇ϕ∥2 (2)

Limage(I, Î) = −NCC(I, Î) +
√
(I − Î)2 + ϵ2, (3)

where ∇ϕ denotes the flow gradient, and ϵ represents a
small constant.

The fully learned flow calculation model, denoted
as ϕθ

∗

0→1, is earned by minimizing the warping loss
Lθwarp(I0, I1) with respect to the model parameter θ. The
calculated flow can be formulated as:

ϕθ
∗

0→1 s.t. θ∗ := argmin
θ

∑
(I0,I1)∈D

Lθwarp (I0, I1) , (4)

where D indicates the training set containing the pairs of I0
and I1.

3.2. Previous unsupervised VFI approaches

Methodology. If the flow from I0 to the intermediate tar-
get sample It can be ideally acquired as ϕ0→t, the corre-
sponding Ît can also be obtained (i.e., Ît = I0 ◦ ϕ0→t).
To obtain this flow, current approaches [3, 30] approximate
ϕ0→t as the following linear interpolation of the flow or la-
tent vector:

ϕθ
∗

0→t := t · ϕθ
∗

0→1 or ϕθ
∗

0→t := ϕt·θ
∗

0→1, (5)

where t·θ indicates the linear multiplication of latent vector.
Therefore, the target It can be obtained by approximating it
as Ît := I0 ◦ ϕθ

∗

0→t.

Limitations. As detailed in the latter part of Sec. 2.1, ex-
isting post-hoc linear interpolation approaches encounter
two major challenges: firstly, they are prone to spatial dis-
tortion since the underlying network Fθ∗ that Ît relies on
does not account for the structural smoothness between two
samples during network training; and secondly, they often
suffer from artifacts resulting from the warping procedure.
Moreover, the methods heavily rely on post-hoc linear mul-
tiplication, leading to potential overfitting to the linear as-
sumption. In other words, these methods assume that the
structures within a given 4D medical image move only in
a linear direction, and the magnitude of this movement is
linearly proportional to time.

4. Method
We introduce our Unsupervised Volumetric Interpolation
Network, referred to as UVI-Net. The network first gen-
erates intermediate images and then employs cycle consis-
tency constraints to reconstruct authentic images from these
synthesized ones. In Sec. 4.1, we provide an overview and
a detailed presentation of our method. The training and in-
ference procedures are outlined in Sec. 4.2 and Sec. 4.3,
respectively. Additionally, in Sec. 4.4, we introduce an
instance-specific optimization method to further enhance
our model’s performance.

4.1. Methodology overview

To achieve a result exhibiting improved smoothness for the
intermediate sample derived from the network, it is imper-
ative for the network to access the pertinent information to
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Figure 1. An overview of time-domain cycle consistency con-
straint. This image illustrates the process of generating Îcyc0 . (1)
I0 and I1 are given two input frames, with I1 ommited for sake of
readability. (2) We first generate virtual intermediate frames, and
(3) subsequently generate back the frames with multi-resolution
features (denoted as blue cubics). (4) The resulting reconstructed
images Îcyc0 must match the original input frame, I0.

the intermediate sample during the learning process. In light
of this, we propose the cyclic structure model, which first
generates the intermediate images and reconstructs them
back to the two given input images. To ensure consistency
and coherence in the generated images, we impose con-
straints of cycle consistency Lcyc between the reconstructed
samples, denoted as Îcyc0 , Îcyc1 , and the corresponding orig-
inal samples I0, I1. The flow of the intermediate frame is
then estimated using our flow calculation model with the
parameter θ∗ as follows:

ϕθ
∗

0→t := t · ϕθ
∗

0→1 s.t. (6)

θ∗ := argmin
θ

min
ω,ψ

∑
(I0,I1)∈D

Lθwarp (I0, I1)

+L(θ,ω,ψ)
cyc

(
I0, Î

cyc
0

)
+ L(θ,ω,ψ)

cyc

(
I1, Î

cyc
1

)
, (7)

where θ, ω, andψ indicate the parameters for the flow calcu-
lation, feature extraction, and reconstruction models, which
will be described in the below sections.

Unlike the current approach in Eq. (4), we allow the net-
work to access intermediate samples and update them in its
training, as described in Eq. (7), resulting in improved nat-
ural voxels. We first explain the process of obtaining Îcyc

and provide a detailed explanation of Lcyc in the following
sections.

4.2. Training

The overall acquire procedure of Îcyc0 and Îcyc1 is illustrated
in Fig. 1. First, we generate multiple virtual intermediate
samples (see Step 2 in Fig. 1) by randomly sampling values
of t1, t2, and t3 as below.

Îvirt1 := I0 ◦
(
t1 · ϕθ0→1

)
− 0.5 ≤ t1 ≤ 0 (8)

Îvirt2 :=

{
I0 ◦

(
t2 · ϕθ0→1

)
0 ≤ t2 ≤ 0.5

I1 ◦
(
(1− t2) · ϕθ1→0

)
0.5 ≤ t2 ≤ 1

(9)

Îvirt3 := I1 ◦
(
(1− t3) · ϕθ1→0

)
1 ≤ t3 ≤ 1.5 (10)

Since Îvirt1 and Îvirt3 are generated outside the time range
between the two frames, we limit the maximum time offset
to 0.5 to mitigate the occurrence of artifacts. When gener-
ating the Îvirt2 , a synthesized image between the two input
images, we adopt the result created from the image—either
I0 or I1—that is closer to the reference point t2, to preserve
the properties of the real image maximally.

Next, we interpolate the generated intermediate samples
(see Step 3 in Fig. 1) to acquire the I0 and I1’s candidates
as follows:

Îcandt1→0 := Îvirt1 ◦
(

−t1
t2 − t1

· ϕθt1→t2

)
, (11)

Îcandt2→0 := Îvirt2 ◦
(

t2
t2 − t1

· ϕθt2→t1

)
, (12)

Îcandt2→1 := Îvirt1 ◦
(

1− t2
t3 − t2

· ϕθt2→t3

)
, (13)

Îcandt3→1 := Îvirt3 ◦
(
t3 − 1

t3 − t2
· ϕθt3→t2

)
. (14)

While warping the virtual frames, we simultaneously
warp the feature space of the frames across multiple res-
olutions, obtaining a set of warped feature maps: St1→0,
St2→0, St2→1, and St3→1. Specifically, following the ar-
chitecture of our feature extractor as shown in Fig. 3, we
extract feature maps resized to 1, 0.5, and 0.25 times their
original size. Then, using the same optical flow as described
in Eq. (11) to (14) (or downscaled as necessary), we obtain
the final warped feature maps. This method enhances the
reconstruction model’s ability to make more accurate pre-
dictions by providing access to both voxel and feature in-
formation. Furthermore, we extract image representations
at various levels, which have proven effective in previous
research on video-related tasks [26, 29, 49].

Using these warped images and features, we obtain the
predictions Îcyc0 and Îcyc1 using the reconstruction model
Rψ (see Step 4 in Fig. 1). The model takes the distance-
based weighted sum images and warped feature map sets,
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Figure 2. Schematic overview of our entire inference process. Starting with two input frames, I0 and I1, we input the frames into the
flow calculation model to obtain the approximated flow fields ϕ0→t and ϕ1→t. We then warp the two frames using the obtained flow
field, and similarly warp the multi-scale voxelwise features. Finally, we refine the distance-inversely weighted added image considering the
information from multi-scale features, resulting in the final interpolated frame Ît.

Figure 3. Architecture of the feature extractor module based on 3D
Convolutional Neural Network (CNN). h, w, and d are the input
image’s height, width, and depth, respectively.

and reconstructs the original frames through residual cor-
rections. Each element of the input feature map sets is fed
into individual encoder layers of the reconstruction model
and concatenated channel-wise. The procedure of the recon-
struction model can be written as:

Îcyc0 := Rψ( Îcandt1→0 ⊕ Îcandt2→0, St1→0, St2→0 ), (15)

Îcyc1 := Rψ( Îcandt2→1 ⊕ Îcandt3→1, St2→1, St3→1 ), (16)

where ⊕ indicates distance-based addition.
With the reconstructed images Îcyc0 and Îcyc1 , we can

introduce the cycle consistency loss. Our cycle-consistent
framework reconstructs real images from the generated in-
termediate images, thereby enhancing the smoothness of the
interpolated images. Without time notation for clarity, con-
sider the reconstructed image (Îcyc) and corresponding real
image (I). The cycle consistency loss is defined as:

L(θ,ω,ψ)
cyc (I, Îcyc) = Limage(I, Îcyc) + Lreg(Rψ), (17)

where Limage follows Eq. (3), and Lreg acts as an L1 reg-
ularization term applied to the predicted residual of the re-
construction model. This term helps control excessive mod-
ification during the reconstruction process.

In essence, even without any intermediate frames, we
utilize the given authentic frames as pseudo supervision for
the intermediate frame, facilitated by the initially generated
virtual intermediate samples Îvir. By incorporating a cycle
consistency constraint between the reconstructed and orig-
inal authentic images, our approach enhances spatial con-
tinuity between the two images and generates high-quality
virtual intermediate samples.

4.3. Inference

We illustrate the overall inference procedure of UVI-Net
in Fig. 2. First, we obtain two optical flow ϕθ

∗

0→1 and ϕθ
∗

1→0,
where θ∗ follows Eq. (7). Next, we attain two It’s candidate
as follows:

Îcand0→t := I0 ◦ ϕ0→t = I0 ◦
(
t · ϕθ

∗

0→1

)
(18)

Îcand1→t := I1 ◦ ϕ1→t = I1 ◦
(
(1− t) · ϕθ

∗

1→0

)
. (19)

Finally, by reconstructing the final image with the two can-
didates considering the temporal distance, we derive Ît as

Ît := Rψ( Îcand0→t ⊕ Îcand1→t , S0→t, S1→t ), (20)

where S0→t and S1→t are warped feature map sets from
I0 and I1, respectively. Remarkably, while baseline ap-
proaches can only use one of Î0→t and Î1→t, we can engage
both information and make to be symmetric even the order
of I0 and I1 is switched.

4.4. Instance-Specific Optimization

Instance-specific optimization is a technique used to en-
hance the final performance by fine-tuning models for each
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Dataset Supervised Method PSNR ↑ NCC ↑ SSIM ↑ NMSE ↓ LPIPS ↓

Cardiac

✓
SVIN [16] 32.51 ±0.254 0.559 ±0.007 0.972 ±0.001 2.930 ±0.155 1.535 ±0.043

MPVF [68] 33.15 ±0.238 0.561 ±0.006 0.971 ±0.001 2.435 ±0.133 1.941 ±0.055

✗

VM [3] 31.02 ±0.272 0.555 ±0.006 0.966 ±0.002 4.254 ±0.261 1.772 ±0.064

TM [10] 30.45 ±0.280 0.547 ±0.006 0.958 ±0.002 4.826 ±0.278 2.083 ±0.078

Fourier-Net+ [24] 29.98 ±0.287 0.544 ±0.006 0.957 ±0.002 5.503 ±0.314 2.008 ±0.077

R2Net [27] 28.59 ±0.278 0.509 ±0.007 0.930 ±0.003 7.281 ±0.329 3.482 ±0.138

DDM [30] 29.71 ±0.221 0.541 ±0.006 0.956 ±0.002 5.007 ±0.239 2.136 ±0.066

IDIR* [69] 31.56 ±0.275 0.557 ±0.006 0.968 ±0.001 3.806 ±0.249 1.675 ±0.061

Ours (w/o inst opt.) 33.57 ±0.275 0.565 ±0.007 0.977 ±0.001 2.409 ±0.159 1.134 ±0.044

Ours (w/ inst opt.) 33.59 ±0.268 0.565 ±0.007 0.978 ±0.001 2.384 ±0.157 1.066 ±0.041

Lung

✓
SVIN [16] 30.99 ±0.309 0.312 ±0.002 0.973 ±0.002 0.852 ±0.063 2.182 ±0.093

MPVF [68] 31.18 ±0.344 0.310 ±0.003 0.972 ±0.002 0.761 ±0.075 2.554 ±0.092

✗

VM [3] 32.29 ±0.314 0.316 ±0.002 0.977 ±0.001 0.641 ±0.052 2.063 ±0.108

TM [10] 30.92 ±0.290 0.313 ±0.002 0.973 ±0.001 0.786 ±0.050 2.746 ±0.113

Fourier-Net+ [24] 30.26 ±0.314 0.308 ±0.003 0.971 ±0.002 0.959 ±0.061 2.615 ±0.125

R2Net [27] 29.34 ±0.270 0.294 ±0.003 0.962 ±0.002 1.061 ±0.051 3.277 ±0.122

DDM [30] 30.37 ±0.271 0.308 ±0.003 0.971 ±0.002 0.905 ±0.065 2.283 ±0.106

IDIR* [69] 32.91 ±0.309 0.321 ±0.003 0.980 ±0.002 0.586 ±0.055 2.035 ±0.112

Ours (w/o inst opt.) 33.90 ±0.382 0.319 ±0.003 0.980 ±0.002 0.558 ±0.055 1.512 ±0.112

Ours (w/ inst opt.) 34.00 ±0.387 0.320 ±0.003 0.980 ±0.002 0.552 ±0.055 1.489 ±0.093

Table 2. Quantitative comparison of interpolation results. These metrics were evaluated after repeating each experiment three times and
collecting all frames. The model marked with an ‘*’ is trained exclusively on the test set, as it is designed for training on a single data
pair only. For our model, the results with or without instance-specific optimization are both reported. The table presents both the average
and standard deviation for each metric. NMSE and LPIPS values are presented in units of 10−2. The best and second-best results for each
metric are indicated with bold and underlined, respectively.

test sample. This approach was introduced by Balakrish-
nan et al. [2] within the unsupervised medical image warp-
ing domain. Despite our work being in a different task,
this strategy remains applicable. Utilizing a model weight
pre-trained on the training data, we fine-tune the model
for a relatively small number of epochs on each test data.
Such an adaptive approach is particularly beneficial in med-
ical imaging, allowing for more personalized and accurate
frame interpolation tailored to individual scans.

5. Experiments

This section describes the benchmark datasets for 4D med-
ical imaging used in this study in Sec. 5.1. Next, Sec. 5.2
outlines some settings, including training details and met-
rics for performance evaluation. The results are comprehen-
sively presented in Sec. 5.3, highlighting our method’s ef-
fectiveness and efficiency.

5.1. Datasets

To evaluate the performance of image interpolation, two 4D
image datasets are used, each for the heart and lung. The
ACDC cardiac dataset [6] consists of 100 4D temporal car-
diac MRI images. End-diastolic and end-systolic phase im-
ages are used as the start and end images, respectively. The
initial 90 alphabetically sorted samples form the training
set, with the remaining used for the test set. The 4D-Lung
dataset [22] consists of 82 chest CT scans for radiother-
apy planning from 20 lung cancer patients. In each 4D-CT

study, the end-inspiratory (0% phase) and end-expiratory
(50% phase) phase scans are set as the initial and final im-
ages, respectively. The first 68 CT scans from 18 patients
in the dataset are included in the training set. For additional
information for dataset, please refer to Appendix A.

5.2. Experimental settings

5.2.1 Baselines

For comparison with our proposed methods, six models are
included as the baselines. VoxelMorph (VM) [2], Trans-
Morph (TM) [10], Fourier-Net+ [24] and R2Net [27] are
first initially trained with the provided dataset to calculate
optical flow. Interpolated images are then obtained by linear
scaling the optical flow, i.e., t ·ϕθ∗0→t. Diffusion Deformable
Model (DDM) [30] also uses dataset training but interpo-
lates by scaling the latent vector, i.e., ϕt·θ

∗

0→t. For IDIR [69],
it is crucial to clarify that it requires individual training for
each target registration pair, leading to limited generaliza-
tion, whereas our method is trained using a distinct train-
ing set and subsequently applied for inference on the target
pairs. We also compared the results of our model with two
supervised methods proposed for video interpolation on 4D
medical images: SVIN [16] and MPVF [68]. Detailed infor-
mation about the baseline models is in Appendix B.

5.2.2 Evaluation metrics

To evaluate the similarity between the predicted and ground
truth images, metrics including PSNR (Peak Signal-to-
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(a) Performance on the cardiac dataset according to training size.

(b) Performance on the lung dataset according to training size.

Figure 4. Performance trends based on the size of the training datasets. The dashed line represents a supervised setting. As depicted in this
figure, we observe that the performance gap between our model and the baselines increases regardless of whether the setting is supervised or
not, and irrespective of the dataset type. This demonstrates our model’s robustness, particularly in addressing data scarcity issues common
in the medical domain.

Noise Ratio) [14], NCC (Normalized Cross Correlation),
SSIM (Structural Similarity Index Measure) [79], NMSE
(Normalized Mean Squared Error) and LPIPS (Learned Per-
ceptual Image Patch Similarity) [76] are used. Since LPIPS
is available only for 2D, it was averaged across slices along
the x, y, and z axes. Each metric represents the voxel-wise
similarity, correlation, structural similarity, reconstruction
error, and perceptual similarity between the synthesized and
authentic images.

5.2.3 Training details

For the flow calculation model, we employed the network
designed in VoxelMorph [2]. As for the reconstruction
model, we used a small size of 3D-UNet. The detailed con-
figuration of the network and more details are described
in Appendix C. The proposed method was implemented
with PyTorch [52] using an NVIDIA Tesla V100 GPU. The
training process takes approximately 4 hours for the car-
diac dataset and 8 hours for the lung dataset, respectively.
Instance-specific optimization took about 1.12 minutes per
sample for ACDC and 3.13 minutes for 4D-Lung.

5.3. Results

5.3.1 Interpolation Result

The performance of interpolation compared to unsupervised
and supervised methods is shown in Tab. 2. Our method
consistently demonstrates superior performance among all

the models, outperforming others with a significant mar-
gin in every evaluation metric. This trend is observed
across both heart and lung datasets, even in the absence of
instance-specific optimization.

It is important to note that our approach surpasses
IDIR [69], serving as a rigorous comparison baseline for
our method due to IDIR’s test set-specific optimization. The
core methodology behind IDIR undergoes unique adapta-
tion for each test set pair, which involves retraining for every
new instance. While this strategy enables IDIR to tailor its
performance to each dataset, it restricts its practical appli-
cability. Nevertheless, our method demonstrates substantial
superiority over IDIR in terms of performance.

Supervised Models. Notably, our approach also sur-
passes supervised methods. An interesting observation is
the varying performance of these supervised models across
different datasets. As detailed in Tab. 1, the ACDC dataset
contains significantly more frames compared to the 4D-
Lung dataset. This discrepancy implies that the 4D-Lung
dataset experiences limitations in terms of supervision qual-
ity. Therefore, the performance gap is more pronounced in
the lung dataset, underscoring a critical insight: supervised
models tend to underperform with limited supervision from
intermediate frames. This pattern reaffirms the importance
of our method’s ability to achieve high accuracy in scenar-
ios with constrained supervision, highlighting its robustness
and effectiveness in 4D medical VFI tasks.
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Figure 5. Visualization examples from 4D cardiac and lung datasets. The model marked with an ‘*’ is trained exclusively on the test
set, while models marked with ‘(SL)’ are trained using supervised learning. Our method generates intermediate frames that are not only
visually appealing but also precise, successfully retaining fine details and maintaining the structural integrity of the original images.

5.3.2 Effect of training dataset size

Fig. 4 illustrates the interpolation performance based on the
number of training samples. With the test sets remaining
fixed, the sizes of the training sets are reduced from their
full down to one. Compared to the other five unsupervised
baselines (VM, TM, Fourier-Net+, R2Net, and DDM), our
method consistently exhibits superior performance across
varying training set sizes, with performance gaps widening
as the dataset size decreases. Remarkably, even with a min-
imal size comprising only one sample, our approach fre-
quently outperforms the baselines that utilize the maximum
training set size. It should be noted that IDIR is not included
in this comparison, as it does not follow a traditional train-
ing process on a training set. For the two supervised base-
line models (SVIN, MPVF), the performance also dimin-
ishes as the number of samples for supervision decreases,
leading to an increasing performance gap between them and
our model. Our consistent performance in scenarios with
small datasets underscores the strengths of our approach in
mitigating the challenges posed by data scarcity in the med-
ical field.

5.3.3 Qualtitative analysis

The comparison of qualitative results between interpolation
methods is shown in Fig. 5. Our method consistently pro-
duces visually appealing and accurate intermediate frames,
capturing fine details and preserving the structural integrity
of the original images.

5.3.4 Downstream task

We also demonstrate that our interpolation method can be
applied to downstream tasks. Specifically, we tested its ef-
fectiveness on segmentation data, which is relatively com-

plex, demonstrating our approach’s potential for augment-
ing 3D medical datasets. Details of the experimental setup
and performance can be found in Appendix D.

5.3.5 Additional experiments

Additional experiments, including ablation studies and fur-
ther qualitative results, are detailed in Appendix E. More-
over, we have analyzed the results of extrapolation to en-
sure that generated images during the training process do
not exhibit any unnatural changes or issues.

6. Conclusion
Our framework, UVI-Net, effectively tackles the challenge
of generating intermediate frames for 4D medical images
through unsupervised volumetric interpolation. By lever-
aging pseudo supervision within a cyclic structure, our
method ensures spatial continuity between the generated in-
termediate and real images. Experimental results on bench-
mark datasets validate the efficacy of our approach, reveal-
ing substantial improvements in intermediate frame quality
across various evaluation metrics, surpassing both unsuper-
vised and supervised baselines. Furthermore, our method
has demonstrated robustness not only in situations of frame
scarcity but also in data scarcity contexts. Ultimately, this
study underscores the promise of unsupervised 3D flow-
based interpolation and opens new avenues for research and
development in the field of medical imaging.
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