
ECLIPSE: Efficient Continual Learning in Panoptic Segmentation
with Visual Prompt Tuning

Beomyoung Kim1,2 Joonsang Yu1 Sung Ju Hwang2

NAVER Cloud, ImageVision1 KAIST2

{beomyoung.kim,joonsang.yu}@navercorp.com, sjhwang82@kaist.ac.kr

Abstract

Panoptic segmentation, combining semantic and in-
stance segmentation, stands as a cutting-edge computer vi-
sion task. Despite recent progress with deep learning mod-
els, the dynamic nature of real-world applications necessi-
tates continual learning, where models adapt to new classes
(plasticity) over time without forgetting old ones (catas-
trophic forgetting). Current continual segmentation meth-
ods often rely on distillation strategies like knowledge distil-
lation and pseudo-labeling, which are effective but result in
increased training complexity and computational overhead.
In this paper, we introduce a novel and efficient method for
continual panoptic segmentation based on Visual Prompt
Tuning, dubbed ECLIPSE. Our approach involves freezing
the base model parameters and fine-tuning only a small set
of prompt embeddings, addressing both catastrophic for-
getting and plasticity and significantly reducing the train-
able parameters. To mitigate inherent challenges such as
error propagation and semantic drift in continual segmen-
tation, we propose logit manipulation to effectively lever-
age common knowledge across the classes. Experiments
on ADE20K continual panoptic segmentation benchmark
demonstrate the superiority of ECLIPSE, notably its robust-
ness against catastrophic forgetting and its reasonable plas-
ticity, achieving a new state-of-the-art. The code is avail-
able at https://github.com/clovaai/ECLIPSE.

1. Introduction
Image segmentation is a fundamental computer vision task,
and it involves dividing an image into meaningful seg-
ments to facilitate easier analysis. One of the most ad-
vanced forms of image segmentation is panoptic segmen-
tation, which merges semantic segmentation (categorizing
pixels into set categories) with instance segmentation (iden-
tifying individual objects within categories). Recent panop-
tic segmentation studies have made significant progress by
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Figure 1. Comparison of the overview of (a) previous meth-
ods and (b) our method. Previous methods rely on distillation
strategies such as knowledge distillation and pseudo-labeling, de-
manding more training complexity and computational overhead.
In contrast, our method freezes all trained parameters and fine-
tunes only a small set of prompt embeddings, robustly keeping the
previous knowledge and extending the scalability of the model.

leveraging convolutional neural networks [7, 22, 41, 46] and
transformer-based architectures [1, 8, 9, 17, 25].

Despite these advances, the dynamic nature of the real
world demands that models not only understand the present
but also evolve over time. Continual image segmentation
addresses this need by enabling models to learn new classes
incrementally over time without forgetting the old classes.
It is critical in real-world applications where new classes
emerge unpredictably, such as in robotics [37] and surveil-
lance [36]. However, it is greatly challenging to preserve
the previous class knowledge (avoiding catastrophic for-
getting [13]) and integrate new class information efficiently
(plasticity) simultaneously.
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Recently, various continual segmentation methods [2, 5,
10, 34, 35, 38, 44, 45, 47] have emerged, addressing the key
challenges and showing notable improvements. Most con-
tinual segmentation approaches often employ distillation
strategies like knowledge distillation [2, 10, 45] and pseudo-
labeling [5, 10, 35], as shown in Figure 1a. Knowledge dis-
tillation can alleviate catastrophic forgetting by transferring
knowledge from an old model to a new model, and pseudo-
labeling allows the new model to train with labels of the
previously learned classes. Though groundbreaking, these
approaches involve trade-offs such as the need for doubled
network forwarding and careful tuning of the hyperparame-
ters (e.g., distillation loss weights and threshold for pseudo-
labels), which increases the training complexity and com-
putational overhead. As the number of classes increases in-
crementally, maintaining a scalable and efficient distillation
process can become challenging. Moreover, while much of
the research has focused on continual semantic segmenta-
tion, continual panoptic segmentation, which is more chal-
lenging in incorporating both semantic- and instance-level
segmentation tasks, has been relatively underexplored.

In this paper, we propose a novel method, dubbed
ECLIPSE, for Efficient Continual Learning In Panoptic
SEgmentation that leverages the potential of Visual Prompt
Tuning (VPT) [18] and obviates the need for conventional
distillation strategies. Our approach begins with freezing
all parameters of the base model and repeatedly fine-tunes
a set of new prompt embeddings as new classes emerge, as
shown in Figure 1b. Our method inherently addresses catas-
trophic forgetting through model freezing and enhances
plasticity via prompt tuning. To the best of our knowledge,
our approach is the first distillation-free continual panoptic
segmentation, significantly reducing the trainable parame-
ters and simplifying the continual segmentation process.

Despite these strengths, we confront inherent challenges
in continual panoptic segmentation that necessitate further
improvement. Although model freezing preserves the prior
knowledge, it can simultaneously propagate prior errors for-
ward. Moreover, the definition of no-obj class, which is
required in inference to distinguish whether an output mask
is no object or not, changes at each continual learning step,
which is known as the semantic drift problem. To circum-
vent the challenges, we propose a simple and effective strat-
egy, called logit manipulation. It allows the model to lever-
age the inter-class knowledge of all learned classes to more
meaningfully manipulate the no-obj logit. The dynami-
cally updated no-obj logit helps suppress prior error pre-
dictions and mitigate the semantic drift issue at once.

Our comprehensive experiments on ADE20K [48]
demonstrate that ECLIPSE achieves a new state-of-the-art
in continual panoptic segmentation with a mere 1.3% of the
trainable parameters. Notably, ECLIPSE shows outstanding
robustness against catastrophic forgetting, especially as the

number of continual steps increases, making a substantial
improvement over existing methods.

In summary, the contributions of our paper are:
• We successfully integrate VPT into continual panoptic

segmentation, effectively mitigating catastrophic forget-
ting and efficiently extending the scalability of the model.

• We propose an effective logit manipulation strategy that
circumvents the inherent challenges in continual panoptic
segmentation: error propagation and semantic drift.

• We achieve state-of-the-art results on ADE20K with a
significantly few number of trainable parameters.

2. Related Work
Panoptic Segmentation is a cutting-edge task in com-
puter vision, blending the concepts of semantic and instance
segmentation to provide a comprehensive understanding
of both ‘stuff’ (amorphous regions like sky or grass) and
‘things’ (countable objects like cars or people). Pioneer-
ing works [7, 22, 23] integrated semantic and instance seg-
mentation tasks into a unified framework. Following this,
some methods [26, 41, 46] introduced significant improve-
ments by employing dynamic convolutions in a fully convo-
lutional paradigm. More recently, transformer-based archi-
tectures [8, 9, 25] have further advanced the field by lever-
aging the power of attention mechanisms. However, the
challenge of continual panoptic segmentation, particularly
in dynamically adapting to new classes without forgetting
the old ones, remains a frontier for ongoing research.
Continual Segmentation. To address the dynamic nature
of real-world applications, continual segmentation emerges
as an advanced task. Pioneering work [2] has discovered the
distinct challenge in continual segmentation tasks, seman-
tic drift, caused by background class. Most approaches [2,
5, 10, 34, 35, 45, 47] utilize distillation strategies such as
knowledge distillation and pseudo-labeling to mitigate the
semantic drift issue. More recently, Incrementer [38] lever-
ages the architectural advantages of a transformer-based
model using incremented class embeddings and multiple
distillation strategies. However, most of the research has
focused on continual semantic segmentation, and continual
panoptic segmentation, which is a more challenging task, is
less explored. CoMFormer [4] is a pioneer work in contin-
ual panoptic segmentation using the universal segmentation
model (i.e., Mask2Former [9]) to perform both panoptic
and semantic segmentation tasks with query-based distilla-
tion strategy. However, such distillation-based approaches
increase the training complexity and computational over-
head and demand careful tuning of hyperparameters such
as loss weights and temperatures of distillation and thresh-
old for pseudo-labeling. Unlike them, our method is the
first distillation-free approach for both panoptic and seman-
tic segmentation tasks, simplifying the continual learning
process and reducing training computations.
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Figure 2. Overview of ECLIPSE. We freeze all trained parameters and fine-tune only a set of prompt embeddings Qt alongside MLP
layers to recognize a set of classes Ct. In inference, we aggregate outputs from all prompt sets Q1:t to segment all learned classes C1:t.

Visual Prompt Tuning (VPT) in Continual Learning.
VPT [18] introduced an efficient and effective fine-tuning
method for vision transformer models. By freezing the pre-
trained parameters, they fine-tuned only a set of learnable
prompts and achieved remarkable performance. In the con-
tinual image classification field, there are several attempts
to utilize the VPT. Namely, L2P [43] and DualPrompt [42]
freeze the pre-trained model and select the most relevant
prompts from a prompts pool in a key-value mechanism.
They achieved noticeable performance and demonstrated
the potential of leveraging VPT in continual image classi-
fication. We are the first VPT-based continual segmenta-
tion method tailored to address several distinct challenges
in continual panoptic segmentation.

3. Preliminary
3.1. Problem Setting

Panoptic segmentation is an advanced task that unifies
semantic- and instance-level segmentation tasks. Compared
to semantic segmentation without discrimination of indi-
vidual instances, panoptic segmentation necessitates a more
comprehensive unified framework to identify both ‘things’
(e.g., individual car) and ‘stuff’ (e.g., sky or road).

This paper mainly focuses on continual learning in
panoptic segmentation, following the same setting in [4].
Over continually arriving tasks at timesteps t = 1, . . . , T ,
at each step t, a training dataset Dt is introduced which con-
tains image-label pairs (xt,yt), where xt represents an im-
age and yt its corresponding segmentation label. Here, yt

is labeled only for the set of current classes Ct, and other

classes (previous C1:t−1 and future Ct+1:T classes) are not
accessible. Once a task is completed, the model is expected
to segment for all classes in C1:t while preventing catas-
trophic forgetting for C1:t−1 and incrementally learning for
Ct (plasticity).

3.2. Network Architecture: Mask2Former

We adopt Mask2Former [9] as our baseline architecture,
which is a transformer-based model for universal seg-
mentation tasks including panoptic, instance, and seman-
tic segmentation. Unlike the previous paradigm of per-
pixel classification, Mask2Former directly predicts a set of
masks including their classes, termed mask classification.
Mask2Former consists of three kinds of modules: image
encoder Menc, pixel decoder Mpixel and transformer de-
coder Mtrans. The image encoder extracts image embed-
ding Eimg from the input image, and the pixel decoder con-
verts image embedding into per-pixel embedding Epixel.
The transformer decoder takes N learnable queries and
generates N mask embeddings by self-attention and cross-
attention with image embedding. Here, each query takes
charge of representing an object (or no object). Finally, N
mask proposals are produced via a dot product between N
mask embedding and per-pixel embedding. Moreover, the
category of each mask is assigned using the MLP-based
classifier. When a mask proposal is classified as no-obj
class, it is dropped during inference.

For simplicity, we express the model M as a function
which takes an image x ∈ R3×H×W and queries Q ∈
RN×D as inputs and output masks m ∈ RN×H×W and

3348



class logits s ∈ RN×C :

(s,m) = M(x,Q), (1)
M(x,Q) = MLP(Mtrans(Eimg,Q))⊗ Epixel, (2)

Eimg = Menc(x), Epixel = Mpixel(Eimg), (3)

where N is the number of queries, D is the dimension for
the query embedding, and C is the number of classes.

4. Method
4.1. Prompt Tuning for Continual Segmentation

We present a novel approach, named ECLIPSE, for effi-
cient continual panoptic segmentation which leverages Vi-
sual Prompt Tuning (VPT) [18] for the integration of new
classes without the conventional distillation strategies. Our
approach begins with the initial training (t=1) of all param-
eters of the model M on the set of base classes C1:

(s1,m1) = M(x,Q1). (4)

After this initial training, we apply a freeze-and-tune
strategy repeatedly. Namely, when new classes are in-
troduced (t>1), we freeze all trained parameters to pre-
serve the acquired knowledge and fine-tune a set of learn-
able prompt embeddings Qt ∈ RNt×D alongside unshared
MLP layers to recognize new classes Ct:

(st,mt) = M(x,Qt) (t > 1), (5)

M(x,Qt) = MLPt(Mtrans(Eimg,Q
t))⊗ Epixel, (6)

Eimg = Menc(x), Epixel = Mpixel(Eimg), (7)

where • and • denote trainable and frozen parameters, re-
spectively. In short, we treat each set of prompts Qt as a
discrete task-specific module, solely devoted to the recogni-
tion of Ct classes. As the continual steps progress, we stably
extend the scalability of the model through the lightweight
task-specific prompt sets. During the inference phase, we
aggregate outputs from all the prompt sets across steps.
Q1:t, allowing the model to segment all learned classes C1:t:

(s1:t,m1:t) = M(x,Q1:t). (8)

Our approach ensures that previous knowledge is preserved
with model freezing, which prevents catastrophic forget-
ting, while also enabling the efficient integration of new
knowledge through prompt tuning, enhancing the model’s
plasticity.

We introduce two prompt tuning strategies for continual
panoptic segmentation, termed shallow and deep, inspired
by [18]. The shallow means tuning the prompt embeddings
at the first transformer layer only, Qt

shallow ∈ RNt×D.
Whereas, the deep denotes tuning the embeddings across all
transformer layers, Qt

deep={Qt
1,Q

t
2, · · · ,Qt

L} where L is
the number of transformer layers. By default, we adopt the
deep prompt tuning and will present a detailed analysis in
the experimental section.
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Figure 3. Illustration of logit manipulation. To alleviate seman-
tic drift of no-obj class, we make a new no-obj logit leverag-
ing the inter-class knowledge of all learned classes. Moreover, an
erroneous prediction caused by semantic confusion of prior frozen
parameters can be fixed through logit manipulation.

4.2. Resolving Semantic Confusion and Drift

Our method effectively addresses both catastrophic for-
getting and plasticity in continual panoptic segmentation.
However, we confront an inherent issue, called error propa-
gation. This issue arises because freezing the model, while
helpful in preventing catastrophic forgetting, also means
carrying prior errors forward. These errors often originate
from semantic confusion, where the model misclassifies
objects due to their visual similarities with other classes. In
a continual learning setting, semantic confusion becomes
significant due to unawareness of future classes. For exam-
ple, a model that has learned to identify car might mis-
takenly recognize bus as car because it hasn’t learned to
distinguish between them yet.

Moreover, there is a distinct issue in continual seg-
mentation, called semantic drift, as discussed in prior
works [2, 5, 10]. Our baseline has a unique no-obj
class with a corresponding MLP-classifier layer to identify
whether an output mask is no object or not. However, the
definition of no-obj shifts with each continual step, in-
cluding future classes not learned yet, past classes already
learned, and the background. The reliability of the no-obj
class is essential during inference, so semantic drift signifi-
cantly impacts the performance of the model.

To simultaneously tackle the semantic confusion and
drift issues, we propose a simple yet effective method,
called logit manipulation. First, we eliminate the MLP
classifier for no-obj because the no-obj logit is no
longer reliable due to semantic drift. Instead, we gener-
ate a new no-obj logit by leveraging the mutual informa-
tion of old and new classes to make no-obj information
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Method Backbone Trainable KD 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
Params 1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

FT R50 44.9M 0.0 25.8 8.6 0.0 2.9 1.0 0.0 1.3 0.4
MiB [2] R50 44.9M ✓ 24.0 6.5 18.1 27.1 10.0 21.4 35.1 19.3 29.8

PLOP [10] R50 44.9M ✓ 28.1 15.7 24.0 30.5 17.5 26.1 40.2 22.4 34.3
CoMFormer [4] R50 44.9M ✓ 34.4 15.9 28.2 36.0 17.1 29.7 40.2 23.5 34.6

ECLIPSE R50 0.60M 41.1 16.6 32.9 41.4 18.8 33.9 41.7 23.5 35.6
Swin-L 0.60M 48.0 20.6 38.9 48.6 25.5 40.9 48.2 29.8 42.0

joint R50 43.2 32.1 39.5 43.2 32.1 39.5 43.2 32.1 39.5

(a)

Method Backbone Trainable KD 50-10 (11 tasks) 50-20 (6 tasks) 50-50 (3 tasks)
Params 1-50 51-150 all 1-50 51-150 all 1-50 51-150 all

FT R50 44.9M 0.0 1.7 1.1 0.0 4.4 2.9 0.0 12.0 8.1
MiB [2] R50 44.9M ✓ 34.9 7.7 16.8 38.8 10.9 20.2 42.4 15.5 24.4

PLOP [10] R50 44.9M ✓ 39.9 15.0 23.3 43.9 16.2 25.4 45.8 18.7 27.7
CoMFormer [4] R50 44.9M ✓ 38.5 15.6 23.2 42.7 17.2 25.7 45.0 19.3 27.9

ECLIPSE R50 0.60M 45.9 17.3 26.8 46.4 19.6 28.6 46.0 20.7 29.2
Swin-L 0.60M 52.8 22.9 32.9 53.2 25.7 34.8 53.0 25.3 34.5

joint R50 50.2 34.1 39.5 50.2 34.1 39.5 50.2 34.1 39.5

(b)

Table 1. Continual Panoptic Segmentation results on ADE20K dataset in PQ when the number of base classes |C1| is (a) 100 and (b) 50.
KD denotes using distillation strategies, which demands more trainable parameters and computational overhead. All methods use the same
network of Mask2Former [9] with ResNet-50 [15] backbone. joint means an oracle setting training all classes offline at once.

more meaningful. For example, as shown in Figure 3, the
decoder output of prompt Q2 is fed into other MLP1 and
MLP3 layers and then the no-obj logit is manipulated by
aggregating logits from the MLP layers. In our approach, as
the outputs from Qt are responsible for prediction only for
Ct classes, logits of other classes that do not belong to Ct

can be treated as no-obj class. Given the set of prompts
Qt at step t, no-obj logits sno−obj

t are manipulated as:

sC
1:T

t = MLP1:T (Qt), (9)

sno−obj
t = δ × (

t−1∑
k=1

sC
k

t +

T∑
k=t+1

sC
k

t ), (10)

ct = argmax(sno−obj
t , sC

t

t ), (11)

where ct is the class indexes of output masks mt and δ is
a scalar hyperparameter for logit modulation. The dynam-
ically manipulated no-obj logit helps in suppressing the
propagated erroneous predictions and inherently resolves
semantic drift because the no-obj logit is meaningfully
updated. We note that the logit manipulation is applied only
at the inference stage and δ is the post-processing hyperpa-
rameter. Unlike our baseline employs softmax activation
(relative logits) in the classification, we use sigmoid activa-
tion (independent logits) to leverage the distinct information
associated with each class, inspired by [5].

5. Experiments
5.1. Experimental Setting.

Dataset and Evaluation Metrics. We conduct experi-
ments on ADE20K [48] dataset that consists of 150 classes
with 100 things and 50 stuff categories and provides both
panoptic and semantic segmentation benchmarks. Com-
pared to COCO [29] containing an average of 7.7 in-
stances and 3.5 classes per image and VOC [12] contain-
ing an average of 2.3 instances and 1.4 classes per im-
age, ADE20K contains an average of 19.5 instances and
9.9 classes. We adopt Panoptic Quality (PQ) for evaluat-
ing continual panoptic segmentation performance and mean
Inter-over-Union (mIoU) for continual semantic segmenta-
tion. In detail, the PQ is defined by recognition quality (RQ)
and segmentation quality (SQ):

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality(SQ)

×
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality(RQ)

, (12)

where IoU(p, g) is the intersection-over-union between the
predicted mask p and the ground truth g, and TP , FP , and
FN denote true-positive, false-positive, and false-negative,
respectively. After the last continual step T , we report the
performances for the base classes (C1), new classes (C2:T ),
and all classes (C1:T ).
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Method Backbone Trainable KD 100-5 (11 tasks) 100-10 (6 tasks) 100-50 (2 tasks)
Params 1-100 101-150 all 1-100 101-150 all 1-100 101-150 all

SDR† [34] R101 60.4M ✓ - - - 28.9 7.4 21.7 37.4 24.8 33.2
UCD† [44] R101 60.4M ✓ - - - 40.8 15.2 32.3 42.1 15.8 33.3
SPPA† [30] R101 60.4M ✓ - - - 41.0 12.5 31.5 42.9 19.9 35.2
RCIL† [45] R101 58.0M ✓ 38.5 11.5 29.6 39.3 17.6 32.1 42.3 18.8 34.5
SSUL† [5] R101 1.78M ✓ 39.9 17.4 32.5 40.2 18.8 33.1 41.3 18.0 33.6

REMINDER† [35] R101 60.4M ✓ - - - 39.0 21.3 33.1 41.6 19.2 34.1

MiB [2] R101 63.4M ✓ 21.0 6.1 16.1 23.5 10.6 26.6 37.0 24.1 32.6
PLOP [10] R101 63.4M ✓ 33.6 14.1 27.1 34.8 15.9 28.5 43.4 25.7 37.4

CoMFormer [4] R101 63.4M ✓ 39.5 13.6 30.9 40.6 15.6 32.3 43.6 26.1 37.6

ECLIPSE R101 0.60M 43.3 16.3 34.2 43.4 17.4 34.6 45.0 21.7 37.1

joint R101 46.9 35.6 43.1 46.9 35.6 43.1 46.9 35.6 43.1

Table 2. Continual Semantic Segmentation results on ADE20K dataset in mIoU. All methods use the same backbone network of ResNet-
101 [15]. † denotes that using DeepLab-V3 [6] network, otherwise using Mask2Former [9] network architecture.

Incremental Protocol. Following previous continual seg-
mentation methods [2, 4], we construct numerous challeng-
ing incremental protocols, termed as (BASE CLASSES)-
(NEW CLASSES). For instance, 100-10 scenario means
firstly learning 100 base classes and incrementally learning
10 new classes 5 times (T=6). The larger number of con-
tinual steps implies a more challenging scenario. The sem-
inal work [2] introduced two different settings, disjoint and
overlap. Here, we mainly follow the overlap setting that is
more challenging and realistic and provide results with the
disjoint setting in our supplementary material.

Implementation Details. Our implementation is based
on the previous continual panoptic segmentation method,
CoMFormer [4]. Specifically, we implement our method
on Mask2Former [9] codebase using the backbone ResNet-
50 [15] for continual panoptic segmentation and ResNet-
101 for continual semantic segmentation. Moreover, we set
the dimension of prompt embeddings D to 256, the number
of transformer layers L to 9, and MLPt consists of 2 hidden
layers of 256 channels. We set the number of incremented
prompts to the number of incremented classes, N t=|Ct|,
and the minimum value of N t to 10 to handle images con-
taining more than 10 objects in Ct. For objective functions,
we employ dice and binary cross-entropy loss functions as
mask loss and binary cross-entropy loss function as classi-
fication loss, after bipartite matching between predictions
and ground-truths. We train the model for 1600 iterations
per class with a learning rate of 0.0001 for the first step and
0.0005 for the following steps.

5.2. Experimental Results

Continual Panoptic Segmentation. We evaluate our ap-
proach against three previous methods (i.e., MiB [2],
PLOP [10], and CoMFormer [4]) and the basic fine-tuning

(FT) approach, all using the Mask2Former [9] network
with ResNet-50 backbone. We conduct experiments on six
incremental scenarios and report their reproduced perfor-
mances using the official implementation of CoMFormer.
The three previous methods depend on knowledge distilla-
tion and pseudo-labeling that involve more trainable param-
eters and doubled network forwarding. Unlike them, our
method stands out as the first without distillation, streamlin-
ing the continual learning process significantly. As shown
in Table 1, our method achieved a new state-of-the-art per-
formance across all tested scenarios, requiring only 1.3%
of total trainable parameters. Notably, our method demon-
strates superior retention of previously learned knowledge,
even with a large number of continual steps, as evidenced
in scenarios such as 100-5 and 50-10. In addition, our
visual prompt tuning approach with the proposed logit ma-
nipulation strategy effectively develops the plasticity of the
model for new classes, even when the base knowledge of
the model is diminished from 100 to 50 classes, as shown in
Table 1 (b). Our superiority can also be found in the quali-
tative results in Figure 5.

Continual Semantic Segmentation. We extend our eval-
uation to the semantic segmentation benchmark and com-
pare our method against six previous methods [5, 30, 34,
35, 44, 45] using DeepLab-V3 [6] network and three meth-
ods (MiB, PLOP, and CoMFormer) using Mask2Former
network, all using the same ResNet-101 backbone. Here
again, our method is the only one without distillation. As
shown in Table 2, our method achieves the best trade-off
between catastrophic forgetting and plasticity, especially in
difficult scenarios like 100-5. Although Mask2Former-
based methods show slightly higher mIoU scores of new
classes than ours in the 100-50 scenario, the reason is that
our method focuses more on catastrophic forgetting than
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Method Num Trainable GPU FLOPs 100-10 (6 tasks)
Prompts Params Memory 1-100 101-150 all

CoM-
Former [4]

100 44.38M 3.28G 97.46G 36.0 17.1 29.7
150 44.40M 3.66G 99.35G 36.5 15.9 29.6
200 44.43M 4.03G 101.27G 36.7 12.1 28.5

ECLIPSE

100 (=50+10×5) 0.55M 0.59G 97.43G 41.2 18.7 33.7
150 (=100+10×5) 0.55M 0.59G 99.27G 41.4 18.8 33.9
200 (=100+20×5) 0.57M 0.66G 101.14G 41.0 18.7 33.4
300 (=100+40×5) 0.62M 0.79G 104.83G 39.6 18.4 32.5

Table 3. Effect of the number of prompts and resulting computational complexity. We mea-
sure the GPU memory per a single training image. The number of prompts in ECLIPSE is denoted
as (NUM BASE PROMPTS)+(NUM NEW PROMPTS)×(NUM STEPS).

δ
100-10 (6 tasks)

1-100 101-150 all

0.3 39.5 14.2 31.0
0.4 40.9 17.0 32.9
0.5 41.4 18.8 33.9
0.6 40.1 18.3 32.8
0.7 38.4 15.3 30.7

Table 4. Effect of δ that is
the post-processing hyperparame-
ter for modulation of logit manip-
ulation.

Prompt Deep Logit 100-10 (6 tasks)
Tuning Prompt Mani 1-100 101-150 all

0.2 3.9 1.3
✓ 11.1 3.9 8.7
✓ ✓ 8.2 15.0 12.8
✓ ✓ 40.5 14.0 31.7
✓ ✓ ✓ 41.4 18.8 33.9

Table 5. Effect of the proposed components.

plasticity and their distillation strategy is more effective in
easier scenarios. Furthermore, compared to SSUL [5] that
employs model freezing and fine-tunes new classifier layers
and enhances plasticity using off-the-shelf saliency maps,
our approach outperforms without using saliency maps.

6. Analysis
In this section, we delve into the details of our method using
the ADE20K panoptic segmentation 100-10 scenario.

Effect of the number of queries. In Table 3, we con-
duct experiments to analyze the effect of the number of
prompts in continual panoptic segmentation. The total num-
ber of prompts N is defined as N=B+C×T , where B is
the number of base prompts (step 1), C is the number of
incremented prompts (step t>1), and T is the total contin-
ual steps. By default, we set B=|Ct| and C=|Ct|, that is,
N=150=100+10×5 for 100-10 scenario. When we use
the same number of prompts as our baseline work, CoM-
Former [4], our ECLIPSE still significantly outperforms
them. We also found that increasing the number of prompts
in ECLIPSE does not help in improving the performance
because the more incremented prompts lead to more false-
positive predictions due to over-weighting to new classes;
this tendency also appears in CoMFormer. Conversely, de-
creasing the number of prompts from 150 to 100 can save
the FLOPs but marginally drop the performance by 0.2%
due to the reduced capacity of the model.

Step 6 wo/ maniGround-Truth Step 1

lake water

car

Step 6 w/ mani

lake

van

lakewater

car

van

van

Figure 4. Qualitative samples for logit manipulation. At step 1,
the model, which learned classes C1 containing water and car,
can produce incorrect predictions due to semantic confusion with
unexplored classes; these errors propagate forward continuously,
resulting in overlapping predictions for one object (3rd column).
After the model learns new classes containing lake and van at
step 6, the logit manipulation can suppress the prior errors.

Computational complexity. In Table 3, we measure the
computational complexity of ECLIPSE and CoMFormer
according to the number of prompts. Compared to CoM-
Former, our ECLIPSE, which obviates the need for distil-
lation strategies, shows 80 times less trainable parameters
and 5.6 times less GPU memory usage for training. In ad-
dition, CoMFormer processes all prompts together, lead-
ing to complexity that grows quadratically with the number
of queries, O(N2). In contrast, our ECLIPSE processes
each set of queries Qt separately, multiplying the com-
plexity by the number of steps, O(B2)+O(C2)×T , where
N=B+C×T . Even if the total number of queries is the
same (e.g.,N=100), our method shows slightly advanced
computational complexity (97.43G v.s. 97.46G). However,
we argue that increasing the scalability of the model as the
number of classes gets larger is the natural step even in fully
supervised models and our increased computation due to
new prompts is marginal compared to the total FLOPs of the
model (3.8% FLOPs increasing by 100 additional prompts).
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Figure 5. Qualitative comparisons between ECLIPSE and CoMFormer [4] on the ADE20K 100-10 continual panoptic segmentation
scenario. Our ECLIPSE shows more robust results against catastrophic forgetting without reliance on distillation strategies.

Effect of visual prompt tuning. To validate the impact
of the prompt tuning, we skip the model freezing and fine-
tune all parameters of the model including new prompt sets
without distillation strategies. As shown in the last row of
Table 5, the performance is extremely dropped because the
model substantially suffers from catastrophic forgetting due
to the absence of model freezing or distillation strategies.

Moreover, as mentioned in Section 4.1, we have two
prompt tuning strategies, termed shallow and deep. We
adopt the deep strategy by default and the deep requires
100K more trainable parameters than the shallow. The
result in the third row of Table 5 shows that adopting
the shallow strategy noticeably drops the PQ for new
classes (18.8%→14.0%) due to the reduced plasticity of the
model. Considering the total number of model parameters
is 63.4M, the 100K additional parameters in the deep strat-
egy are efficient in developing the plasticity of the model.

Effect of the logit manipulation. To analyze the effect
of the logit manipulation, we conduct an ablation study, as
shown in the second row of Table 5. Without the logit ma-
nipulation, the prior errors caused by semantic confusion
propagate forward (Figure 4), and the definition of no-obj
continuously shifts as continual learning progresses, ex-
tremely diminishing the performance of old classes.

In addition, we have a post-processing hyperparameter δ
for the logit manipulation. Table 4 shows that δ of 0.5 is a
suitable value. We note that since the δ is a post-processing
hyperparameter, it requires much less endeavor for tuning.

Exploring advanced frozen parameters. To demon-
strate the potential for further improving ECLIPSE, we ex-
plore the impact of using more advanced frozen parame-
ters of the base model. When employing the more pow-
erful backbone network, Swin-L [31], we observe signifi-
cant improvements in all tested scenarios, as shown in Ta-
ble 1. Moreover, leveraging pre-trained weights from other
datasets (e.g., COCO [29]) substantially boosts the perfor-
mance of ours, as shown in our supplementary material.

7. Conclusion and Future Direction
We presented a groundbreaking method in the field of con-
tinual panoptic segmentation. By integrating VPT with our
innovative logit manipulation technique, we effectively ad-
dressed key challenges in the field. Our method not only
ensures the preservation of previously learned information
but also adapts to new class information. The experimental
results on ADE20K dataset highlight the superiority of our
approach, achieving state-of-the-art performance with a no-
table reduction in the number of trainable parameters. Our
future direction may involve optimizing increased compu-
tational complexity resulting from expanding prompt sets,
particularly when dealing with a massive number of classes.
Acknowledgment. This work was supported by Insti-
tute for Information & communications Technology Promo-
tion(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-00075 Artificial Intelligence Graduate School
Program(KAIST).

3353



References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 1

[2] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo,
Elisa Ricci, and Barbara Caputo. Modeling the background
for incremental learning in semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9233–9242, 2020. 2, 4, 5, 6

[3] Fabio Cermelli, Antonino Geraci, Dario Fontanel, and Bar-
bara Caputo. Modeling missing annotations for incremental
learning in object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3700–3710, 2022.

[4] Fabio Cermelli, Matthieu Cord, and Arthur Douillard. Com-
former: Continual learning in semantic and panoptic seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3010–
3020, 2023. 2, 3, 5, 6, 7, 8

[5] Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. Ssul:
Semantic segmentation with unknown label for exemplar-
based class-incremental learning. Advances in neural infor-
mation processing systems, 34:10919–10930, 2021. 2, 4, 5,
6, 7

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 6

[7] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12475–12485, 2020. 1, 2

[8] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. Advances in Neural Information Processing Systems,
34:17864–17875, 2021. 1, 2

[9] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1290–1299, 2022. 1, 2, 3, 5, 6

[10] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and
Matthieu Cord. Plop: Learning without forgetting for contin-
ual semantic segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 4040–4050, 2021. 2, 4, 5, 6

[11] Arthur Douillard, Alexandre Ramé, Guillaume Couairon,
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