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Abstract

Semantic segmentation has innately relied on extensive
pixel-level annotated data, leading to the emergence of un-
supervised methodologies. Among them, leveraging self-
supervised Vision Transformers for unsupervised semantic
segmentation (USS) has been making steady progress with
expressive deep features. Yet, for semantically segment-
ing images with complex objects, a predominant challenge
remains: the lack of explicit object-level semantic encod-
ing in patch-level features. This technical limitation often
leads to inadequate segmentation of complex objects with
diverse structures. To address this gap, we present a novel
approach, EAGLE, which emphasizes object-centric repre-
sentation learning for unsupervised semantic segmentation.
Specifically, we introduce EiCue, a spectral technique pro-
viding semantic and structural cues through an eigenbasis
derived from the semantic similarity matrix of deep image
features and color affinity from an image. Further, by incor-
porating our object-centric contrastive loss with EiCue, we
guide our model to learn object-level representations with
intra- and inter-image object-feature consistency, thereby
enhancing semantic accuracy. Extensive experiments on
COCO-Stuff, Cityscapes, and Potsdam-3 datasets demon-
strate the state-of-the-art USS results of EAGLE with accu-
rate and consistent semantic segmentation across complex
scenes.

1. Introduction
Semantic segmentation plays a pivotal role in modern

vision, fundamentally advancing an array of diverse ar-
eas including medical imaging [21, 40], autonomous driv-
ing [14, 46], and remote sensing imagery [12, 28]. Never-
theless, its reliance on labeled data, while common across
nearly all vision tasks, is especially problematic due to the
laborious and time-consuming process of pixel-level anno-
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Figure 1. We introduce EAGLE, Eigen AGgregation LEarning
for object-centric unsupervised semantic segmentation. (a) We
first leverage the aggregated eigenvectors, named EiCue, to ob-
tain the semantic structure knowledge of object segments in an im-
age. Based on both semantic and structural cues from the EiCue,
we compute object-centric contrastive loss to learn object-level se-
mantic representation. (b) A visual comparison between EAGLE
and other methods. Our object-level semantic segmentation results
robustly identify objects with complex semantics (e.g., blanket
with vivid stripe patterns) by exploiting strong semantic structure
cues from EiCue.

tation. In response to this challenge, various studies in se-
mantic segmentation tasks have drifted away from relying
solely on human-labeled annotations by exploring weakly-
supervised [1, 23, 26, 39, 48], semi-supervised [2, 27, 37],
and unsupervised semantic segmentation (USS) methodolo-
gies [8, 15, 16, 20, 22, 36, 43, 52].

Among these learning schemes, the unsupervised ap-
proach of USS clearly stands as the most challenging case.
Specifically, compared to the classical unsupervised seg-
mentation methods (e.g., K-means clustering) which pro-
duce segments without explicit semantics, USS additionally
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aims to derive semantically consistent local features (e.g.,
patch-level features) that aid the further class assignment
post-steps via clustering and the Hungarian matching algo-
rithm. That is, semantically plausible local features result in
accurate semantic segmentation results (e.g., Fig. 1b), but in
USS, this must be achieved without any labels.

Despite the glaring challenge, steady progress has been
shown in USS. For example, initial pioneering works have
emerged to maximize the mutual information across the
two different views of a single image [20, 36]. Recently,
network-based techniques such as STEGO [15] have fo-
cused on deriving patch-level semantic features with a self-
supervised pretrained model [6], showing a significant im-
provement compared to previous methods [8, 20, 52]. How-
ever, while these methodologies have advanced USS, unre-
solved shortcomings still remain.

In particular, the recent network-based methods often
leverage a self-supervised Vision Transformer (ViT) to
learn patch-level features. While their patch-level fea-
tures proved to be useful for further USS inference steps
(e.g., K-means), the underlying object-level semantics are
not explicitly imposed in these patch-level features. To
grasp the “object-level semantics”, consider an example of
a blanket object as shown in Fig. 1b second row. As with
any object, blanket may easily appear with varying col-
ors and textures across different images. Without proper
object-level semantics, features corresponding to varying
regions of blanket may result in vastly different feature
representations. Ideally, though, the features corresponding
to all kinds of blanket should be mapped to similar fea-
tures, namely, object-level semantics. Thus, without care-
fully imposed object-level semantics, complex objects with
diverse structures and shapes may easily be partitioned into
multiple segments with wrong class labels or be merged
with nearby segments of different class labels. Thus, in
USS, an immense effort must be paid to learn the local fea-
tures (e.g., patch-level) with strong object-level semantics.

Our object-centric representation learning for USS aims
to capture such object-level semantics. Specifically, we first
need a semantic or structure cue in the object-centric view.
Several previous works utilized clustering methods such as
K-means or superpixel to obtain semantic cues [19], how-
ever, they mainly fixated on the generic image patterns, not
the object’s semantic or structural representation. Here, we
propose EiCue which provides semantic and structural cues
of objects via eigenbasis. Specifically, we utilize the seman-
tic similarity matrix obtained from the projected deep im-
age features obtained from ViT [6, 13] and the color affinity
matrix of the image to construct the graph Laplacian. The
corresponding eigenbasis captures the underlying semantic
structures of objects [29, 55], providing soft guidance to the
subsequent object-level feature refinement step.

Recall that accurate object-level semantics of an object

must be consistent across images. Our object-centric con-
trastive learning framework explicitly imposes these traits
with a novel object-level contrastive loss. Specifically,
based on the object cues from EiCue, we derive learnable
prototypes for each object which enables intra- and inter-
image object-feature consistency. Through this comprehen-
sive learning process, our model effectively captures the
inherent structures within images, allowing it to precisely
identify semantically plausible object representations, the
key to advancing modern feature-based USS.

Contributions. Our main contributions are as follows:
• We propose EiCue, using a learnable graph Laplacian, to

acquire a more profound understanding of the underlying
semantics and structural details within images.

• We design an object-centric contrastive learning frame-
work that capitalizes on the spectral basis of EiCue to
construct robust object-level feature representations.

• We demonstrate that our EAGLE achieves state-of-the-
art performance on unsupervised semantic segmentation,
supported by a series of comprehensive experiments.

2. Related Work
2.1. Unsupervised Semantic Segmentation

Semantic segmentation plays a crucial role in vision by
assigning distinct class labels to pixels. Yet, while the seg-
mentation performance strongly correlates with the label
quality, acquiring precise pixel-level ground truth labels is
a challenge on its own, especially for images with com-
plex structures. This naturally led to numerous attempts
to perform semantic segmentation in an unsupervised man-
ner [8, 15, 16, 20, 22, 36, 43, 52], that is, with no labels.
For instance, early works such as IIC [20] and AC [36]
utilized mutual information, while subsequent approaches
like InfoSeg [16] and PiCIE [8] integrated diverse features
for enhanced pixel learning. Recent studies have adopted
self-supervised, pretrained ViT models like DINO [6] for
top-down feature extraction. Namely, STEGO [15] demon-
strated a major step forward by distilling unsupervised fea-
tures into discrete semantic labels with the DINO backbone.
HP [43] interestingly utilizes contrastive learning to en-
hance semantic correlations among patch-level regions, but
this patch-level (local) refinement holds little object-level
understanding.

2.2. Spectral Techniques for Segmentation
Predating the aforementioned methods for semantic seg-

mentation, spectral techniques have long been offering in-
sights into diverse segmentation challenges in vision. Span-
ning some early pioneering works [30, 34, 38, 45] to con-
temporary efforts [3, 11, 24, 32, 44], these techniques share
a common aim: to exploit the intrinsic spectral signatures
embedded within image regions. These graph-theoretic ap-
proaches are methodologically influenced by the affinity
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Figure 2. The pipeline of EAGLE. Leveraging the Laplacian matrix, which integrates hierarchically projected image key features and
color affinity, the model exploits eigenvector clustering to capture object-level perspective cues defined as Meicue and M̃eicue. Distilling
knowledge from Meicue, our model further adopts an object-centric contrastive loss, utilizing the projected feature Z and Z̃. The learnable
prototype Φ assigned from Z and Z̃, acts as a singular anchor that contrasts positive objects and negative objects. Our object-centric
contrastive loss is computed in two distinct manners: intra(Lobj)- and inter(Lsc)-image to ensure semantic consistency.

matrix quality, which gave rise to recent methods utiliz-
ing the network features from the pretrained deep models.
For instance, Deep Spectral Methods [33] builds power-
ful Laplacian eigenvectors from the feature affinity matrix,
while EigenFunction [10] exploits the network-based learn-
able eigenfunctions to produce spectral embeddings. De-
spite steadily discovering the effectiveness of spectral meth-
ods on deep features for capturing complex object struc-
tures, their object-level semantics still require additional
methodological efforts, e.g., contrastive learning.

2.3. Object-centric Contrastive Learning
Contrastive learning approaches aim to maximize feature

similarities between similar units while minimizing them
between dissimilar ones. In the task of semantic segmen-
tation, patch-level representation learning [35, 49, 51] is
widely used. However, this approach tends to overempha-
size fine details while neglecting high-level concepts (i.e.,
semantic relations between objects). This leads object-level
contrastive learning methods [17, 41, 42, 47, 50, 53, 54]
to focus on balancing detailed perception with an object-
centric view, identifying objects in an unsupervised man-
ner. For instance, MaskContrast [47] and COMUS [53]
use unsupervised saliency to make pixel embeddings, while
Odin [18] and DetCon [17] utilize K-means clustering and
heuristic masks for sample generation, respectively. Re-
fining this, SlotCon [50] assigned pixels to learn slots for
semantic representation, and DINOSAUR [41] further im-
proved it by reconstructing self-supervised pretrained fea-
tures in the decoder, instead of the original inputs. However,
these methods [41, 50] rely solely on slots, potentially over-
looking high-level image features. In contrast, our approach
distills knowledge from clustered eigenvectors derived from

a similarity matrix-based Laplacian capturing their object
semantic relationships.

3. Methods
As we begin describing our full pipeline shown in Fig. 2,

let us first cover the core USS framework based on pre-
trained models as in prior works [15, 43].

3.1. Preliminary
Unlabeled Images. Our approach is built exclusively
upon a set of images, without any annotations, denoted as
X = {xb}Bb=1, where B is the number of training im-
ages within a mini-batch. We also utilize a photometric
augmentation strategy P to obtain an augmented image set
X̃ = {x̃b}Bb=1 = P (X).
Pretrained Features K. Then, for each input image xb,
we use a self-supervised pretrained vision transformer [6]
as an image encoder F to obtain hierarchical attention key
features from the last three blocks as KL−2 = FL−2(xb),
KL−1 = FL−1(xb), KL = FL(xb), where L−2, L−1, L
is the third-to-last layer, the second-to-last layer, and the last
layer, respectively. Then, we concatenate them into a single
attention tensor K = [KL−2;KL−1;KL] ∈ RH×W×DK .
Similarly, we apply the same procedure for the augmented
image x̃b and obtain its attention tensor K̃ ∈ RH×W×DK .
Semantic Features S. Although K contains some struc-
tural information about the objects based on the attention
mechanism, this is known for insufficient semantic infor-
mation to be considered for direct inference. Thus, for fur-
ther feature refinement, we compute the semantic features
S = Sθ(K) ∈ RH×W×DS and S̃ = Sθ(K̃) ∈ RH×W×DS ,
where Sθ : RH×W×DK → RH×W×DS is a learnable non-
linear segmentation head. For brevity, the total number of
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patches, denoted as H ×W , will be referred to as N .
Inference. During the inference time, given a new image,
its semantic feature S becomes the basis of further cluster-
ing for the final semantic segmentation output with conven-
tional evaluation setups such as the K-means clustering and
linear probing. Thus, as with prior pretrained feature-based
USS works [15, 43], training Sθ to output strong semantic
features S in an unsupervised manner is the basic frame-
work of contemporary USS frameworks. We next describe
the remainder of the pipeline in Fig. 2 which corresponds
to our methodological contributions for producing power-
ful object-level semantic features.

3.2. EiCue via the Eigen Aggregation Module
Intuition tells us that the “semantically plausible” object-

level segments are groups of pixels precisely capturing the
object structure, even under complex structural variance.
For instance, a car segment must contain all of its parts
including the windshield, doors, wheels, etc. which may
all appear in different shapes and views. However, without
pixel-level annotations that provide object-level semantics,
this becomes an extremely challenging task of inferring the
underlying structure with zero object-level structural prior.

From this realization, our model EAGLE first aims to de-
rive a strong yet simple semantic structural cue, namely,
EiCue, based on the eigenbasis of the feature similarity
matrix as illustrated in Fig. 3. Specifically, we use the
well-known Spectral Clustering [7, 34, 45] to obtain un-
supervised feature representations that capture the under-
lying non-linear structures for handling data with complex
patterns. This classically operates only in the color space
but may easily extend to utilize the similarity matrix con-
structed from any features. We observed that such a spectral
method becomes especially useful for complex real-world
images as in Fig. 4.
EiCue Construction. Let us describe the process of con-
structing EiCue in detail as shown in Fig. 3. The overall
framework generally follows the vanilla spectral clustering:
(1) from an adjacency matrix A, (2) construct the graph
Laplacian L, and (3) perform the eigendecomposition on L
to derive the eigenbasis V from which the eigenfeatures are
used for the clustering. We describe each step below.

3.2.1 Adjacency Matrix Construction
Our adjacency matrix consists of two components: (1)

color affinity matrix and (2) semantic similarity matrix.
(I) Color Affinity Matrix Acolor: The color affinity matrix
leverages the RGB values of the image x. The color affinity
matrix is computed by the color distance. It utilizes the Eu-
clidean distance between patches, where p and q are specific
patch positions within the image. Here, ẍ ∈ RH×W×3 de-
notes a resized version of x, scaled from its original image
resolution to patch resolution, to ensure compatibility with
the dimensions of other adjacency matrices. The resulting
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Figure 3. An illustration of the EiCue generation process. From
the input image, both color affinity matrix Acolor and semantic sim-
ilarity matrix Aseg are derived, which are combined to form the
Laplacian Lsym. An eigenvector subset V̂ of Lsym are clustered to
produce EiCue.

color affinity matrix, Acolor ∈ RN×N thus captures the pair-
wise relationship between the patches based on the colors.
Specifically, we use the RBF kernel as the distance func-
tion Acolor(p, q) = exp

(
−∥ẍ(p)− ẍ(q)∥2/2σc

2
)

where
σc > 0 is a free hyperparameter. Further, to ensure that
only nearby patches influence each other’s affinity values,
we hard-constrain the maximum distance of the patch pairs
such that we only compute the affinity between the patch
pairs with a predefined spatial distance.
(II) Semantic Similarity Matrix Aseg: The semantic sim-
ilarity matrix, denoted as Aseg ∈ RN×N , is formed by the
product of tensor S and its transpose S⊤. Tensor S is de-
rived by hierarchically concatenating key attention features
from the last three layers of a pretrained vision transformer,
as processed through the segmentation head Sθ.
(III) Adjacency Matrix A: The final adjacency matrix
A is the sum of Acolor and Aseg: A = Acolor + Aseg,
which is also applicable to Ã. Our adjacency matrix amal-
gamates the high-level color information and the network-
based deep features to characterize semantic-wise relations.
The use of the image-based Acolor preserves the image’s
structural integrity and also complements the contextual in-
formation of the image. Following this, the incorporation of
the learnable tensor S for the Aseg further strengthens this
aspect, enhancing the semantic interpretation of the object
without compromising the structural integrity and serving
as a vital cue for our learning process.

3.2.2 Eigendecomposition
To construct EiCue based on A, a Laplacian matrix is

created. Formally, the Laplacian Matrix is expressed as
L = D − A, where D is the degree matrix of A defined
as D(i, i) =

∑N
j=1 A(i, j). In our approach, we utilize

the normalized Laplacian matrix for its enhanced cluster-
ing capabilities. The symmetric normalized Laplacian ma-
trix Lsym are defined as Lsym = D− 1

2LD− 1
2 . Then, via

eigendecomposition on Lsym, the eigenbasis V ∈ RN×N

is computed, where each column corresponds to a unique
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eigenvector. We then extract k eigenvectors correspond-
ing to the k smallest eigenvalues and concatenate them into
V̂ ∈ RN×k where the ith row corresponds to the k dimen-
sional eigenfeature of the ith patch.

3.2.3 Differentiable Eigen Clustering
After obtaining eigenvectors V̂, we perform the eigen-

vectors clustering process and extract the EiCue denoted as
Meicue ∈ RN . To cluster eigenvectors, we leverage a mini-
batch K-means algorithm based on cosine distance [31] be-
tween V̂ and C, denoted as P = V̂C. Centers of clusters
C ∈ Rk×C are composed of learnable parameters. To learn
C, we further trained with a loss defined as follows:

Lx
eig = − 1

N

N∑
i=1

( C∑
c=1

ΨicPic

)
, (1)

where C denotes pre-defined number of classes, Ψ :=
softmax(P) and Pic and Ψic represents the ith patch and
the cth cluster number of P and Ψ. We apply same pro-
cedure to augmented image x̃ to get Lx̃

eig. By minimizing
Leig = 1

2 (L
x
eig +Lx̃

eig), we can obtain centers of clusters that
enable more effective clustering. Then we obtain EiCue as

Meicue(i) = argmax
c

(
Pic − log

( C∑
c′=1

exp(Pic′)

))
. (2)

As the precision of cluster centroids improves, EiCue fa-
cilitates the mapping of patch i to its corresponding ob-
ject based on semantic structure. This serves as a mean-
ingful cue to stress semantic distinctions between different
objects, thereby enhancing the discriminative power of the
feature embeddings.
Remark. While similar to previous work [33] in using
eigendecomposition, our approach differs by enhancing fea-
ture vectors S with a trainable segmentation head, unlike
their reliance on static vectors (i.e., K). Our method en-
hances S learnable and adaptable via differentiable eigen
clustering, allowing the graph Laplacian and object seman-
tics to evolve. This dynamic integration of EiCue into the
learning process distinctly separates our methodology from
prior applications.

3.3. EiCue-based ObjNCELoss
For a successful semantic segmentation task, it is im-

portant not only to classify the class of each pixel accu-
rately but also to aggregate object representation and cre-
ate a segmentation map that reflects object semantic repre-
sentations. From this perspective, learning relationships in
an object-centric view is especially crucial in semantic seg-
mentation tasks. To capture the complex relationships be-
tween objects, our approach incorporates an object-centric
contrastive learning strategy, named ObjNCELoss, guided
by EiCue. This strategy is designed to refine the discrimina-
tive capabilities of feature embeddings S, emphasizing the
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Figure 4. Visualizing eigenvectors derived from S in the Eigen
Aggregation Module. These eigenvectors not only distinguish dif-
ferent objects but also identify semantically related areas, high-
lighting how EiCue captures object semantics and boundaries ef-
fectively.

distinctions among various object semantics. Before pro-
ceeding, we map both the projected feature Z ∈ RN×DZ

and Z̃ ∈ RN×DZ , using the linear projection head Zξ, de-
rived from the reshaped S ∈ RN×DS and S̃ ∈ RN×DS ,
respectively. While the actual dimension sizes of DS and
DZ are kept the same, we use different notations for ease of
explanation.

3.3.1 Object-wise Prototypes
To extract the representative object level semantic fea-

tures from projected feature Z, we construct adaptable pro-
totypes Φl based on the object l in aforementioned EiCue.
As we describe next, semantically representative prototypes
become the anchors for either pulling objects with similar
semantics while pushing away the different ones.

Let us describe how Φ is derived, which represents ob-
ject semantics from Z. We first update the object-wise pro-
totypes through the projected feature Z and a given Meicue,
derived from the clustered eigenbasis. Formally, for each
object l obtained from Meicue, the mask Ml is defined as
Ml(i) = 1 if Meicue(i) = l, and 0 otherwise, where i rep-
resents each position in Meicue. Then, applying the mask
Ml to the projected feature tensor Z gives Zl = Z ⊙ Ml,
where ⊙ denotes the Hadamard product and Zl represents
a collection of feature representations from Z correspond-
ing to object l. Next, we compute medoid to select a single
vector from Zl, which then becomes the prototype Φl. Let
Il be the set of indices where M (i∈Il)

l = 1 to only consider
the indices of object l. Z(i)

l indicates the i-th feature vector
of Zl. Then, the prototype Φl from the masked tensor Zl is

Φl = Z
(m∗)
l for m∗ = argmin

m∈Il

∑
i∈Il

∥∥Z(m)
l − Z

(i)
l

∥∥
2
. (3)

Thus, Φl acts as the semantic vector of object l, serving as
an anchor for the following object-centric contrastive loss.
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Figure 5. A qualitative comparison of the (a) COCO-Stuff [4] and (b) Cityscapes [9] datasets trained using ViT-S/8 and ViT-B/8 as a
backbone, respectively. The comparison included previous state-of-the-art USS approaches, STEGO [15], HP [43], and ours.

3.3.2 Object-centric Contrastive Loss
Once we compute prototypes, we then step towards

object-centric contrastive loss between prototypes Φ and
feature vectors Z. Specifically, we compute object-centric
contrastive loss defined as follows:

Lx→x
obj =

1

N

N∑
i=1

w
(i)

obj

[
− log

(
exp((Z

(i)
l · Φl)/τ)∑C

j=1,j ̸=l exp((Zj · Φl)/τ)

)]
,

(4)
where C is the total number of unique predicted objects in
Meicue, (·) denotes the cosine similarity, and τ > 0 is the
temperature scalar. To emphasize the influence of feature
vectors with high similarity and direct the model’s focus
toward them, we weigh the loss based on the similarity in-
formation between vectors. The weight w(i)

obj is defined as

w
(i)
obj = (

∑N
j=1 Ksim(i, j))/N, where Ksim ∈ RN×N repre-

sents the similarity matrix defined as Ksim = KK⊤.
While Eq. (4) aggregates the object-level features based

on the EiCue assignment, we note that another kind of ro-
bust consistency could be cleverly imposed with our photo-
metric augmented image x̃. That is, since the photometric
augmentation does not apply structural changes, the aug-
mented image x̃ and x are structurally identical, allowing
us to make the following important assumption: the vec-
tors in the same positions of Z and Z̃ should have similar
object-level semantics. This assumption ultimately allows
us to create a new masked Z̃ (Fig. 2, Z̃ in green box) of x̃
based on Meicue of x. Thus, we apply the contrastive loss to
the augmented image x̃, based on the prototypes Φ from the
non-augmented image x to guide the model to learn global
semantic consistency. To illustrate this concept, our seman-
tic consistency contrastive loss is defined as

Lx→x̃
sc =

1

N

N∑
i=1

w
(i)

obj

[
− log

(
exp((Z̃

(i)
l · Φl)/τ)∑C

j=1,j ̸=l exp((Z̃j · Φl)/τ)

)]
,

(5)

where Z̃
(i)
l notes the i-th feature vector of projected feature

Z̃ for object l. Concretely, we can formulate our object-
centric contrastive loss as Lx→x̃

nce = λobjLx→x
obj + λscLx→x̃

sc ,
where 0 < λobj < 1 and 0 < λsc < 1 are hyperparameters
that adjust the strength of each loss. Since the loss function
Lx→x̃

nce is asymmetric, we also take into account the opposite
case as Lx̃→x

nce = λobjLx̃→x̃
obj +λscLx̃→x

sc . Therefore, the final
object-centric contrastive loss function (ObjNCELoss) that
we optimize is as follows:

Lx↔x̃
nce = Lx→x̃

nce + Lx̃→x
nce . (6)

3.4. Total Objective
To enhance the stability of the training process from the

outset, we additionally employ a correspondence distilla-
tion loss [15], Lcorr (see Supp D.1. for a detailed explana-
tion). In total, we minimize the following objective Ltotal:

Ltotal = λnceLx↔x̃
nce + (1− λnce)Lcorr + λeigLeig, (7)

where 0 ≦ λnce ≦ 1 and 0 ≦ λeig ≦ 1 are hyperparameters.
Here, λnce starts from zero and increases rapidly, indicating
the growing influence of Lx↔x̃

nce during training.

4. Experiments
In this section, we first discuss the implementation de-

tails, including dataset configuration, evaluation protocols,
and detailed experimental settings. Then, we evaluate our
proposed method, EAGLE, both qualitatively and quantita-
tively while making a fair comparison with existing state-
of-the-art methods. We also demonstrate the effectiveness
of our proposed method through an ablation study. See the
supplementary material for additional details.
4.1. Experimental Settings
Implementation Details. We use DINO [6] pretrained vi-
sion transformer F which is kept frozen during the training
process as in the prior works [15, 43]. The training sets are
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Figure 6. Comparison between K-means and EiCue. The bot-
tom row presents EiCue, highlighting its superior ability to cap-
ture subtle structural intricacies and understand deeper semantic
relationships, which is not as effectively achieved by K-means.

resized and five-cropped to 244 × 244. For segmentation
head Sθ, we use two layers of MLP with ReLU [15, 43],
and for projection head Zξ we constructed a single lin-
ear layer [43]. All backbones employed an embedding di-
mension DS and DZ of 512. For the EiCue, we extract
4 eigenvectors from the eigenbasis V. In the inference
stage, we post-process the segmentation map with Dense-
CRF [15, 25, 43]. See supplement for more details.
Datasets. We evaluate on (1) COCO-Stuff [4], (2)
Cityscapes [9], and (3) Potsdam-3 [20] datasets, in line with
methodologies established in prior works [8, 15, 20, 43]. (1)
The COCO-Stuff dataset is composed of its detailed pixel-
level annotations, facilitating comprehensive various object
understanding, while (2) Cityscapes presents diverse urban
street scenes. (3) The Potsdam-3 dataset is composed of
satellite imagery. Following the class selection protocols
from previous studies [8, 15, 20, 43], we use 27 classes
from both COCO-Stuff and Cityscapes. For Potsdam-3, we
use all 3 classes (see supplement for result).
Evaluation Details. To align with established benchmarks,
we adopt the evaluation protocols of prior works [15, 43].
Our evaluation includes (1) a linear probe, assessing rep-
resentational quality with a supervised linear layer on the
unsupervised model, and (2) clustering through semantic
segmentation via minibatch K-means based on cosine dis-
tance [31], without ground truth, compared against it using
Hungarian matching. We measure performance using pixel
accuracy (Acc.) and mean Intersection over Union (mIoU).

4.2. Evaluation Results
Here, we carefully compare our proposed method to ex-

isting USS works in both qualitative and quantitative ways.
We mainly set up two representative baselines [15, 43] from
the literature which share the same evaluation protocols.

Table 1. Quantitative results on the COCO-Stuff dataset [4].

Method Backbone
Unsupervised Linear
Acc. mIoU Acc. mIoU

DC [5] R18+FPN 19.9 - - -
MDC [5] R18+FPN 32.2 9.8 48.6 13.3
IIC [20] R18+FPN 21.8 6.7 44.5 8.4
PiCIE [8] R18+FPN 48.1 13.8 54.2 13.9
PiCIE+H [8] R18+FPN 50.0 14.4 54.8 14.8
SlotCon [50] R50 42.4 18.3 - -
DINO [6] ViT-S/16 22.0 8.0 50.3 18.1
+ STEGO [15] ViT-S/16 52.5 23.7 70.6 34.5
+ HP [43] ViT-S/16 54.5 24.3 74.1 39.1
+ EAGLE (Ours) ViT-S/16 60.1 24.4 75.2 42.5
DINO [6] ViT-S/8 28.7 11.3 68.6 33.9
+ TransFGU [52] ViT-S/8 52.7 17.5 - -
+ STEGO [15] ViT-S/8 48.3 24.5 74.4 38.3
+ HP [43] ViT-S/8 57.2 24.6 75.6 42.7
+ EAGLE (Ours) ViT-S/8 64.2 27.2 76.8 43.9

Table 2. Quantitative results on the Cityscapes dataset [9].

Method Backbone
Unsupervised Linear
Acc. mIoU Acc. mIoU

MDC [5] R18+FPN 40.7 7.1 - -
IIC [20] R18+FPN 47.9 6.4 - -
PiCIE [8] R18+FPN 65.5 12.3 - -
DINO [6] ViT-S/8 34.5 10.9 84.6 22.8
+ TransFGU [52] ViT-S/8 77.9 16.8 - -
+ HP [43] ViT-S/8 80.1 18.4 91.2 30.6
+ EAGLE (Ours) ViT-S/8 81.8 19.7 91.2 33.1
DINO [6] ViT-B/8 43.6 11.8 84.2 23.0
+ STEGO [15] ViT-B/8 73.2 21.0 90.3 26.8
+ HP [43] ViT-B/8 79.5 18.4 90.9 33.0
+ EAGLE (Ours) ViT-B/8 79.4 22.1 91.4 33.4

Quantitative Evaluation: COCO-Stuff. In Table 1, our
EAGLE method sets new benchmarks on the COCO-Stuff
dataset. (I) With the ViT-S/8 backbone, EAGLE showcases
substantial improvements over existing methods in unsuper-
vised accuracy, with gains of +15.9 over STEGO [15] and
+7.0 over HP [43]. The unsupervised mIoU of EAGLE also
significantly outperforms other methods: +2.7 over STEGO
and +2.6 over HP. The linear accuracy and mIoU of EAGLE
both bring notable improvements over STEGO (+2.4 Acc.
and +5.6 mIoU) and HP (+1.2 Acc. and +1.2 mIoU). Com-
pared to SlotCon [50], which also emphasizes object-level
representations, our model excels with a +21.8 and +8.9 in
unsupervised mIoU and accuracy respectively. (II) With the
ViT-S/16 backbone, EAGLE maintains its dominance, gain-
ing +7.6 over STEGO and +5.6 over HP in unsupervised
Acc. The linear accuracy and mIoU of EAGLE outperforms
STEGO (+4.6 Acc. and +8.0 mIoU) and HP (+1.1 Acc. and
+3.4 mIoU) as well.

Quantitative Evaluation: Cityscapes. As shown in Ta-
ble 2, our evaluations on the Cityscapes dataset show that
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Table 3. Ablation results on the COCO-Stuff dataset [4].

Exp. Lcorr
x → x̃ x̃ → x Meicue Mkm

Unsupervised
# Lobj Lsc Lobj Lsc Acc. mIoU
1 ✓ 46.9 21.8
2 ✓ ✓ ✓ ✓ 59.3 23.2
3 ✓ ✓ ✓ ✓ 62.1 25.1
4 ✓ ✓ ✓ ✓ 61.6 24.8
5 ✓ ✓ ✓ ✓ 62.9 26.1
6 ✓ ✓ ✓ ✓ ✓ ✓ 55.1 17.0
7 ✓ ✓ ✓ ✓ ✓ ✓ 64.2 27.2

EAGLE notably excels in both ViT-S/8 and ViT-B/8 back-
bones. (I) For the ViT-S/8 backbone, EAGLE has achieved
significant unsupervised performance over STEGO (+3.9
Acc. and +2.9 mIoU) and HP (+1.7 Acc. and +1.3 mIoU).
(II) For the ViT-B/8 backbone, EAGLE significantly im-
proves both unsupervised Acc. and mIoU. The Cityscapes
dataset innately exhibits highly imbalanced pixel-level class
distributions, like the predominance of sky over traffic
light pixels, typically forces a trade-off between Acc.
and mIoU [43], as seen with STEGO and HP excelling in
each metric respectively. However, EAGLE effectively bal-
ances these competing metrics, showcasing strong perfor-
mance in both areas despite such challenges.
Qualitative Analysis. In Fig. 5, we also qualitatively com-
pare our method to previous state-of-the-art models [15, 43]
on the COCO-Stuff and Cityscapes datasets trained us-
ing ViT-S/8 and ViT-B/8 backbone, respectively. Our
approach outperforms baselines by accurately segment-
ing objects and preserving details, unlike STEGO which
tends to segment multiple elements within a single object
furniture or road, and HP neglects certain small ob-
jects sports(kite) or traffic sign. Our model,
however, is trained at the object level with an understanding
of the structure of the image, which not only comprehends
the overall layout but also ensures no objects are missed.

4.3. Ablation Study
We further analyze our model with ablation studies and

discuss the results based on the full ablation results in Ta-
ble 3 denoted as Exp. #1 to Exp. #7. We primarily con-
ducted our experiments using the COCO-Stuff dataset us-
ing the DINO pretrained ViT-S/8 model. For more details,
please refer to the supplementary material.
Effect of EiCue. We validate the effectiveness
of EiCue (Meicue) by comparing the performance of
our EiCue-enhanced method (Exp. #7) against a K-
means (Mkm) approach (Exp. #6) in Table 3. The EiCue
result shows a notable improvement, capturing fine struc-
tural details that K-means misses. Fig. 6 visually demon-
strates how EAGLE better identifies object semantics and
structures compared to K-means.
ObjNCE Loss. Table 3 shows how different loss compo-
nents affect performance. The full model (Exp. #7) outper-
forms others, highlighting the effectiveness of combining
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Figure 7. (a) Analysis of hierarchical attention with the following
layer combinations (layer numbers in square brackets): (A): [1-6-
12], (B): [12], (C): [11-12], (D): [10-11-12], and (E): [9-10-11-
12]. (b) Analysis of eigengap to identify the optimal k for eigen-
basis clustering, selected at the dashed line with maximal eigengap
(i.e., the gap between two consecutive eigenvalues).

all components. Notably, using Lobj alone (Exp. #3) signif-
icantly improves upon the baseline, underlining the impor-
tance of object-focused representation. The inclusion of Lsc
further refines quality, as evidenced by comparing Exp. #3
with Exp. #7. Additionally, the combined use of both Lnce
directions (Exp. #7) shows a synergistic effect over using
them individually (Exp. #4 and Exp. #5).
Combination of Hierarchical Attention and Eigengap.
In Fig. 7a, we present results from using various combina-
tions of hierarchical attention. The combination of the third-
to-last, second-to-last, and last layers from 12-layer archi-
tecture, demonstrated the best performance since the layers
closer to the end better capture the spatial information of
the image. For optimal eigenbasis clustering, we conduct
eigengap analysis in Fig. 7b. Since we choose k at the point
where the eigengap is maximized, we have selected k = 4.

5. Conclusion
In this study, we present EAGLE, a novel method that

addresses the persistent challenges in semantic segmenta-
tion with a focus on collecting semantic pairs through an
object-centric lens. Through empirical analysis using a
series of datasets, EAGLE showcases a remarkable capa-
bility to leverage the Laplacian matrix constructed from
attention-projected features and fortified by an object-level
prototype contrastive loss, which guarantees the accurate
association of objects with their corresponding semantic
pairs. Pioneering in utilizing dual advanced techniques, this
method marks a substantial advance in addressing the con-
straints of patch-level representation learning found in pre-
vious research. Consequently, EAGLE emerges as a power-
ful framework for encapsulating the semantic and structural
intricacies of images in contexts devoid of labels.
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