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Abstract

Addressing biases in computer vision models is crucial
for real-world AI deployments. However, mitigating visual
biases is challenging due to their unexplainable nature, often
identified indirectly through visualization or sample statis-
tics, which necessitates additional human supervision for
interpretation. To tackle this issue, we propose the Bias-
to-Text (B2T) framework, which interprets visual biases as
keywords. Specifically, we extract common keywords from
the captions of mispredicted images to identify potential
biases in the model. We then validate these keywords by
measuring their similarity to the mispredicted images using
a vision-language scoring model. The keyword explanation
form of visual bias offers several advantages, such as a clear
group naming for bias discovery and a natural extension
for debiasing using these group names. Our experiments
demonstrate that B2T can identify known biases, such as
gender bias in CelebA, background bias in Waterbirds, and
distribution shifts in ImageNet-R/C. Additionally, B2T un-
covers novel biases in larger datasets, such as Dollar Street
and ImageNet. For example, we discovered a contextual bias
between “bee” and “flower” in ImageNet. We also highlight
various applications of B2T keywords, including debiased
training, CLIP prompting, and model comparison.1

1. Introduction
Biased datasets can induce failures in image classifiers, po-
tentially harming model performance and raising fairness
concerns [76]. These model failures may manifest as spuri-
ous correlations, where specific groups contribute to model
errors [71], or as distribution shifts, where the test distribu-
tion differs from the training distribution [63]. For instance,
in a face dataset, if blond images are predominantly associ-
ated with women, the image classifier may misclassify blond
faces as women, resulting in fairness issues [6]. Moreover,
this bias can impact model performance when evaluated in
different scenarios, such as a gender-balanced dataset of
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Figure 1. Concept. Our Bias-to-Text (B2T) framework reveals
visual biases of image classifiers in a keyword explanation form.
For example, B2T identified novel biases in ImageNet [14]. Specif-
ically, the keyword ”flower” implies that the classifier associates
“ant” images with “flower” as “bees,” indicating contextual bias.

blonds [21]. Therefore, extensive efforts have been devoted
to recognizing and addressing biases in models [9, 48].

Previous research has attempted to identify visual biases
by analyzing problematic samples [44, 55, 74] or problem-
atic attributes [29, 72, 73]. However, these methods define
biases indirectly, often relying on visualization or sample
groups with specific statistics, and they require human super-
vision to express them in an explainable form. To address
this issue, recent research aimed at interpreting biases us-
ing vision-language models [59]. Nonetheless, these studies
have limitations in discovering and mitigating novel biases.
Some studies [17, 30] retrieve the closest word from a pre-
defined vocabulary, limiting their discovery to known biases.
Others analyze neurons [27] or images synthesized by gen-
erative models [80] to comprehend biases. However, they
focus on generating detailed captions explaining activated
neurons or failure examples, which can help understand in-
dividual cases but hard to utilize for debiasing.

Instead, our main idea is to explain visual biases as key-
words by aggregating common traits from the language de-
scriptions2 of problematic images. Figure 1 illustrates our
concept, with the keyword “flower” capturing the distinctive
attributes of “ant” class images mispredicted as “bee.” This
keyword form offers several advantages, providing a natu-
ral name for each bias group and easily incorporating with
debiasing techniques using these group names.

2We used a pre-trained captioning model, but other language descriptions
like hard prompt optimization [79] can also be applied.
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Figure 2. Method. (Step 1) B2T generates language descriptions from mispredicted images and extracts common keywords. We then verify
whether these keywords indicate bias by measuring their similarity to the mispredicted images using a vision-language model like CLIP [59].
(Step 2) The discovered keywords have various applications, including debiased training, CLIP prompting, and model comparison.

Contribution. We introduce the Bias-to-Text (B2T) frame-
work, which identifies visual biases as keywords. To achieve
this, we first generate language descriptions from mispre-
dicted images and extract common keywords from these
descriptions, suggesting potential biases. We then validate
whether these keywords represent bias by measuring their
similarity to the mispredicted images using a vision-language
scoring model such as CLIP [59]. By ensuring that the key-
words align more closely with misclassified images rather
than the correct ones, we can confirm they are biases.

We demonstrate that B2T can discover biases in image
classifiers trained on various datasets (Section 4):
• Known bias. B2T detects popular biases, such as gender

bias in CelebA [46], background bias in Waterbirds [66],
and distribution shifts in ImageNet-R [26] and ImageNet-
C [25]. B2T keywords provide more fine-grained infor-
mation for each bias, such as “bamboo,” representing the
land background in Waterbirds. Moreover, these keywords
can infer sample-wise bias labels, surpassing previous bias
discovery approaches [17, 30].

• Novel bias. B2T uncovers novel biases in larger datasets,
such as geographic bias in Dollar Street [64] and contex-
tual bias in ImageNet [14]. For example, images with the
keyword “flower” are predicted as “bee” instead of “ant”
in ImageNet, indicating a contextual bias where bees are
more commonly associated with flowers than ants.

We then showcase that the bias keywords can be used for
various applications (Section 5):
• Debiased training. The keywords can be used to infer bias

labels for each sample using the CLIP classifier. These
labels are then used for debiased training, such as distri-
butionally robust optimization (DRO) [66], and it outper-
forms previous debiasing approaches.

• CLIP prompting. The keywords can be used to improve
the CLIP zero-shot classifier. Prompting with fine-grained
B2T keywords (e.g., “bamboo”) outperforms the previous
strategy using group names (e.g., “land”).

• Model comparison. The keywords can be used to compare
the failure of different models. For example, ResNet [22]
struggles more with complex scenes compared to ViT [16],

as indicated by abstract keywords like “work out.”
• Label diagnosis. B2T can detect issues in labels, such as

mislabeling or label ambiguities. For example, we found
that “bee” is often mislabeled as “fly” in ImageNet.

Lastly, we emphasize the robustness and versatility of our
bias-to-text approach. First, we confirm that B2T keywords
exhibit reasonable robustness across different captioning and
similarity scoring models (Section 6), yet could be improved
using advanced vision-language models like GPT-4 [58]. Ad-
ditionally, B2T can be extended beyond image classification,
such as text-to-image generative models (Appendix B) and
other computer vision tasks like object detection.

2. Related Work
Bias and fairness. Biases in datasets and models have long
been issued in computer vision and machine learning [48].
Our goal is to study classifier failures for specific attributes or
groups, known as spurious correlations [71]. These failures
are closely related to fairness concerns, as models often per-
form poorly on particular gender [6, 24, 90] or race [32, 37].
Such biases result from various sources, such as dataset im-
balance [33, 75], or representational bias [3, 77, 89], which
is further exacerbated during model training. B2T aims to
identify these fairness issues, providing “man” as a bias
keyword for the “blond” class in CelebA [66].

Not only is bias related to fairness, but it also significantly
impacts generalization, particularly in the presence of distri-
bution shifts [54]. The ratio of majority to minority samples
can vary, making the model susceptible to changes in their
composition. This is closely connected to shortcut learn-
ing, where the model excessively relies on spurious features
rather than core features [21]. Various types of shortcuts
exist, including texture bias [20], background bias [83], and
scene bias [50]. B2T could discover various types of short-
cuts, as exemplified by “illustration” in ImageNet-R, “forest”
in Waterbirds, “flower” for “ant” class in ImageNet.

Bias discovery. Previous studies attempted to identify biases
by analyzing problematic samples [4, 5, 15, 31, 36, 38, 61,
82]. Specifically, they detected biased samples by simply
retrieving the mispredicted images [44] or utilizing embed-
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dings or gradients [1, 55, 74]. To uncover unknown biases,
prior works iteratively trained a discoverer and classifier [43]
or selected confident samples using two auxiliary biased
models [88]. Another line of research analyzed problematic
attributes to interpret spurious correlations and visualized
them by highlighting specific regions [29, 72, 73], or gener-
ating traversal images alongside the attribute [42]. However,
these methods still require human supervision to compre-
hend the common traits among failure cases, unlike B2T,
which provides a practical keyword explanation.

Bias discovery with language. Recent works describe bias
using pre-trained vision-language models like CLIP [59].
They define bias as an outlier (or slices) in the joint image-
text embedding space [17, 30, 87]. However, they match the
outliers to a pre-defined bias vocabulary, limiting their ability
to detect a single known bias. In contrast, B2T directly
generates captions from images, potentially containing more
detailed descriptions than the encoder embeddings. Thus,
B2T effectively discovers multiple and fine-grained biases
without the need for an iterative discovery procedure.

Other works analyze neurons [27] or images synthesized
by generative models [80] to understand biases. In particular,
Wiles et al. [80] extract captions from synthesized images,
similar to B2T. However, they provide detailed sentence
descriptions, which are informative but not straightforward
for debiasing. In contrast, the keyword explanation of B2T
is more practical, as demonstrated in our applications, such
as debiasing. Additionally, they need to specify a pair of true
and mispredicted target classes, which may be challenging
to scale if there are many classes. In contrast, B2T can find
bias keywords for all failure cases simultaneously.

Debiasing classifier. Numerous efforts have been made to
mitigate biases of classifiers. DRO [60, 66] is a popular
approach that minimizes the loss over all bias groups. How-
ever, DRO requires bias annotations for all samples. Some
works addressed this issue by inferring the bias group la-
bels in an unsupervised manner [44, 55]. We demonstrate
that the keyword explanations of B2T can infer bias labels
using a zero-shot classifier like CLIP. This enables more ac-
curate bias group estimation and improved debiased training
compared to previous methods, as shown in Section 5.1.

Moreover, we demonstrate a prompting strategy to debias
CLIP using the B2T keywords, which are more fine-grained
than those in prior work [85], as shown in Section 5.2.

3. Bias-to-Text (B2T) Framework

In this section, we begin by defining the biases we aim to
address (3.1). Then, we introduce the Bias-to-Text (B2T)
framework, which provides bias keywords using a captioning
model and validates them with a scoring model (3.2). Finally,
we validate the effect of the scoring model, showing that
keywords with high scores tend to exhibit stronger bias (3.3).

3.1. Problem formulation

Image classifiers predict a class y ∈ Y for an image x ∈
X . If images with attribute a are frequently misclassified
from their original class y, we refer to attribute a as a bias
associated with class y. Our goal is to identify this biased
attribute a in the keyword explanation form.

The bias attributes include spurious correlation [71] or
distribution shifts [70]. Spurious correlations lead models to
rely on unintended decision rules (e.g., associating “blond”
hair color with “man”), resulting in incorrect predictions
when the rule does not apply [66]. On the other hand, dis-
tribution shifts (e.g., style transfers like “illustration”) can
impede model generalization in unseen samples [26].

3.2. Discovering bias keywords

Bias keywords. Our core idea is to extract keywords that rep-
resent biases. To achieve this, we extract common keywords
from the language descriptions of class-wise mispredicted
images. Minority subgroups are those misclassified from the
original class y and thus often appear in these descriptions.
For example, in the case of the blonds vs. not-blonds clas-
sifier, the keyword “man” would frequently appear in the
mispredicted images of the “blond” class.3 We employ a pre-
trained captioning model [41, 84] to generate descriptions
and extract common keywords. We chose ClipCap [52] as
our default captioning model because of its strong perfor-
mance and fast inference speed (see Table 4), and apply the
YAKE [7] algorithm to extract keywords.

CLIP score. We validate whether the keywords represent
bias. To do this, we use a vision-language scoring model like
CLIP [59] that measures the similarities between keywords
and the mispredicted images. The CLIP score ensures that
keywords associated with a biased concept have a high CLIP
score, while others have a low score. Specifically, we com-
pare the CLIP embedding similarities between the keyword a
and images x from Dwrong and Dcorrect. These subsets of the
class-wise validation set D correspond to the incorrect and
correct predictions by the classifier, respectively. Formally,
the CLIP score is given by:

sCLIP(a;D) := sim(a,Dwrong)− sim(a,Dcorrect). (1)

Here, sim(a,D) is the similarity between the keyword a and
the dataset D, computed as the average cosine similarity be-
tween normalized embeddings of a word ftext(a) and images
fimage(x) for x ∈ D, where

sim(a,D) :=
1

|D|
∑
x∈D

fimage(x) ftext(a). (2)

3Technically, the keywords discovered by B2T are the opposite of the
biased concept. For example, B2T finds the keyword “man” for the blond
class in a hair classifier. Here, “woman” is a bias-aligned (as an opposite of
bias-conflicting) attribute following the definition of Nam et al. [55].
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Figure 3. Effect of the CLIP score (waterbird class). (a) The CLIP score can identify incorrect bias keywords, showing low CLIP scores
near zero for non-bias keywords like “species.” (b) The ROC curve represents subgroup accuracy, which defines the subgroup based on
images with high CLIP similarity to specific keywords while varying the thresholds. The legend displays the B2T keywords alongside their
corresponding CLIP scores in parentheses, with the AUROC of their respective curves denoted after the equal sign. Keywords with high
CLIP scores tend to exhibit low subgroup accuracies, indicating they are biases. (c) Colored dots illustrate the negative correlation between
the CLIP score and AUROC of subgroup accuracy over B2T keywords, indicating that a higher CLIP score implies stronger bias.

We referred to this as the CLIP score because we used CLIP
as our default choice, but note that other vision-language
models [10, 40] also work well (see Table 5).

Further experimental details are provided in Appendix A.
While we primarily focus on image classifiers in this paper,
our principle of interpreting visual biases as keywords can
extend to other computer vision tasks, such as text-to-image
generative models, as discussed in Appendix B.

3.3. Validation of the CLIP score

We demonstrate the effect of the CLIP score in validating
whether a keyword represents bias. Figure 3 displays several
analyses on the CLIP score using the waterbird class in the
Waterbirds [66] dataset. Panel (a) illustrates how the CLIP
score identifies incorrect bias keywords. For instance, when
the captioning model generates terms like “species” or “bird,”
the CLIP score categorizes them as non-bias keywords due
to their presence in both correctly and incorrectly predicted
images, resulting in a low CLIP score.

Panel (b) displays the subgroup accuracy for each key-
word. We use the CLIP similarity of individual samples asso-
ciated with each keyword to define the subgroup. Subgroup
accuracy is defined here as the AUROC calculated across
different thresholds of CLIP similarity. Keywords with high
CLIP scores (in parentheses) exhibit lower subgroup accura-
cies (after equal signs). For example, the keyword “bamboo”
has a CLIP score of 2.85 and a subgroup accuracy of 0.29.
In contrast, common keywords with CLIP scores near 0 (e.g.,
“bird”) demonstrate performance similar to random guessing
(grey dotted line), suggesting that they are not biased.

Panel (c) visualizes the correlation between the CLIP
score and subgroup accuracy (AUROC) for B2T keywords.
These metrics have a high correlation coefficient of -0.95,
indicating that the CLIP score reflects the severity of bias in
keywords. See Appendix D for further evaluations.

4. Discovering Biases in Image Classifiers
We demonstrate that B2T discovers visual biases in image
classifiers trained on various datasets. First, we illustrate
that B2T can identify known biases in benchmark datasets
(4.1). Then, we show how bias keywords infer sample-wise
bias labels using the CLIP classifier, outperforming previous
methods (4.2). Finally, we explore the capacity of B2T to
uncover novel biases in larger datasets (4.3).

4.1. Can B2T identify the known biases?

Spurious correlation. We use B2T to analyze gender and
background biases in the CelebA [46] and Waterbirds [66]
datasets. CelebA contains facial images of celebrities with
attribute annotations. Following Sagawa et al. [66], we focus
on classifying hair color as “blond” or “not blond.” Water-
birds comprise images of waterbirds and landbirds on land
or water backgrounds. Here, we apply B2T to the empirical
risk minimization (ERM) classifiers [66], which are known
to be affected by spurious correlations.

Figure 4 (a, b) displays the bias keywords. B2T captures
“man” for CelebA blond and “forest” and “ocean” for Wa-
terbirds, revealing gender and background biases in each
dataset. Furthermore, B2T finds fine-grained keywords like
“bamboo,” providing more detailed information than the orig-
inal “land” background annotations.

Distribution shifts. B2T can detect distribution shifts in
ImageNet variants: ImageNet-R (rendition) [26], which con-
tains artistic images of ImageNet classes, and ImageNet-
C (corruption) [25], which contains noisy images of Ima-
geNet classes. We use a supervised ResNet-50 [22] classifier
trained on ImageNet, which often struggles to generalize to
these datasets, indicating its bias towards the training data.
We apply B2T to the union of ImageNet and each variant
(not class-wise) to identify the failures of the classifier.

Figure 4 (c, d) displays the bias keywords. For ImageNet-
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Figure 4. Discovered biases in image classifiers. Visual examples of mispredicted images, along with their corresponding bias keywords,
captions, actual classes, and predicted classes. B2T successfully identified known biases, such as (a) gender bias in CelebA blond, (b)
background bias in Waterbirds, and distribution shifts in (c) ImageNet-R with different styles, and (d) ImageNet-C with natural corruptions.
B2T also uncovered novel biases in larger datasets, such as the spurious correlations between (e) the keyword “cave” and the wardrobe class,
indicating geographical bias in Dollar Street, and (f) the keyword “flower” and the ant class, indicating contextual bias in ImageNet.

R, B2T captures keywords like “illustration” and “drawing,”
with more detailed information such as “hand-drawn” and
“vector art.” For ImageNet-C, B2T captures keywords like
“snow” for snow corruption, and “window” for frost corrup-
tion. Here, the keyword “window” implies that the frozen
images visually resemble those behind the window.

4.2. Sample-wise bias labeling

We can infer sample-wise bias (or group) labels by applying
the bias keywords to the CLIP zero-shot classifier. Specifi-
cally, we create prompts like “a photo of a [group],” where
“[group]” represents the bias keywords, and we assign the
label of each image to the nearest group.4

We then evaluate this sample-wise bias labeling in CelebA
and Waterbirds, where ground-truth bias labels are available.
We compare B2T with prior unsupervised bias discovery
methods: JTT [44], Domino [17], and Failure Direction [30].
These methods use ERM confidence, GMMs, and SVMs

4The prompt template depends on the dataset. For example, we use “a
photo of a bird in the [group]” for Waterbirds. We select the bias keywords
with CLIP scores larger than 1.0, like “forest” or “woods” for the waterbird
class. See Table 7 in Appendix for the detailed prompt templates.

to predict the bias labels, respectively. Figure 5 illustrates
that B2T significantly outperforms prior methods, achieving
near-optimal performance across all considered scenarios.

4.3. Exploring novel biases in larger datasets

We apply B2T to discover novel biases in larger datasets.
Note that B2T generates keywords from captioning models
in a zero-shot manner, thus not requiring a pre-defined set of
potential bias keywords, unlike prior works [17, 30].

Dollar Street. Dollar Street [64] includes object images
from countries with varying income levels. Previous studies
have shown that classifiers perform poorly on objects from
low-income countries [13]. We aim to examine this geo-
graphic bias further by applying B2T to the validation set of
Dollar Street using the ImageNet [14] classifier. The classi-
fier correctly predicted labels for objects from high-income
countries but failed for low-income countries.

Figure 4 (e) displays the bias keywords. Here, B2T dis-
covers bias keywords like “cave” for “wardrobe,” and “fire”
for “stove” classes. Wardrobes from low-income countries
are often in dark places resembling caves, and stoves from
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Figure 5. Comparison of bias discovery methods. The AUROC
curves for (a) CelebA blond (male) and (b) Waterbirds (waterbirds
on land), with parentheses indicating the corresponding minority
groups. B2T outperforms prior works by a large margin.

low-income countries often have a traditional design using
fire. The keyword “bucket” for “plate rack” class suggests
that buckets can be commonly used for stacking plates, and
“hole” for “toilet seat” class suggests that the classifier is
not familiar with squat toilets. These distinctions in objects
across countries lead to geographical bias.

ImageNet. We apply B2T to the ImageNet [14] training
set using the CLIP [59] zero-shot classifier. We employ
the 80-prompts ensemble strategy following the CLIP pa-
per. We focus on investigating the highly confusing classes
frequently misclassified as a specific class.

Figure 4 (f) displays the bias keywords. We discover
contextual biases between objects in the scene. For instance,
the classifier predicts “ant” with the keyword “flower” as
“bee,” indicating a stronger association between flowers and
bees than ants. The keyword “playground” implies that the
classifier confuses a “horizontal bar” in the playground as
a “swing.” The classifier confuses a “stethoscope” with the
keyword “baby” as a “baby pacifier,” which is reasonable
due to their similar appearances. In addition, we found the
keywords “street” for the “plastic bag” class and “office” for
the “notebook” class, suggesting that the classifier struggles
in complex scenes with multiple objects.

More examples. We provide additional visual examples in
Appendix G and the lists of B2T keywords in Appendix H.

5. Applications of the B2T Keywords
We showcase that the keyword form of B2T offers various
applications, including debiased DRO training, CLIP zero-
shot prompting, model comparison, and label diagnosis.

5.1. Debiased DRO training

Bias keywords can be used to train a debiased classifier. To
be specific, we infer sample-wise bias labels as described in
Section 4.2 and apply them for training with DRO [66]. We
compare our DRO-B2T with various baselines, including
ERM, DRO using the ground-truth (GT) bias labels, and
debiased training methods that infer the group labels in an
unsupervised manner: LfF [55], GEORGE [74], JTT [44],

Table 1. Debiased DRO training. Worst-group and average accu-
racies (%) of our debiased classifier (DRO-B2T) and prior works.
GT denotes the usage of ground-truth bias labels for training, and
bold denotes the best worst-group accuracy. B2T keywords enable
accurate bias label prediction, facilitating effective DRO training.

CelebA blond Waterbirds

Method GT Worst Avg. Worst Avg.

ERM - 47.7±2.1 94.9 62.6±0.3 97.3
LfF [55] - 77.2 85.1 78.0 91.2
GEORGE [74] - 54.9±1.9 94.6 76.2±2.0 95.7
JTT [44] - 81.5±1.7 88.1 83.8±1.2 89.3
CNC [86] - 88.8±0.9 89.9 88.5±0.3 90.9
DRO-B2T (ours) - 90.4±0.9 93.2 90.7±0.3 92.1

DRO [66] ✓ 90.0±1.5 93.3 89.9±1.3 91.5

Table 2. CLIP zero-shot prompting. Worst-group and average
accuracies (%) of the CLIP zero-shot classifier using the base
prompt or augmented ones: with the base group names (group)
or B2T keywords with positive (B2T-pos) or negative (B2T-neg)
CLIP scores. Bold indicates the best worst-group accuracy. B2T-
pos improves worst-group accuracy, while B2T-neg harms. This
implies that augmenting proper keywords to the prompts enhances
the debiased accuracy of CLIP zero-shot inference.

CelebA blond Waterbirds

Worst Avg. Worst Avg.

CLIP zero-shot 76.2 85.2 50.3 72.7
+ Group prompt [85] 76.7 87.0 53.7 78.0

+ B2T-neg prompt 72.9 88.0 45.4 70.8
+ B2T-pos prompt (ours) 80.0 87.2 61.7 76.9

and CNC [86]. We excerpt values from the CNC paper.
Table 1 presents the worst-group and average accuracies.

DRO-B2T outperforms the previous methods that infer group
labels in an unsupervised manner, confirming the impact
of B2T keywords. DRO-B2T also surpasses DRO using
GT labels, possibly because of the noise in GT annotations.
Check Appendix C for additional DRO experiments.

5.2. CLIP zero-shot prompting

Bias keywords can improve the CLIP zero-shot classifier
by integrating them into prompts. In the original CLIP, the
prompt template is “a photo of a [class].” We modify the
prompt by adding a keyword, such as “a photo of a [class]
in the [group],” where the keywords represent group names,
as in the case of Waterbirds.5 Here, we calculate the average
text embeddings of prompts across all groups to get class
embeddings and assign the image to the nearest class.

We augment the prompt with different sets of keywords to
assess their importance. Specifically, we use B2T keywords
with positive or negative CLIP scores, which we refer to as

5See Table 8 in Appendix A for the detailed prompt templates.
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dumbbell horizontal
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Figure 6. Model comparison: ResNet vs. ViT. We compare the
predictions made by ResNet and ViT, both trained and evaluated
on ImageNet. We report their predicted labels and B2T keywords
from ResNet. ViT excels at understanding global contexts and
handling fine-grained classes than ResNet. For example, ResNet
struggles with complex images whose B2T keywords represent
abstract contexts like “work out” and “supermarket.”

B2T-pos and B2T-neg, respectively. For instance, in the case
of Waterbirds, we use “ocean” for B2T-pos and “bird” for
B2T-neg. B2T-pos keywords represent the minor subgroups,
which would aid in recognizing them. We compare this
approach with using the base group names, such as “water”
background, as suggested in Zhang and Ré [85].

Table 2 presents the worst-group and average accuracies
of the CLIP classifier. B2T-pos keywords enhance both
worst-group and average accuracies. In contrast, base group
names provide less assistance, and B2T-neg keywords even
decrease the worst-group accuracy. This suggests that aug-
menting appropriate keywords to the prompts improves the
debiased accuracy of CLIP zero-shot inference.

5.3. Model comparison

Bias keywords can be used to analyze and compare different
classifiers based on their keywords.

Architecture: ResNet vs. ViT. We compare ResNet [22]
and ViT [16] architectures. Recent studies claim that ViT
is better than ResNet in understanding object shapes [57].
We further investigate this by examining bias keywords. We
train and evaluate the models on ImageNet.

Figure 6 demonstrates the comparison results. ViT excels
in understanding global contexts and fine-grained classes
compared to ResNet. For instance, ViT successfully predicts
complex images with abstract bias keywords like “work out.”
We attribute this to the global self-attention of ViT, which
allows for broader context consideration.

Debiased training: ERM vs. DRO. We compare biased and
debiased training methods: ERM and DRO [66], on CelebA
and Waterbirds. We list the bias keywords from ERM with

Table 3. Model comparison: ERM vs. DRO. We compare biased
(ERM) and debiased (DRO) classifiers on CelebA and Waterbirds.
We present the CLIP scores for ERM, DRO, and the gap between
them. We mark ✗ if the bias keyword is not found. In DRO, either
the bias keyword is absent or its score is reduced; for example, the
keyword “man” is no longer present in CelebA blond.

Keyword ERM DRO Gap

CelebA blond man 1.06 ✗ ✗

bamboo forest 3.61 ✗ ✗

bamboo 2.85 ✗ ✗

forest 2.27 1.97 -0.30
Waterbird

woods 2.24 1.88 -0.36

seagull 3.10 1.85 -1.24
beach 2.45 1.15 -1.30
water 1.51 0.67 -0.84

Landbird

lake 1.25 ✗ ✗

Keyword

Label

Samples

Pred.

Caption

MarketDeskBee Boar

fly

bee

pig

wild boar

a bee on a 
yellow flower.

wild boar in 
the forest.

computer mouse

desktop 
computer

the desk in 
the office.

custard apple

fruit and 
vegetables at 
the market.

grocery store

Figure 7. Label diagnosis. We identify labeling errors, such as mis-
labeling and label ambiguities, in ImageNet using bias keywords.
For example, the keyword “bee” implies that the images labeled as
“fly” class are actually mislabeled. On the other hand, the keyword
“desk” indicates that the images contain multiple objects, including
both a “computer mouse” and a “desktop computer” on the desk,
making it difficult to assign the appropriate class.

CLIP scores higher than 1.0.
Table 3 illustrates the CLIP scores of ERM, DRO, and

their gap. We mark ✗ if the keyword is not found. DRO in-
deed yields fewer bias keywords. For example, the keyword
“man” is absent in the CelebA blond class, and the CLIP
scores of highly biased keywords are reduced, such as from
3.10 to 1.85 for “seagull” in the landbird class.

Additional model comparisons. We present additional
results in Appendix E, investigating the robustness of clas-
sifiers to distribution shifts. Our findings demonstrate that
in multimodal learning, CLIP is more robust than ERM,
and in self-supervised learning, MAE [23] exhibits better
robustness, while DINO [8] shows similarity to ERM.

5.4. Label diagnosis

B2T can diagnose common labeling errors, such as misla-
beling and label ambiguities. Previous studies have shown
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that ImageNet contains label errors [68]. We analyze these
errors following the setup in Section 4.3.

Figure 7 visualizes examples. We found mislabeled im-
ages, such as “bee” and “boar” images labeled as “fly” and
“pig,” respectively. We also found images with ambiguous
labels, indicated by keywords “desk” and “market.” They
are ambiguous as the scene contains multiple objects.

6. Ablation Study
We study the effect of using different captioning and scoring
models in our B2T framework. Details such as the architec-
ture used for each model are stated in Appendix A.

Captioning models. We study the robustness of the bias
keywords across different captioning models: ClipCap [52],
BLIP [40], BLIP-2 [41], CoCa [84], and LLaVA [45]. Ta-
ble 4 shows the results. Different captioning models agree on
severe biases while offering diverse fine-grained keywords.
For example, all models capture major keywords like “man”,
“forest”, and “beach”. Conversely, different models provide
diverse fine-grained keywords, such as “rainforest” or “lake”;
thus ensembling a few captioning models can diversify the
discovered biased keywords. We use ClipCap as our default
choice, given its strong performance and fast inference time.
However, one could opt for advanced models like GPT-4 [58]
for improved captioning.

Scoring models. We study the robustness of the CLIP score
across different vision-language models. Specifically, we test
CLIP trained on different datasets: OpenCLIP [10] trained
on the LAION [67] dataset, and models with different ar-
chitectures: BLIP [40] and BLIP-2 [41]. Table 5 shows the
results. The scoring models provide consistent rankings,
with high scores for keywords like “man” or “bamboo for-
est.” We use CLIP as our default choice, but one could also
consider the advanced models.

Keyword extraction. We use YAKE [7] in our experi-
ments, but other keyword extraction strategies, such as high-
frequency words also perform well (see Appendix D).

7. Conclusion
We propose B2T, a framework for identifying and mitigating
biases through keyword explanation. The use of keywords
offers several advantages, such as debiased training and
model comparison. We hope that our B2T framework could
assist in the responsible use of image recognition.

Limitations. B2T relies on the recent advances in vision-
language models, harnessing pre-trained captioning and scor-
ing models. However, these models may not be perfect. For
example, captioning models trained on web-crawled data
may not generate informative descriptions in uncommon do-
mains like medical and satellite images. Similarly, scoring
models may not adequately capture image-text similarity

Table 4. Ablation on different captioning models. B2T keywords
discovered by different captioning models. We report the average
inference time to extract a caption from a single image (in seconds
on an RTX 3090 GPU) alongside the model names. The models
consistently capture highly biased keywords such as “man,” “forest,”
and “beach,” while different models may find diverse fine-grained
keywords such as “rainforest” or “lake.”

ClipCap BLIP CoCa BLIP-2 LLaVA

Inference time 0.13 sec 0.20 sec 0.34 sec 0.56 sec 1.90 sec

CelebA blond man O O O O O

Waterbird

forest O O O O O
bamboo O O O O O
woods O - - O -

rainforest O - - - -

Landbird

beach O O O O O
ocean - O O O -
boat - O O O O
lake O - - - -

Table 5. Ablation on different scoring models. B2T keywords
alongside their scores using different scoring models. The models
provide consistent rankings, with high scores for keywords like
“man” or “bamboo forest,” supporting their reliability.

CLIP OpenCLIP BLIP BLIP-2

CelebA blond

man 1.06 2.23 1.19 4.04
player 0.35 1.30 0.74 2.67
face -0.28 0.44 0.49 1.46

actress -1.63 -2.48 -1.68 -4.25

Waterbird

bamboo forest 3.61 4.68 5.22 9.85
woods 2.24 4.43 3.47 7.08
bird -0.09 0.67 -0.03 -0.70
pond -0.27 -0.63 -0.92 -1.69

due to limitations in their training data. Nevertheless, both
models perform well in various scenarios, highlighting the
practical merits of our B2T framework. Further discussions
of limitations can be found in Appendix F.

Broader impacts. Bias and fairness research inherently
have potential negative social impacts. We emphasize that
B2T does not aim to fully automate the discovery of biases
but to assist humans in making decisions based on the bias
keywords. The final judgment is left to the users, who should
also be monitored by a cross-verification system.

We illustrate sensitive examples - gender and geographic
biases. It is crucial to note that our intention is to raise
awareness and mitigate potential risks in real-world data.
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