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Abstract

Diffusion models have recently gained prominence as a
novel category of generative models. Despite their suc-
cess, these models face a notable drawback in terms of
slow sampling speeds, requiring a high number of function
evaluations (NFE) in the order of hundreds or thousands.
In response, both learning-free and learning-based sam-
pling strategies have been explored to expedite the sampling
process. Learning-free sampling employs various ordinary
differential equation (ODE) solvers based on the formula-
tion of diffusion ODEs. However, it encounters challenges
in faithfully tracking the true sampling trajectory, particu-
larly for small NFE. Conversely, learning-based sampling
methods, such as knowledge distillation, demand extensive
additional training, limiting their practical applicability.
To overcome these limitations, we introduce Distilled-ODE
solvers (D-ODE solvers), a straightforward distillation ap-
proach grounded in ODE solver formulations. Our method
seamlessly integrates the strengths of both learning-free and
learning-based sampling.

D-ODE solvers are constructed by introducing a single
parameter adjustment to existing ODE solvers. Further-
more, we optimize D-ODE solvers with smaller steps us-
ing knowledge distillation from ODE solvers with larger
steps across a batch of samples. Comprehensive ex-
periments demonstrate the superior performance of D-
ODE solvers compared to existing ODE solvers, includ-
ing DDIM, PNDM, DPM-Solver, DEIS, and EDM, particu-
larly in scenarios with fewer NFE. Notably, our method in-
curs negligible computational overhead compared to previ-
ous distillation techniques, facilitating straightforward and
rapid integration with existing samplers. Qualitative anal-
ysis reveals that D-ODE solvers not only enhance image
quality but also faithfully follow the target ODE trajectory.

1. Introduction
Diffusion models [8, 29, 31] have recently emerged as a
compelling framework for generative models, demonstrat-
ing state-of-the-art performance across diverse applications
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such as image generation [4, 32], text generation [2, 9], au-
dio generation [17, 21], 3D shape generation [3, 19], video
synthesis [6, 40], and graph generation [24, 34].

While diffusion models excel at producing high-quality
samples and mitigating issues like mode collapse [28, 42],
their sampling process often demands a substantial num-
ber of network evaluations, rendering the process slow and
computationally intensive [38]. Recent research has fo-
cused on optimizing the sampling process to enhance ef-
ficiency without compromising sample quality [11, 27, 30].
Notably, methods targeting improved sampling efficiency
within diffusion models fall into two main categories:
learning-free sampling and learning-based sampling [39].

Learning-free sampling can be applied to pre-trained
diffusion models without additional training and often in-
volves efficient solvers for stochastic differential equations
(SDEs) or ordinary differential equations (ODEs) [32].
Notable examples include DDIM [30], which employs
a non-Markovian process for accelerated sampling, and
PNDM [14], introducing a pseudo-numerical method for
solving differential equations on given data manifolds.
EDM [11] utilizes Heun’s second-order method, demon-
strating improved sampling quality over naive Euler’s
method [32]. Recently, DPM-Solver [15] and DEIS [41]
leverage the semi-linear structure of diffusion ODEs and
employ numerical methods of exponential integrators.
These ODE solvers aim for accurate score function estima-
tion along the ODE sampling trajectory where the density
of data distribution is high [14, 43]. However, the sampling
path of ODE solvers may deviate from the true trajectory,
especially with a small number of denoising steps, resulting
in significant fitting errors in the score function [13, 33, 38].

In contrast, learning-based sampling involves additional
training to optimize specific objectives, such as knowledge
distillation [27, 33] and optimized discretization [22, 36].
For instance, progressive distillation [27] iteratively distills
pre-trained diffusion models into a student model requir-
ing fewer sampling steps. Recently, Song et al. [33] intro-
duced consistency models, trained to predict consistent out-
puts along the same ODE trajectory. Although distillation-
based techniques enable generation within a few steps, ex-
tensive training is needed to adapt the denoising network of
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the diffusion models to each dataset, sampler, and network.
To address these challenges, we propose a novel distil-

lation method for diffusion models called Distilled-ODE
solvers (D-ODE solvers), leveraging inherent sampling dy-
namics in existing ODE solvers. D-ODE solvers bridge
the gap between learning-free and learning-based sam-
pling while mitigating associated issues. Our approach is
grounded in the observation that the outputs of the denois-
ing network (i.e., denoising output) exhibit a high correla-
tion within neighboring time steps.

D-ODE solvers introduce a single additional parame-
ter to ODE solvers, linearly combining the current denois-
ing network output with the previous one. This allows a
more accurate estimation of the denoising output at each
timestep t. For high-order solvers (e.g., PNDM, DEIS,
and DPM-Solver), we linearly combine their high-order es-
timations to leverage their ability to approximate the true
score function. The additional parameter is optimized for
each dataset by minimizing the difference between the out-
put of D-ODE solvers with smaller steps (student) and that
of ODE solvers with larger steps (teacher). Once the opti-
mal parameter is established, D-ODE solvers can be reused
across batches during sampling while keeping the denois-
ing network frozen. Notably, D-ODE solvers consistently
improve the FID of previous ODE solvers, including first-
order and high-order methods, significantly reducing the
computational time of distillation. Our main contributions
can be summarized as follows:
• We introduce D-ODE solvers, transferring knowledge

from ODE solvers with larger steps to those with smaller
steps through a simple formulation.

• D-ODE solvers alleviate the need for extensive parameter
updates in pre-trained denoising networks, significantly
reducing knowledge distillation time.

• In quantitative studies, our new sampler outperforms
state-of-the-art ODE solvers in terms of FID scores on
several image generation benchmarks.

2. Background
Forward and reverse diffusion processes. The forward
process {xt ∈ RD}t∈[0,T ] begins with x0 drawn from the
data distribution pdata(x) and evolves to xT at timestep
T > 0. Given x0, the distribution of xt can be expressed
as:

qt(xt|x0) = N (xt|αtx0, σ
2
t I), (1)

where αt ∈ R and σt ∈ R determine the noise sched-
ule of the diffusion models, with the signal-to-noise ratio
(SNR) α2

t /σ
2
t strictly decreasing as t progresses [12]. This

ensures that qT (xT ), the distribution of xT , approximates
pure Gaussian noise in practice.

The reverse process of diffusion models is approximated
using a denoising network to iteratively remove noise.

Starting from xT , the reverse process is defined with the
following transition [8]:

pθ(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)), (2)

where θ represents the trainable parameters in the denois-
ing network, and µθ(xt, t) and Σθ(xt, t) are the Gaussian
mean and variance estimated by the denoising network θ.
SDE and ODE formulation. Song et al. [32] formulate
the forward diffusion process using a stochastic differential
equation (SDE) to achieve the same transition distribution
as Eq. (1). Given x0 ∼ pdata(x), the forward diffusion
process from timestep 0 to T is newly defined as:

dxt = f(t)xtdt+ g(t)dwt, (3)

where wt ∈ RD is the standard Wiener process, and f(t)
and g(t) are functions of αt and σt. Song et al. [32] also in-
troduce the reverse-time SDE based on Anderson [1], which
evolves from timestep T to 0 given xT ∼ qT (xT ):

dxt = [f(t)xt − g2(t)∇x log qt(xt)]dt+ g(t)dw̄t, (4)

where w̄t is the standard Wiener process in reverse time,
and ∇x log qt(xt) is referred to as the score function [10].
The randomness introduced by the Wiener process can be
omitted to define the diffusion ordinary differential equation
(ODE) in the reverse process, which corresponds to solving
the SDE on average. Starting from xT ∼ qT (xT ), proba-
bility flow ODE from timestep T to 0 advances as follows:

dxt = [f(t)xt −
1

2
g2(t)∇x log qt(xt)]dt. (5)

The formulation of the probability flow ODE opens up
possibilities for using various ODE solvers to expedite
diffusion-based sampling processes [11, 14, 15, 41].
Denoising score matching. To solve Eq. (5) during sam-
pling, the score function ∇x log qt(xt) must be estimated.
Ho et al. [8] propose estimating the score function using
a noise prediction network ϵθ such that ∇x log qt(xt) =
−ϵθ(xt, t)/σt with xt = αtx + σtϵ. The noise predic-
tion network ϵθ is trained using the L2 norm, given samples
drawn from pdata:

Ex∼pdata
Eϵ∼N (0,σ2

t I)
||ϵθ(αtx+ σtϵ, t)− ϵ||2. (6)

Here, Gaussian noise is added to the data x following the
noise schedule (αt, σt), and the noise prediction network
ϵθ predicts the added noise ϵ from the noisy sample.

Alternatively, the score function can be represented
using a data prediction network xθ instead of ϵθ with
∇x log qt(xt) = (xθ(xt, t)− xt)/σ

2
t . The data prediction

network xθ is trained with following L2 norm:

Ex∼pdata
Eϵ∼N (0,σ2

t I)
||xθ(αtx+ σtϵ, t)− x||2. (7)
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Figure 1. The overview of D-ODE Solver. Given an input image at timestep CT , teacher sampling performs C denoising steps to obtain
the output at time step C(T − 1) while student sampling conducts one denoising step from an input at timestep t to an output at timestep
t − 1. Then, C steps of the teacher sampling are distilled into a single step of the student sampling by optimizing λt within the D-ODE
solver. Note that the denoising network remains frozen for both teacher and student sampling.

It is worth noting that estimating the original data x is theo-
retically equivalent to learning to predict the noise ϵ [8, 18].
While some works argue that predicting the noise empiri-
cally results in higher quality samples [8, 26], Karras et al.
[11] recently achieved state-of-the-art performance using
the data prediction network. In this work, we conduct com-
prehensive experiments with both noise and data prediction
networks. For the rest of the paper, we write Dθ to repre-
sent the denoising network of the diffusion models which
can be either noise or data prediction networks.

3. The Proposed Method
Our study aims to bridge the gap between learning-based
and learning-free sampling, leveraging the advantages of
both approaches. We capitalize on the sampling dynam-
ics of ODE solvers while enhancing sample quality through
a straightforward and efficient knowledge distillation. This
section begins with a fundamental observation of the high
correlation among the outputs of the denoising network
(i.e., denoising output), motivating the formulation of D-
ODE solvers. We then delve into the details of transferring
knowledge from ODE solvers to D-ODE solvers.

3.1. Correlation between Denoising Outputs

ODE solvers typically enhance the sampling process by ex-
ploiting the output history of the denoising network, en-

Figure 2. Correlation between denoising outputs. Heatmaps are
drawn by cosine similarity among denoising outputs with 1000-
step DDIM on CIFAR-10. Noise prediction model (left) and data
prediction model (right).

abling the omission of many intermediate steps. Therefore,
understanding the relationship between denoising outputs
is crucial when developing D-ODE Solvers. Our objective
is to create novel ODE solvers that harness the benefits of
sampling dynamics while keeping the degrees of optimiza-
tion freedom to a minimum.

Fig. 2 presents heatmaps based on cosine similarity cal-
culations between all denoising outputs from a 1000-step
DDIM [30] run. We observe that the denoising outputs
from neighboring timesteps exhibit high correlations in both
noise and data prediction models, with cosine similarities
close to one. This observation suggests that denoising out-
puts contain redundant and duplicated information, allow-
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ing us to skip the evaluation of denoising networks for most
timesteps. For example, the history of denoising outputs
can be combined to better represent the next output, effec-
tively reducing the number of steps required for accurate
sampling. This idea is implemented in most ODE solvers,
which are formulated based on the theoretical principles of
solving differential equations [11, 14, 15, 36, 41].

3.2. Formulation of D-ODE Solver

As illustrated in Fig. 1, each denoising step in diffusion
models typically involves two components: (1) a denois-
ing network Dθ and (2) an ODE solver S. Given an es-
timated noisy sample x̂t at timestep t, the denoising net-
work Dθ produces a denoising output dt = Dθ(x̂t, t),
and the ODE solver subsequently generates the next sample
x̂t−1 = S(dt, x̂t), utilizing the denoising output and the
noisy sample at timestep t. While high-order ODE solvers
also utilize the history of denoising outputs {dk}Tk=t, we
omit this notation here for simplicity. This procedure is iter-
ated until the diffusion models reach the estimated original
sample x̂0.

We now introduce a D-ODE solver with a straight-
forward parameterization to distill knowledge from ODE
solvers. We begin by outlining a fundamental method to
estimate the new denoising output Ot at timestep t as a lin-
ear combination of current and previous denoising outputs
{dk}Tk=t:

Ot =

T∑
k=t

λkdk, (8)

where λk ∈ R is a weight parameter for each denoising
output dk. With carefully chosen λk, we anticipate that
the new denoising output can better approximate the tar-
get score function of ODE in Eq. (5), leading to improved
sample quality. Some high-order ODE solvers [14, 15, 41]
adopt similar formulations to Eq. (8) with mathematically
determined weight parameters {λk}Tk=t.

One challenge within Eq. (8) is that the value of the new
denoising output Ot can be unstable and volatile depend-
ing on the values of weights {λk}Tk=t. This instability is
less likely to occur with numerically computed weights in
ODE solvers, but convergence is not guaranteed when the
weights are optimized through knowledge distillation. To
generate high-quality samples, the sampling process must
follow the true ODE trajectory on which the diffusion mod-
els are trained [14, 33]. In other words, the denoising net-
work might not produce reliable outputs for samples outside
the target manifold of data [13, 23, 38].

To avoid this, Eq. (8) should be constrained so that it
adheres to the original ODE trajectory. Thus, the new de-

noising output Ot can be defined as follows:

Ot = dt +

T∑
k=t+1

λk−1(dt − dk) (9)

≈ dt + λt(dt − dt+1). (10)

Furthermore, we empirically find that using the denois-
ing output from the previous timestep is sufficient for distill-
ing knowledge from the teacher sampling (see Supplemen-
tary Material). As a result, we obtain Eq. (10) for D-ODE
solvers. It is worth noting that the mean of the new denois-
ing output Ot approximates that of the original denoising
output since the mean with respect to sample x in suffi-
ciently large batch does not change significantly between
timesteps t and t+ 1 (e.g., Ex∼pdata

[Ot] ≈ Ex∼pdata
[dt]).

This is a key feature of D-ODE solvers, as we aim to remain
on the original sampling trajectory of ODE.

In case of DDIM [30], one can simply substitute dt with
Ot to construct D-DDIM:

DDIM: x̂t−1 = αt−1

(
x̂t − σtdt

αt

)
+ σt−1dt, (11)

D-DDIM: x̂t−1 = αt−1

(
x̂t − σtOt

αt

)
+ σt−1Ot. (12)

where (αt, σt) represents a predefined noise schedule. λt is
optimized later via knowledge distillation.
Comparison with high-order ODE solvers. High-order
methods for sampling utilize the history of denoising out-
puts. As these methods better approximate the target score
function of ODE compared to the first-order method (e.g.,
DDIM), we apply Eq. (10) on top of their approximation to
build D-ODE solvers. In other words, dt in Eq. (10) is re-
placed by the high-order approximation of each method. In
this way, we can involve more timesteps to obtain Ot while
overcoming the bottleneck of ODE solvers with an extra
parameter λt adapted to each dataset. Unlike high-order
ODE solvers, D-ODE solvers are equipped with the param-
eter λt, optimized for a specific dataset through knowledge
distillation, to further reduce the fitting error of the score
function. Supplementary Material includes the specific ap-
plications of D-ODE solvers and different formulations of
D-ODE solvers.

3.3. Knowledge Distillation of D-ODE Solver

In Fig. 1, the teacher sampling process initiates with the
noisy sample x̂

(t)
CT at timestep Ct and undergoes C denois-

ing steps to generate a sample x̂(t)
C(T−1) at timestep C(t−1).

Simultaneously, the student sampling process commences
with a noisy sample x̂

(s)
t at timestep t and obtains a sample

x̂
(s)
t−1 at timestep t − 1 after one denoising step. To opti-

mize λt in the D-ODE solver Sd, the teacher sampling is
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initially conducted for one batch, saving intermediate sam-
ples {x̂(t)

k }Ct
k=C(t−1) as targets. The student sampling is also

performed, obtaining intermediate samples {x̂(s)
k }tk=t−1 as

predictions. Subsequently, λ∗
t is determined by minimizing

the difference between the targets and predictions on batch
B as follows:

λ∗
t = argmin

λt

Ex∈B ||x̂(t)
C(t−1) − Sd(d

(s)
t , x̂

(s)
t ;λt)||2

(13)

= argmin
λt

Ex∈B ||x̂(t)
C(t−1) − x̂

(s)
t−1||2, (14)

where d
(s)
t = Dθ(x̂

(s)
t , t) holds. The above equation is

solved for every timestep t of the student sampling, yielding
a set of optimal λt values (e.g., λ∗ = {λ∗

0, λ
∗
1, ..., λ

∗
T−1}).

Notably, λ∗ is estimated using only one batch of samples,
a process that typically takes just a few CPU minutes, and
can be reused for other batches later.

Algorithm 1 outlines the overall sampling procedure of
the D-ODE solver. When generating N samples, it is
normal to divide N into M batches and sequentially ex-
ecute the sampling process for each batch B, which con-
tains |B| = N/M samples (Line 3). For the first batch,
teacher sampling is conducted with denoising network Dθ

and ODE solver S for CT steps to obtain intermediate out-
puts, which will serve as target samples (Line 7). Subse-
quently, student sampling takes place for T steps with D-
ODE Solver Sd(λ) (Line 8). At this point, λ∗ is estimated
and saved for each timestep by solving Eq. (14) (Line 9).
Starting from the second batch onwards, sampling can pro-
ceed using the frozen denoising network Dθ and D-ODE
solver Sd(λ

∗) (Line 9). It is important to note that the
student’s samples can be generated in just T steps, which
exhibits similar quality to the teacher’s samples generated
over CT steps.

Algorithm 1 Sampling with D-ODE solver

1: Pre-trained denoising network Dθ

2: ODE solver S, D-ODE solver Sd(λ)
3: Number of batches M with size |B|
4: Student sampling steps T , Teacher sampling steps CT
5: for m = 1, ...,M do
6: if m = 1 then
7: {x̂(t)

k }CT
k=0 = Teacher-Sampling(Dθ, S, CT )

8: {x̂(s)
k }Tk=0 = Student-Sampling(Dθ, Sd(λ), T )

9: Estimate λ∗ = {λ∗
1, λ

∗
2, ..., λ

∗
T } with Eq. (14)

10: end if
11: {x̂(s)

k }Tk=0 = Student-Sampling(Dθ, Sd(λ
∗), T )

12: Save sample x̂
(s)
0

13: end for

4. Experiments
In this section, we present a comprehensive evaluation of D-
ODE solvers in comparison to ODE solvers on diverse im-
age generation benchmarks at various resolutions, including
CIFAR-10 (32×32), CelebA (64×64), ImageNet (64×64
and 128 × 128), FFHQ (64 × 64), and LSUN bedroom
(256×256). Our experiments cover both noise and data pre-
diction models, each involving distinct sets of ODE solvers.
The Fréchet Inception Distance (FID) [7] is employed as
the evaluation metric, measured with 50K generated sam-
ples across various numbers of denoising function evalua-
tions (NFE), following the protocol of Lu et al. [15]. The
reported FID scores are averaged over three independent ex-
periment runs with different random seeds.

For the distillation of ODE solvers, we set the scale pa-
rameter to C = 10 and use a batch size of |B| = 100,
except for the LSUN bedroom dataset, where a batch size
of 25 is employed due to GPU memory constraints. It is
important to note that, unless explicitly specified, DDIM
serves as the primary teacher sampling method to guide
the student sampling. This choice is made considering that
certain ODE solvers employ multi-step approaches during
sampling, making it challenging to set their intermediate
outputs as targets for distillation. In contrast, DDIM gener-
ates a single intermediate output per denoising step, simpli-
fying the establishment of matching pairs between DDIM
targets and student predictions. Refer to the Supplementary
Material for detailed applications of D-ODE solvers and ab-
lation studies on the scale C and batch size |B|.

4.1. Noise Prediction Model

We apply D-ODE solvers to discrete-time ODE solvers em-
ployed in the noise prediction model, including DDIM [30],
iPNDM [41], DPM-Solver [15], and DEIS [41]. For DPM-
Solver and DEIS, we selected third-order methods. While
these ODE solvers were primarily evaluated with NFE
greater than 10, we also conduct experiments with ex-
tremely small NFE, such as 2 or 3, to assess the performance
of D-ODE solvers during the initial stages of the sampling
process.

Fig. 3 illustrates that D-ODE solvers outperform ODE
solvers, achieving lower FID in most NFEs. In Fig. 3a and
Fig. 3d, D-DDIM outperforms DDIM when NFE exceeds 5,
gradually converging to FID score similar to that of DDIM
as NFE increases. It is important to note that DDIM with
small NFE (2 or 5) lacks the capability to produce mean-
ingful images, which is also reflected in the performance of
D-DDIM. iPNDM, a high-order method that utilizes previ-
ous denoising outputs, consistently exhibits improvements
with the D-ODE solver formulation, except at 2 NFE. This
improvement is particularly notable for high-order meth-
ods like DPM-Solver3 and DEIS3. Specifically, D-DPM-
Solver3 effectively alleviates the instability associated with
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(a) CIFAR-10 (32× 32) (b) CIFAR-10 (32× 32) (c) ImageNet (128× 128)

(d) CelebA (64× 64) (e) CelebA (64× 64) (f) LSUN bedroom (256× 256)

Figure 3. Results on the noise prediction models. Image quality measured by FID ↓ with NFE ∈ {2, 5, 10, 25, 50, 100, 250}. For
DPM-Solver3 and DEIS3, we use 3 NFE instead of 2 NFE as the third-order method requires at least three denoising outputs. Dotted lines
denote ODE solvers while straight lines represent the applications of the D-ODE solver to them.

(a) CIFAR-10 (32× 32) (b) FFHQ (64× 64) (c) ImageNet (64× 64)

Figure 4. Results on the data prediction models. Image quality measured by FID ↓ with various NFE values (DDIM: {2, 5, 10, 25,
50, 100, 250} and EDM: {3, 5, 9, 25, 49, 99, 249}). Dotted lines denote ODE solvers and straight lines represent the applications of the
D-ODE solver to them.

multi-step approaches at extremely small NFE values, sur-
passing the performance of DPM-Solver3 by a significant
margin. While DEIS3 already provides a precise represen-
tation of the current denoising output through high-order
approximation, Fig. 3 illustrates that D-DEIS3 can further
enhance the approximation with parameter λ optimized for
each dataset through knowledge distillation. In Supplemen-
tary Matrial, we also show that applying D-ODE solvers is
effective for DPM-Solver++ [16].

4.2. Data Prediction Model

For experiments on data prediction models, we followed
the configuration outlined by Karras et al. [11]. We ap-
ply the D-ODE solver to DDIM, rebuilt based on this con-
figuration, and EDM [11], which employs Heun’s second-
order method. While Karras et al. [11] also re-implemented

Euler-based samplers in their paper, we choose not to in-
clude them in our experiments, as EDM demonstrates supe-
rior FID scores.

Fig. 4 demonstrates that D-ODE solvers outperform
ODE solvers, especially for smaller NFE. For instance, D-
DDIM with 25 NFE can produce samples comparable to
DDIM with 250 NFE in terms of FID, resulting in a speedup
of around 10 times. With increasing NFE, FID scores of
both ODE and D-ODE solvers asymptotically converge to
each other. Given that the performance of student sampling
is closely tied to that of teacher sampling, it is natural to ob-
serve similar FID scores for student and teacher sampling
with larger NFE. Moreover, it is worth noting that around
NFE 2, DDIM occasionally outperforms D-DDIM slightly.
This observation suggests that the 2-step DDIM may not
possess sufficient capacity to effectively distill knowledge
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Figure 5. Analysis on local and global characteristics. The top row illustrates the change of norm comparing ODE and D-ODE solvers.
The bottom row presents the update path of two randomly selected pixels in the images. The result of 1000-step DDIM is drawn as the
target trajectory and a 10-step sampler is conducted for ODE solvers and D-ODE solvers. The figures are generated from 1000 samples
using a noise prediction model trained on CIFAR-10.

Method D-EDM (Ours) CD [33] PD [27]

Time 2.55 187.25 106.16

Table 1. Comparison on computational time to achieve 3 FID.
The unit of time corresponds to the time required to generate 50k
samples with 10-step DDIM.

from teacher sampling, particularly when DDIM is already
generating noisy images (FID score exceeding 250).

4.3. Comparison with Previous Distillation Methods

The distillation process for D-ODE solvers typically re-
quires only a few CPU minutes, adding negligible compu-
tational overhead to the entire sampling process. In con-
trast, previous distillation techniques for diffusion mod-
els [20, 27, 33] necessitate the optimization of the entire pa-
rameters of the denoising network. As a result, these meth-
ods demand a substantial amount of training time for each
setting involving datasets, samplers, and networks.

Tab. 1 directly compares the computational times re-
quired by each distillation method to reach 3 FID on
CIFAR-10 given the same pre-trained denoising network.
The total time encompasses the distillation time following
their configurations and the sampling time to generate 50k
samples. For instance, D-EDM first optimizes λ and then
proceeds with the sampling process, while consistency dis-
tillation (CD) [33] and progressive distillation (PD) [27]
need numerous training iterations before executing a few-
step sampling.

The results clearly demonstrate that optimizing ODE
solvers instead of the denoising network can significantly
reduce computational time and resource requirements while

achieving comparable sample quality. It is important to
note that the results may vary depending on the training
configuration of CD and PD, as the majority of their time
is consumed during the distillation process. In this con-
text, our method aligns well with the recent trend of de-
mocratizing diffusion models by minimizing or circum-
venting extensive training that relies on a large number of
GPUs [5, 35, 37, 43]. Supplementary Material provides a
detailed explanation for distillation methods and additional
comparisons with other sampling methods.

5. Analysis

This section encompasses visualizations of the sampling
process and qualitative results. We initiate the exploration
with a visual analysis following the methodology of Liu
et al. [14], aiming to scrutinize both global and local char-
acteristics of the sampling process. Subsequently, we delve
into a comparison of the generated images produced by
ODE solvers and D-ODE solvers.

5.1. Visualization of Sampling Trajectory

To facilitate the interpretation of high-dimensional data, we
employ two distinct measures: the change in the norm as
a global feature and the change in specific pixel values as
a local feature, following the analysis scheme provided by
Liu et al. [14]. For reference, the norm of DDIM with 1000
steps is included as it adheres to the target data manifold.

In the top row of Fig. 5, the norm of D-ODE solvers
closely follows the trajectory traced by the norm of ODE
solvers. This observation suggests that D-ODE solvers re-
main within the high-density regions of the data, exerting
minimal influence on the ODE trajectory. This aligns with
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(a) ImageNet (64× 64)

(b) FFHQ (64× 64)

Figure 6. Qualitative results. Comparison of generated samples between ODE and D-ODE solvers. Data prediction models are used with
increasing NFE (DDIM and D-DDIM: {2, 5, 10, 25, 50}, EDM and D-EDM: {3, 5, 9, 25, 49}). D-ODE solvers generate more realistic
images compared to ODE solvers, especially for small NFE.

our design objective for D-ODE solvers, ensuring that the
new denoising output matches the mean of the denoising
output of ODE solvers, as discussed in Sec. 3.2.

In the bottom row of Fig. 5, two pixels are randomly
selected from the image, and the change in their values is
depicted, referencing the 1000-step DDIM as the target.
Clearly, the pixel values of D-ODE solvers exhibit closer
proximity to the target trajectory than those of ODE solvers.
The results demonstrate that smaller-step D-ODE solvers
can generate high-quality local features in samples, com-
parable to larger-step DDIM. It also emphasizes the impor-
tance of the data-specific parameter λ to further reduce the
fitting error of the score function. In conclusion, D-ODE
solvers can achieve high-quality image generation by guid-
ing their pixels toward the desired targets while remaining
faithful to the original data manifold.

5.2. Qualitative Analysis

In Fig. 6, we present a comparison of the generated images
produced by ODE and D-ODE solvers using data prediction
models trained on the ImageNet and FFHQ datasets. Gen-
erally, our method exhibits an improvement in image qual-
ity over ODE solvers, particularly for smaller NFE. DDIM
tends to generate blurry images with indistinct boundaries,
while D-DDIM produces clearer images with more promi-
nent color contrast. EDM, especially with NFE smaller than
5, generates images characterized by high noise levels and
artifacts, leading to FID scores exceeding 250. In contrast,
D-EDM manages to generate relatively clear objects even

at 5 NFE. Additional analysis figures and qualitative results
can be found in the Supplementary Material.

6. Conclusion

In this study, we present D-ODE solvers, an innovative dis-
tillation method for diffusion models leveraging the princi-
ples of existing ODE solvers. Formulated by introducing a
single parameter to ODE solvers, D-ODE solvers efficiently
distill knowledge from teacher sampling with larger steps
into student sampling with smaller steps, requiring mini-
mal additional training. Our experiments showcase the ef-
ficacy of D-ODE solvers in enhancing the FID scores of
state-of-the-art ODE solvers, especially in scenarios involv-
ing smaller NFE. Visual analyses provide insights into both
global and local features of our method, revealing substan-
tial improvements in image quality.

While the magnitude of improvement tends to be
marginal or limited for large NFE values, eventually con-
verging to the FID score of the teacher sampling process,
D-ODE solvers remain an attractive option for augment-
ing sample quality with negligible additional computational
cost. Their applicability extends across various samplers,
datasets, and networks. However, for the generation of
high-resolution images, the single-parameter nature of D-
ODE solvers may prove insufficient. Exploring the incorpo-
ration of local-specific parameters, achieved through image
grid divisions or latent space manipulations [25], presents
an intriguing avenue for future research.
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