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Abstract
We present a new multi-modal face image generation
method that converts a text prompt and a visual input, such
as a semantic mask or scribble map, into a photo-realistic
face image. To do this, we combine the strengths of Gen-
erative Adversarial networks (GANs) and diffusion models
(DMs) by employing the multi-modal features in the DM
into the latent space of the pre-trained GANs. We present a
simple mapping and a style modulation network to link two
models and convert meaningful representations in feature
maps and attention maps into latent codes. With GAN inver-
sion, the estimated latent codes can be used to generate 2D
or 3D-aware facial images. We further present a multi-step
training strategy that reflects textual and structural repre-
sentations into the generated image. Our proposed network
produces realistic 2D, multi-view, and stylized face images,
which align well with inputs. We validate our method
by using pre-trained 2D and 3D GANs, and our results
outperform existing methods. Our project page is avail-
able at https://github.com/1211sh/Diffusion-

driven_GAN-Inversion/.

1. Introduction
In recent years, multi-modal image generation has achieved

remarkable success, driven by the advancements in Genera-

tive Adversarial Networks (GANs) [15] and diffusion mod-

els (DMs) [11, 18, 48]. Facial image processing has become

a popular application for a variety of tasks, including face

image generation [21, 39], face editing [6, 12, 30, 36, 37,

46], and style transfer [7, 64]. Many tasks typically utilize

the pre-trained StyleGAN [21, 22], which can generate real-

istic facial images and edit facial attributes by manipulating

the latent space using GAN inversion [39, 42, 58]. In these

tasks, using multiple modalities as conditions is becoming a

popular approach, which improves the user’s controllability

in generating realistic face images. However, existing GAN
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2D face image generation

3D-aware face image generation

Face style transfer

“The woman has bangs, brown hair. She is smiling.”

“Greek statue” “silver hair Elf” “Cartoon style”

Overview of our method

“The chubby man has receding hairline, eyeglasses, gray hair, and double chin.”

“Watercolor painting”

GANOursDiffusion

“She has blond hair, straight hair, and wears heavy makeup.”

Visual condition

Text condition

Figure 1. We present a method to map the diffusion features to the

latent space of a pre-trained GAN, which enables diverse tasks in

multi-modal face image generation and style transfer. Our method

can be applied to 2D and 3D-aware face image generation.

inversion methods [51, 58] have poor alignment with inputs

as they neglect the correlation between multi-modal inputs.

They struggle to map the different modalities into the latent

space of the pre-trained GAN, such as by mixing the latent

codes or optimizing the latent code converted from a given

image according to the input text.

Recently, DMs have increased attention in multi-modal

image generation thanks to the stability of training and

the flexibility of using multiple modalities as conditions.

DMs [23, 53, 54] can control the multiple modalities and

render diverse images by manipulating the latent or atten-

tion features across the time steps. However, existing text-

to-image DMs rely on an autoencoder and text encoder,

such as CLIP [41], trained on unstructured datasets col-

lected from the web [40, 45] that may lead to unrealistic
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image generation.

Moreover, some approaches address multi-modal face

image generation in a 3D domain. In GAN inversion [14,

51], multi-view images can be easily acquired by manip-

ulating the latent code with pre-trained 3D GANs. While

DMs are inefficient in learning 3D representation, which

has the challenge to generate multi-view images directly

due to the lack of 3D ground-truth (GT) data for train-

ing [32, 47]. They can be used as a tool to acquire training

datasets for 3D-aware image generation [24, 33].

In this paper, we present a versatile face generative

model that uses text and visual inputs. We propose an ap-

proach that takes the strengths of DMs and GAN and gener-

ates photo-realistic images with flexible control over facial

attributes, which can be adapted to 2D and 3D domains, as

illustrated in Figure 1. Our method employs a latent map-

ping strategy that maps the diffusion features into the la-

tent space of a pre-trained GAN using multi-denoising step

learning, producing the latent code that encodes the details

of text prompts and visual inputs.

In summary, our main contributions are:

(i) We present a novel method to link a pre-trained GAN

(StyleGAN [22], EG3D [4]) and DM (ControlNet [62])

for multi-modal face image generation.
(ii) We propose a simple mapping network that links pre-

trained GAN and DM’s latent spaces and an attention-

based style modulation network that enables the use of

meaningful features related to multi-modal inputs.
(iii) We present a multi-denoising step training strategy that

enhances the model’s ability to capture the textual and

structural details of multi-modal inputs.
(iv) Our model can be applied for both 2D- and 3D-aware face

image generation without additional data or loss terms

and outperforms existing DM- and GAN-based methods.

2. Related Work
2.1. GAN Inversion
GAN inversion approaches have gained significant popu-

larity in the face image generation task [7, 31, 51, 59]

using the pre-trained 2D GAN, such as StyleGAN [21,

22]. This method has been extended to 3D-aware im-

age generation [27, 60, 61] by integrating 3D GANs, such

as EG3D [4]. GAN inversion can be categorized into

learning-based, optimization-based, and hybrid methods.

Optimization-based methods [44, 67] estimate the latent

code by minimizing the difference between an output and

an input image. Learning-based methods [1, 52] train an en-

coder that maps an input image into the latent space of the

pre-trained GAN. Hybrid methods [58, 66] combine these

two methods, producing an initial latent code and then re-

fining it with additional optimizations. Our work employs

a learning-based GAN inversion, where a DM serves as the

encoder. We produce latent codes by leveraging semantic

features in the denoising U-Net, which can generate images

with controlled facial attributes.

2.2. Diffusion Model for Image Generation
Many studies have introduced text-to-image diffusion mod-

els [36, 43, 45] that generate images by encoding multi-

modal inputs, such as text and image, into latent features

via foundation models [41] and mapping them to the fea-

tures of denoising U-Net via an attention mechanism. Con-

trolNet [62] performs image generation by incorporating

various visual conditions (e.g., semantic mask, scribbles,

edges) and text prompts. Image editing models using

DMs [16, 20, 26, 28, 34] have exhibited excellent perfor-

mance by controlling the latent features or the attention

maps of a denoising U-Net. Moreover, DMs can gener-

ate and edit images by adjusting latent features over mul-

tiple denoising steps [2]. We focus on using latent features

of DM, including intermediate features and cross-attention

maps, across denoising steps to link them with the latent

space of GAN and develop a multi-modal face image gen-

eration task.

2.3. Multi-Modal Face Image Generation
Face generative models have progressed by incorporating

various modalities, such as text [25], semantic mask [38,

55], sketch [5, 9], and audio [65]. Several methods adopt

StyleGAN, which can generate high-quality face images

and edit facial attributes to control the style vectors. The

transformer-based models [3, 13] are also utilized, which

improves the performance of face image generation by han-

dling the correlation between multi-modal conditions us-

ing image quantization. A primary challenge faced in face

generative models is to modify the facial attributes based

on given conditions while minimizing changes to other

attributes. Some methods [39, 57] edit facial attributes

by manipulating the latent codes in GAN models. Tedi-

GAN [58] controls multiple conditions by leveraging an

encoder to convert an input image into latent codes and

optimizing them with a pre-trained CLIP model. Recent

works [19, 35] use DMs to exploit the flexibility of taking

multiple modalities as conditions and generate facial im-

ages directly from DMs. Unlike existing methods, we use

the pre-trained DM [62] as an encoder to further produce

the latent codes for the pre-trained GAN models.

3. Method
3.1. Overview
Figure 2 illustrates the overall pipeline of our approach.

During the reverse diffusion process, we use the middle and

decoder blocks of a denoising U-Net in ControlNet [62] as

an encoder E . A text prompt c, along with a visual condition

x, are taken as input to the denoising U-Net. Subsequently,

E produces the feature maps h from the middle block, and
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Figure 2. Overview of our method. We use a diffusion-based encoder E , the middle and decoder blocks of a denoising U-Net, that extracts

the semantic features ht, intermediate features ft, and cross-attention maps at at denoising step t. We present the mapping network M
(Sec. 3.2) and the attention-based style modulation network (AbSMNet) T (Sec. 3.3) that are trained across t (Sec. 3.4). M converts ht

into the mapped latent code wm
t , and T uses ft and at to control the facial attributes from the text prompt c and visual input x. The

modulation codes wγ
t and wβ

t are then used to scale and shift wm
t to produce the final latent code, wt, that is fed to the pre-trained GAN

G. We obtain the generation output I ′t from our model Y and we use the image Id0 from the U-Net after the entire denoising process for

training T (Sec. 3.4). Note that only the networks with the dashed line ( ) are trainable, while others are frozen.

the intermediate features f and the cross-attention maps a
from the decoder blocks. h is then fed into the mapping net-

work M, which transforms the rich semantic feature into

a latent code wm. The Attention-based Style Modulation

Network (AbSMNet), T , takes f and a as input to gener-

ate the modulation latent codes, wγ and wβ , that determine

facial attributes related to the inputs. The latent code w is

then forwarded to the pre-trained GAN G that generates the

output image I ′. Our model is trained across multiple de-

noising steps, and we use the denoising step t to indicate the

features and images obtained at each denoising step. With

this pipeline, we aim to estimate the latent code, w∗
t , that is

used as input to G to render a GT image, Igt:

w∗
t = argmin

wt

L(Igt,G(wt)), (1)

where L(·, ·) measures the distance between Igt and the

rendered image, I ′ = G(wt). We employ learning-based

GAN inversion that estimates the latent code from an en-

coder to reconstruct an image according to given inputs.

3.2. Mapping Network
Our mapping network M aims to build a bridge between the

latent space of the diffusion-based encoder E and that of the

pre-trained GAN G. E uses a text prompt and a visual input,

and these textual and image embeddings are aligned by the

cross-attention layers [62]. The feature maps h from the

middle block of the denoising U-Net particularly contain

rich semantics that resemble the latent space of the gen-

erator [28]. Here we establish the link between the latent

spaces of E and G by using ht across the denoising steps t.

Given ht, we design M that produces a 512-dimensional

latent code wm
t ∈ R

L×512 that can be mapped to the latent

space of G:

wm
t = M(ht). (2)

M is designed based on the structure of the map2style block

in pSp [42], as seen in Figure 2. This network consists of

convolutional layers downsampling feature maps and a fully

connected layer producing the latent code wm
t .

3.3. Attention-based Style Modulation Network
By training M with learning-based GAN inversion, we can

obtain wm
t and use it as input to the pre-trained GAN for

image generation. However, we observe that ht shows lim-

itations in capturing fine details of the facial attributes due

to its limited spatial resolution and data loss during the en-

coding. Conversely, the feature maps of the DM’s decoder

blocks show rich semantic representations [53], benefiting

from aggregating features from DM’s encoder blocks via

skip connections. We hence propose a novel Attention-

based Style Modulation Network (AbSMNet), T , that pro-

duces style modulation latent codes, wγ
t ,w

β
t ∈ R

L×512, by

using ft and at from E . To improve reflecting the multi-

modal representations to the final latent code wt, we mod-

ulate wm
t from M using wγ

t and wβ
t , as shown in Figure 2.

We extract intermediate features, ft = {fnt }Nn=1, from N
different blocks, and cross-attention maps, at = {akt }Kk=1,

from K different cross-attention layers of the n-th block, in

E that is a decoder stage of denoising U-Net. The discrim-
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(a) Cross-attention maps averaging for all denoising steps

t= 0

=(b) Cross-attention maps for individual denoising steps

(c) Example of an intermediate feature map

Multi-modal 
inputs

Output

“The person has 
arched eyebrows, 
wavy hair, and 
mouth slightly 
open.”

Figure 3. Visualization of cross-attention maps and intermediate

feature maps. (a) represents the semantic relation information be-

tween an input text and an input semantic mask in the spatial do-

main. The meaningful representations of inputs are shown across

all denoising steps and N different blocks. (b) represents N differ-

ent cross-attention maps, At, at denoising steps t = T and t = 0.

(c) shows the example of refined intermediate feature map F̂1
T at

1st block and t = T that is emphasized corresponding to input

multi-modal conditions. The red and yellow regions of the map

indicate higher attention scores. As the denoising step approaches

T , the text-relevant features appear more clearly, and as the de-

noising step t approaches 0, the features of the visual input are

more preserved.

inative representations are represented more faithfully be-

cause ft consists of N multi-scale feature maps that can cap-

ture different sizes of facial attributes, which allows for finer

control over face attributes. For simplicity, we upsample

each intermediate feature map of ft to same size intermedi-

ate feature maps Ft = {Fn
t }Nn=1, where Fn

t ∈ R
H×W×Cn

has H , W , and Cn as height, width and depth.

Moreover, at is used to amplify controlled facial at-

tributes as it incorporates semantically related information

in text and visual input. To match the dimension with Ft,

we convert at to At = {An
t }Nn=1, where An

t ∈ R
H×W×Cn ,

by max-pooling the output of the cross-attention layers in

each decoder block and upsampling the max-pooling out-

puts. To capture the global representations, we addition-

ally compute Āt ∈ R
H×W×1 by depth-wise averaging the

max-pooling output of at over each word in the text prompt

and upsampling it. As illustrated in Figures 3 (a) and (b),

At and Āt represent the specific regions aligned with input

text prompt and visual input, such as semantic mask, across

denoising steps t. By a pixel-wise multiplication between

Ft and At, we can obtain the refined intermediate feature

maps F̂t that emphasize the representations related to multi-

map2style

Scale Net

Shift NetC
on

ca
t

Scale Net

Shift Net

1−
1− map2style

Weighted sum

m

m

Figure 4. Style modulation network in T . The refined intermedi-

ate feature maps F̂t and ˆ̄Ft are used to capture local and global

semantic representations, respectively. They are fed into the scale

and shift network, respectively. The weighted summations of these

outputs are used as input to the map2style network, which finally

generates the scale and shift modulation latent codes, wγ
t , and wβ

t .

modal inputs as shown in Figure 3 (c). The improved aver-

age feature map ˆ̄Ft ∈ R
H×W×1 is also obtained by mul-

tiplying Āt with F̄t, where F̄t ∈ R
H×W×1 is obtained by

first averaging the feature maps in Ft = {Fn
t }Nn=1 and then

depth-wise averaging the outputs. F̂t and ˆ̄Ft distinguish

text- and structural-relevant semantic features, which im-

proves the alignment with the inputs. We use F̂t and ˆ̄Ft

as input to the style modulation network that produces the

modulation codes wγ
t , and wβ

t as shown in Figure 4. We

capture both local and global features by using F̂t, which

consists of feature maps representing different local regions

on the face, and ˆ̄Ft, which implies representations of the

entire face. We concatenate N intermediate feature maps

of F̂t, concat(F̂1
t · · · F̂N

t ), and it is forward to the scale

and shift networks that consist of convolutional layers and

Leaky ReLU, forming the local modulation feature maps,

F̂γl
t and F̂βl

t . We also estimate global modulation feature

maps, F̂
γg

t and F̂
βg

t , by feeding ˆ̄Ft to the scale and shift

network. The final scale, F̂γ
t , and shift, F̂β

t , feature maps

are estimated by the weighted summation:

F̂γ
t = αγ

t F̂
γl
t + (1− αγ

t )F̂
γg

t , (3)

F̂β
t = αβ

t F̂
βg

t + (1− αβ
t )F̂

βg

t ,

where αγ
t and αβ

t are learnable weight parameters. Through

the map2style module, we then convert F̂γ
t and F̂β

t into the

final scale, wγ
t ∈ R

L×512, and shift, wβ
t ∈ R

L×512, la-

tent codes. With these modulation latent codes, we achieve

more precise control over facial details while corresponding

to the input multi-modal inputs at the pixel level.

Finally, the mapped latent code wm
t from M is modu-

lated by wγ
t and wβ

t from T to get the final latent code wt

that is used to obtain the generated image I ′t as follows:

wt = wm
t �wγ

t ⊕wβ
t , (4)

I ′t = G(wt). (5)
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(a) “This person has brown hair, 
and eyeglasses.” 

(b)“This person has mustache.”
(c) “This person has gray hair, 

and eyeglasses.”
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Figure 5. Visual examples of the 2D face image generation using a text prompt and a semantic mask. For each semantic mask, we use

three different text prompts (a)-(c), resulting in different output images (a)-(c).

3.4. Loss Functions
To optimize M and T , we use reconstruction loss, percep-

tual loss, and identity loss for image generation, and reg-

ularization loss [42] that encourages the latent codes to be

closer to the average latent code w̄.

For training M, we use the GT image Igt as reference to

encourage the latent code wm
t to generate a photo-realistic

image as follows:

LM = λm
0 ‖Igt − G(wm

t )‖2+ (6)

λm
1 ‖F(Igt)−F(G(wm

t )‖2+
λm
2 (1− cos(R(Igt),R(G(wm

t ))))+

λm
3 ‖E(zt, t,x, c)− w̄‖2,

where R(·) is pre-trained ArcFace network [8], F(·) is the

feature extraction network [63], zt is noisy image, and the

hyper-parameters λm
(·) guide the effect of losses. Note that

we freeze T while training M.

For training T , we use Id0 produced by the encoder E
into the reconstruction and perceptual losses. With these

losses, the loss LT encourages the network to control facial

attributes while preserving the identity of Igt:

LT = λs
0‖Id0 − G(wt)‖2+ (7)

λs
1‖F(Id0 )−F(G(wt)‖2+

λs
2(1− cos(R(Igt),R(G(wt))))+

λs
3‖E(zt, t,x, c)− w̄‖2,

where the hyper-parameters λs
(·) guide the effect of losses.

Similar to Equation 6, we freeze M while training T .

We further introduce a multi-step training strategy that

considers the evolution of the feature representation in E
over the denoising steps. We observe that E tends to fo-

cus more on text-relevant features in an early step, t = T ,

and structure-relevant features in a later step, t = 0. Fig-

ure 3 (b) shows the attention maps Ā showing variations

across the denoising step. As the attention map, we can

capture the textual and structural features by varying the de-

noising steps. To effectively capture the semantic details of

multi-modal conditions, our model is trained across multi-

ple denoising steps.

4. Experiments
4.1. Experimental Setup
We use ControlNet [62] as the diffusion-based encoder that

receives multi-modal conditions, including text and visual

conditions such as a semantic mask and scribble map. The

StyleGAN [22] and EG3D [4] are exploited as pre-trained

2D and 3D GAN, respectively. See the Supplementary Ma-

terial for the training details, the network architecture, and

additional results.

Datasets. We employ the CelebAMask-HQ [29] dataset

comprising 30,000 face RGB images and annotated seman-

tic masks, including 19 facial-component categories such

as skin, eyes, mouth, and etc. We also use textual de-
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Figure 6. Visual examples of the 3D-aware face image generation using a text and a semantic mask. We show the images generated with

inputs and arbitrary viewpoints.

Input conditions Method Model Domain FID↓ LPIPS↓ SSIM↑ ID↑ ACC↑ mIoU↑

Text +

semantic mask

TediGAN [58] GAN 2D 54.83 0.31 0.62 0.63 81.68 40.01

IDE-3D [51] GAN 3D 39.05 0.40 0.41 0.54 47.07 10.98

UaC [35] Diffusion 2D 45.87 0.38 0.59 0.32 81.49 42.68

ControlNet [62] Diffusion 2D 46.41 0.41 0.53 0.30 82.42 42.77

Collaborative [19] Diffusion 2D 48.23 0.39 0.62 0.31 74.06 30.69

Ours GAN 2D 46.68 0.30 0.63 0.76 83.41 43.82
Ours GAN 3D 44.91 0.28 0.64 0.78 83.05 43.74

Text +

scribble map

ControlNet [62] Diffusion 2D 93.26 0.52 0.25 0.21 - -

Ours GAN 2D 55.60 0.32 0.56 0.72 - -

Ours GAN 3D 48.76 0.34 0.49 0.62 - -

Table 1. Quantitative results of multi-modal face image generation on CelebAMask-HQ [29] with annotated text prompts [58].

scriptions provided by [58] describing the facial attributes,

such as black hair, sideburns, and etc, corresponding to

the CelebAMask-HQ dataset. For the face image gener-

ation task using a scribble map, we obtain the scribble

maps by applying PiDiNet [49, 50] to the RGB images in

CelebAMask-HQ. We additionally compute camera param-

eters based on [4, 10] for 3D-aware image generation.

Comparisons. We compare our method with GAN-based

models, such as TediGAN [58] and IDE-3D [51], and DM-

based models, such as Unite and Conquer (UaC) [35],

ControlNet [62], and Collaborative diffusion (Collabora-

tive) [19], for face generation task using a semantic mask

and a text prompt. IDE-3D is trained by a CLIP loss term

like TediGAN to apply a text prompt for 3D-aware face im-

age generation. ControlNet is used for face image gener-

ation using a text prompt and a scribble map. We use the

official codes provided by the authors, and we downsample

the results into 256× 256 for comparison.

Evaluation Metrics. For quantitative comparisons, we

evaluate the image quality and semantic consistency using

sampled 2k semantic mask- and scribble map-text prompt

pairs. Frechet Inception Distance (FID) [17], LPIPS [63],

and the Multiscale Structural Similarity (MS-SSIM) [56]

are employed for the evaluation of visual quality and diver-

sity, respectively. We also compute the ID similarity mean

score (ID) [8, 57] before and after applying a text prompt.

Additionally, we assess the alignment accuracy between the

input semantic masks and results using mean Intersection-

over-Union (mIoU) and pixel accuracy (ACC) for the face

generation task using a semantic mask.

4.2. Results
Qualitative Evaluations. Figure 5 shows the visual com-

parisons between ours and two existing methods for 2D face

image generation using a text prompt and a semantic mask

as input. We use the same semantic mask with different

text prompts (a)-(c). TediGAN produces results consistent

with the text prompt as the latent codes are optimized us-

ing the input text prompt. However, the results are incon-

sistent with the input semantic mask, as highlighted in the

red boxes. UaC shows good facial alignment with the in-

put semantic mask, but the results are generated with unex-

pected attributes, such as glasses, that are not indicated in

the inputs. Collaborative and ControlNet produce inconsis-

tent, blurry, and unrealistic images. Our model is capable of

preserving semantic consistency with inputs and generating

realistic facial images. As shown in Figure 5, our method

preserves the structure of the semantic mask, such as the

hairline, face position, and mouth shape, while changing

the attributes through a text prompt.

Figure 6 compares our method with IDE-3D [51] to val-

idate the performance of 3D-aware face image generation
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Input View

1.

2.

3.

4.

Novel Views

(a) Inputs (b) ControlNet (c) Ours

Input text:
1. “This young woman has straight hair, and eyeglasses and wears lipstick.” 
2. “The man has mustache, receding hairline, big nose, goatee, sideburns, 

bushy eyebrows, and high cheekbones.”
3. “She has big lips, pointy nose, receding hairline, and arched eyebrows.” 
4. “This man has mouth slightly open, and arched eyebrows. He is smiling.”

Figure 7. Visual examples of 3D-aware face image generation us-

ing text prompts and scribble maps. Using (1-4) the text prompts

and their corresponding (a) scribble maps, we compare the results

of (b) ControlNet with (c) multi-view images generated by ours.

using a semantic mask and a text prompt. We use the

same semantic mask with different text prompts in Fig-

ures 6 (a) and (b), and use the same text prompt with dif-

ferent semantic masks in Figures 6 (c) and (d). The results

of IDE-3D are well aligned with the semantic mask with the

frontal face. However, IDE-3D fails to produce accurate re-

sults when the non-frontal face mask is used as input. More-

over, the results cannot reflect the text prompt. Our method

can capture the details provided by input text prompts and

semantic masks, even in a 3D domain.

Figure 7 shows visual comparisons with ControlNet on

2D face generation from a text prompt and a scribble map.

The results from ControlNet and our method are consistent

with both the text prompt and the scribble map. ControlNet,

however, tends to over-emphasize the characteristic details

related to input conditions. Our method can easily adapt to

the pre-trained 3D GAN and produce photo-realistic multi-

view images from various viewpoints.

Quantitative Evaluations. Table 1 reports the quantitative

results on CelebAMask-HQ with text prompts [58]. Our

method using text prompts and semantic masks shows per-

formance increases in all metrics in 2D and 3D domains,

compared with TediGAN and UaC. Our model using 2D

GAN significantly improves LPIPS, ID, ACC, and mIoU

scores, surpassing TediGAN, UaC, ControlNet, and Collab-

orative, respectively. It demonstrates our method’s strong

ability to generate photo-realistic images while reflecting

input multi-modal conditions better. For 3D-aware face im-

age generation using a text prompt and a semantic mask, it

2. 

3. 

1. 

Input text:
1. “This man has gray hair.”
2. “He has double chin, sideburns, and bags under eyes.”
3. “She wears heavy makeup and has arched eyebrows, black hair.”

(a) Inputs (b) w/o T (c) w/o A, Ā (d) Ours

Figure 8. Effect of M and T . (b) shows the results using only M,

and (c) shows the effect of the cross-attention maps (A and Ā) in

T . The major changes are highlighted with the white boxes.

Method M T At Igt Id0 FID↓ LPIPS↓ ID↑ ACC↑
(a) � � � 62.08 0.29 0.62 81.09

(b) � � � � 48.68 0.28 0.66 82.86

(c) � � � � 54.27 0.31 0.58 80.58

(d) � � � � 61.60 0.29 0.62 80.04

(e) � � � � � 44.91 0.28 0.78 83.05

Table 2. Ablation analysis on 3D-aware face image generation

using a text prompt and a semantic mask. We compare (a) and (b)

with (e) to show the effect of our style modulation network and

(c) and (d) with (e) to analyze the effect of Igt and Id in model

training.

is reasonable that IDE-3D shows the highest FID score as

the method additionally uses an RGB image as input to esti-

mate the latent code for face generation. The LPIPS, SSIM,

and ID scores are significantly higher than IDE-3D, with

scores higher by 0.116, 0.23, and 0.24, respectively. Our

method using 3D GAN exhibits superior ACC and mIoU

scores for the 3D face generation task compared to IDE-

3D, with the score difference of 35.98% and 32.76%, likely

due to its ability to reflect textual representations into spa-

tial information. In face image generation tasks using a text

prompt and a scribble map, our method outperforms Con-

trolNet in FID, LPIPS, SSIM, and ID scores in both 2D and

3D domains. Note that the ACC and mIoU scores are appli-

cable for semantic mask-based methods.

4.3. Ablation Study
We conduct ablation studies to validate the effectiveness of

our contributions, including the mapping network M, the

AbSM network T , and the loss functions LM and LT .

Effectiveness of M and T . We conduct experiments with

different settings to assess the effectiveness of M and T .
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(a) Inputs (b) w/ (c) w/ (d) Ours

2. 

1. 

Input text:
1. “This young person has goatee, mustache, big lips, and 

straight hair.”
2. “She wears lipstick and has arched eyebrows, and  

mouth slightly open.”

Figure 9. Effect of using Id from the denoising U-Net and the GT

image Igt in model training. Using text prompts (1, 2) with (a)

the semantic mask, we show face images using our model trained

with (b) Id0 , (c) Igt, and (d) both.

We also show the advantages of using cross-attention maps

in our model. The quantitative and qualitative results are

presented in Table 2 and Figure 8, respectively. When using

only M, we can generate face images that roughly preserve

the structures of a given semantic mask in Figure 8 (a), in-

cluding the outline of the facial components (e.g. face, eye)

in Figure 8 (b). On the other hand, T enables the model to

express face attribute details effectively, such as hair colors

and mouth open, based on the multi-modal inputs in Fig-

ure 8 (c). The FID and ACC scores are higher than the

model using only M in Table 2 (b). We further present

the impact of adopting cross-attention maps to T for style

modulation. Figure 8 (d) shows how the attention-based

modulation approach enhances the quality of results, par-

ticularly in terms of the sharpness of desired face attributes

and the overall consistency between the generated image

and multi-modal conditions. Table 2 (e) demonstrates the

effectiveness of our method by showing improvements in

FID, LPIPS, ID, and ACC. Our method, including both M
and T with cross-attention maps, significantly improves the

FID showing our model’s ability to generate high-fidelity

images. From the improvement of the ID score, the cross-

attention maps enable relevantly applying the details of in-

put conditions to facial components.

Model Training. We analyze the effect of loss terms LM
and LT by comparing the performance with the model

trained using either Id0 from the denoising U-Net or GT im-

age Igt. The model trained using Id0 produces the images in

Figure 9 (b), which more closely reflected the multi-modal

conditions (a), such as “goatee” and “hair contour”. In Ta-

ble 2 (c), the ACC score of this model is higher than the

model trained only using Igt in Table 2 (d). The images

generated by the model trained with Igt in Figure 9 (c)

are more perceptually realistic, as evidenced by the lower

LPIPS score compared to the model trained with Id0 in Ta-

Input text:

1.

2.

3.

1. “A photo of a face of a beautiful elf with     
silver hair in live action movie.” 

2. “A photo of a white Greek statue.”
3. “A photo of a face of a zombie.”

Figure 10. Visual examples of 3D face style transfer. Our method

generates stylized multi-view images by mapping the latent fea-

tures of DM and GAN.

ble 2 (c) and (d). Using Igt also preserves more condition-

irrelevant features inferred by the ID scores in Table 2 (c)

and (d). In particular, our method combines the strengths of

two models as shown in Figure 9 (d) and Table 2 (e).

4.4. Limitations and Future Works
Our method can be extended to multi-modal face style

transfer (e.g. face → Greek statue) by mapping the latent

spaces of DM and GAN without CLIP losses and additional

dataset, as shown in Figure 10. For the 3D-aware face style

transfer task, we train our model using Id0 that replaces GT

image Igt in our loss terms. This method, however, is lim-

ited as it cannot transfer extremely distinct style attributes

from the artistic domain to the photo-realistic domain of

GAN. To better transfer the facial style in the 3D domain,

we will investigate methods to map the diffusion features

related to the input pose into the latent space of GAN in

future works.

5. Conclusion
We presented the diffusion-driven GAN inversion method
that translates multi-modal inputs into photo-realistic
face images in 2D and 3D domains. Our method inter-
prets the pre-trained GAN’s latent space and maps the
diffusion features into this latent space, which enables
the model to easily adopt multi-modal inputs, such as a
visual input and a text prompt, for face image generation.
We also proposed to train our model across the multi-
ple denoising steps, which further improves the output
quality and consistency with the multiple inputs. We
demonstrated the capability of our method by using text
prompts with semantic masks or scribble maps as input for
2D or 3D-aware face image generation and style transfer.
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