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Baseline

“A chimpanzee with a big grin”

CorrespondentDream (ours)

“A cute steampunk elephant”

“A boy in mohawk hairstyle, head only, 4K, HD, raw”

Baseline

“A capybara wearing a top hat, low poly”

CorrespondentDream (ours)

“A DSLR photo of a covered wagon”

“Wall-E, cute, render, super detailed, best quality, 4K, HD”

Figure 1. Comparison between the baseline (MVDream [27]) and CorrespondentDream (ours). Our method substantially alleviates
the 3D geometric infidelity issue in zero-shot text-to-3D generation methods. Best viewed on electronics, zoom in for clearer visualization.

Abstract

Leveraging multi-view diffusion models as priors for 3D
optimization have alleviated the problem of 3D consistency,
e.g., the Janus face problem or the content drift problem,
in zero-shot text-to-3D models. However, the 3D geomet-
ric fidelity of the output remains an unresolved issue; albeit
the rendered 2D views are realistic, the underlying geom-
etry may contain errors such as unreasonable concavities.
In this work, we propose CorrespondentDream, an effec-
tive method to leverage annotation-free, cross-view corre-
spondences yielded from the diffusion U-Net to provide ad-
ditional 3D prior to the NeRF optimization process. We find
that these correspondences are strongly consistent with hu-
man perception, and by adopting it in our loss design, we
are able to produce NeRF models with geometries that are
more coherent with common sense, e.g., more smoothed ob-
ject surface, yielding higher 3D fidelity. We demonstrate
the efficacy of our approach through various comparative
qualitative results and a solid user study.

1. Introduction

Text-to-3D generation holds wide applicability in areas
such as virtual reality and 3D content generation [25],
which are of integral importance in the fields of gaming and
media. In recent studies, leveraging 2D diffusion models
as priors to optimize 3D representations, e.g., NeRF [23]
or NeuS [33], via Score Distillation Sampling (SDS) has
shown to yield promising results and generalizability for
zero-shot text-to-3D generation [18, 25].

It was subsequently observed that using a single-view 2D
diffusion model as prior suffers from the lack of multi-view
knowledge and 3D awareness, frequently resulting in issues
including the Janus face problem or content drift [9, 27].
This problem was largely alleviated by leveraging a multi-
view diffusion model [27] as the prior instead, which gener-
ates multiple view-consistent 2D images instead of a single
2D image to improve the multi-view consistency of the 3D
output. However, even with the integration of multi-view
diffusion models, the disparity in dimensionality between
the 2D priors and the final 3D representation makes it in-
sufficient to ensure the 3D geometric fidelity of the output
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“A DSLR photo of a bear dressed in medieval armor”

“An anthropomorphic tomato eating another tomato”

Figure 2. Rendered 2D view and 3D normal map of MV-
Dream [27]. While the rendered 2D views look realistic, the un-
derlying 3D geometry lacks fidelity, with concavities or missing
surfaces (highlighted in white squares).

shape, as exemplified in Fig. 2.
In this paper, we introduce CorrespondentDream, a novel

method which enhances 3D fidelity in text-to-3D gener-
ation, using cross-view correspondences computed from
the diffusion model functioning as the optimization prior.
By utilizing features from upsampling layers of the diffu-
sion U-Net, we can establish robust correspondences be-
tween multi-view images without explicit supervision or
fine-tuning. Our approach hinges on the multi-view con-
sistency of 2D features in the multi-view diffusion model,
which we conjecture to be faithful to human perception.

By using the known camera parameters for NeRF-
rendered views, we can reproject pixels across different
views using the NeRF-rendered depth values. In the pres-
ence of 3D infidelities such as concavities or missing sur-
faces, the NeRF-rendered depth values will also be erro-
neous, reflecting the infidelities. We aim to correct these
errors by aligning the NeRF reprojections with cross-view
correspondences, thereby enhancing the 3D fidelity of the
output by correcting the NeRF depths. The effectiveness of
CorrespondentDream is validated through extensive quali-
tative assessments and a user study.

The contributions of our work are threefold:
• We identify that 3D infidelities remains an issue in exist-

ing zero-shot text-to-3D methods, even with improved 3D
consistency via multi-view diffusion priors.

• We introduce CorrespondentDream, a novel method to
incorporate cross-view correspondences into the 3D op-
timization for improved 3D fidelity.

• We demonstrate the effectiveness of our method via com-
parative analysis and a user study.

2. Related Work

Text-to-3D using 2D diffusion models. Based on the ob-
servation that template-based generation pipelines and 3D
generative models [1, 7, 13, 34] show limited 3D genera-
tion performances due to the lack of sufficiently large-scale
3D data, 2D-lifting methods have gained interest [18, 25].
Specifically, DreamFusion [25] proposed Score Distilla-
tion Sampling (SDS) to leverage 2D diffusion models as
priors to optimize 3D representations [23, 33] to facili-
tate zero-shot text-to-3D generation, while SJC [32] con-
currently proposed a similar technique using the stable-
diffusion model [26]. Subsequent studies aim to improve
the output representation [2, 29], sampling schedules for
optimization [10], and loss design [35] for improved quality
and efficiency. However, using a single-view 2D diffusion
prior is observed to suffer from multi-view inconsistency -
namely the Janus face problem and content drift.

Text-to-3D using multi-view diffusion models. To alle-
viate the problem of multi-view inconsistency, a promis-
ing direction is to leverage improved multi-view knowl-
edge. To this end, MVDream [27] finetunes the stable diffu-
sion [26] model to generate multi-view images instead of a
single-view image. This is facilitated by replacing the self-
attention of the diffusion U-Net with multi-view attention,
such that the multiple views can attend to one another for
multi-view knowledge. Using multi-view diffusion as the
prior to facilitate text-to-3D generation shows highly im-
proved multi-view consistency in the rendered views.

Albeit their efficacy in addressing multi-view inconsis-
tency between 2D rendered views, multi-view diffusion
models still fall short in fully capturing the true fidelity of
the underlying 3D geometry. In this work, we address this
issue via integrating cross-view correspondences from the
diffusion network to enforce additional geometric priors.

Establishing correspondences using diffusion models.
With recent advancements in diffusion models [8, 24, 26],
the potential of their representational abilities triggered
many applications to visual correspondence. Unsupervised
methods already exhibit competitive performances, relying
on iterative refinement of features [6] or an additional fea-
ture extractor [36] for improved performance. The perfor-
mance gains were notably higher in a strongly-supervised
training scheme, either via aggregating the multi-scale fea-
tures from multiple timesteps [22], or by optimizing pair-
specific prompts for better matchable features [17].

In this work, we take inspiration from DIFT [30] to yield
cross-view correspondences using diffusion features.

Leveraging correspondences for NeRF optimization.
NeRF [23] encodes 3D scenes with a MLP, which can even-
tually be used for 2D view rendering. In recent studies,
photometric loss alone proved to be insufficient to train a
NeRF model under challenging constraints, e.g., sparse in-

10650



put views [3, 11, 31] or erroneous camera poses [12, 31].
Using off-the-shelf image matching models as additional
priors has shown promising results under sparse viewpoints
or noisy poses [12, 31]. SCNeRF [12] aims to minimize
the projected ray distance of off-the-shelf correspondences,
while SPARF [31] proposes to minimize the reprojection
error between the off-the-shelf matches and the reprojected
matches obtained using NeRF depths.

In contrast, we compute correspondences between
NeRF-rendered views, instead of ground truth images. Fur-
thermore, we do not rely on off-the-shelf matching meth-
ods, but compute annotation-free cross-view correspon-
dences from diffusion features to provide additional geo-
metric priors in optimizing NeRF for improved 3D fidelity.

3. Preliminary: Text-to-3D using Diffusion
DreamFusion [25] introduced Score Distillation Sampling
(SDS), which facilitates the optimization of differentiable
image parameterizations (DIP) by using diffusion models
to compute gradients in the form of:

∇θLSDS(ϕ, x = g(θ)) ≜ Et,ϵ [w(t) (ϵϕ(zt; y, t)−∇θx)] .
(1)

In this formulation, θ denotes the parameters of the DIP, ϕ
represents the parameters of the diffusion model, and x sig-
nifies the image rendered by the DIP through the function
g. The term w(t) is a weighting function dependent on the
sampled timestep t. The variable ϵ stands for the noise vec-
tor, and zt is the noisy image at timestep t. The expectation
E is taken over both t and ϵ, with y being the conditioning
variable, such as a text prompt. This approach allows a 2D
diffusion model to act as a ’frozen critic’, predicting image-
space modifications to optimize the DIP. Common DIPs in-
clude 3D volumetric representations such as NeRF [23] or
NeuS [33], thus enabling zero-shot text-to-3D generation.

However, a challenge arises from the lack of 3D consis-
tency across rendered views due to the absence of integrated
multi-view knowledge. Research has shown promising re-
sults in addressing this challenge by introducing multi-view
attention within the diffusion U-Nets to facilitate the train-
ing of multi-view diffusion models. These models yield
consistent multi-view color images, substantially improv-
ing 3D coherency [20, 27, 28]. With a multi-view diffusion
model at disposal, MVDream [27] defines the multi-view
diffusion loss for supervising the 3D volume as:

LSDS(ϕ, {xi = g(ϕ, ci)}Ni=1) = Et,c,ϵ

[
N∑
i=1

∥xi − x̂0,i∥2
]

(2)
Here, ci denotes the camera pose for the i-th view, xi is
the image rendered from the 3D volume for the i-th view,
and x̂0,i is the corresponding image generated by the diffu-
sion model. This deviates from the original SDS formula-

tion (Eq. (1)); MVDream proposes that Eq. (2) is equiva-
lent to Eq. (1) with w(t) and shows to perform similarly
as well, but using Eq. (2) further enables the usage of CFG
rescale trick [19] to mitigate color saturation. The improved
3D consistency afforded by these multi-view diffusion mod-
els ensures that the 3D volume’s rendered views adhere to
the same level of coherence, leading to substantial improve-
ments in the stability and quality of text-to-3D generation.

4. Method

Motivation and overview. Employing multi-view diffu-
sion as a prior for 3D generation enhances the consistency
of NeRF-rendered views, mitigating common issues such
as the Janus face problem or content drift. However, these
priors are still confined to 2D space, which often results in
errors in the geometric fidelity of the 3D output. While 2D
rendered views may appear realistic, the 3D geometry can
be flawed, exhibiting issues such as unnatural concavities or
missing surfaces, as shown in Fig. 2.

We introduce CorrespondentDream, a novel method de-
signed to improve the 3D fidelity of zero-shot text-to-3D
outputs, using cross-view correspondences derived from the
multi-view diffusion prior. Our approach involves optimiz-
ing a NeRF model through both SDS and cross-view corre-
spondence losses. As the SDS loss adopts the conventional
form as seen in Eq. (2), we detail the correspondence loss
in this section. We generate two adjacent sets of NeRF-
rendered views with minimally separated camera positions
in azimuth (Sec. 4.1), extract 2D features from the diffusion
model (Sec. 4.2), compute cross-view correspondences be-
tween adjacent rendered views (Sec. 4.3), and use them to
correct NeRF geometry via the cross-view correspondence
loss (Sec. 4.4). The NeRF optimization using the SDS and
cross-view correspondence losses are detailed in Sec. 4.5.
Fig. 3 illustrates an overview of CorrespondentDream.

4.1. Adjacent multi-view NeRF rendering

Our approach utilizes a multi-view diffusion model ϵθ
which can concurrently generate N images {x(i)

t }Ni=1,
where each image is associated with a distinct viewpoint
derived from the camera parameters and the given textual
prompt y. These images represent a range of equispaced
azimuth angles, capturing different perspectives of the same
scene. To effectively optimize the NeRF model ϕ, we would
follow Eq. (2) to render N views {g(ϕ, ci)}Ni=1, where ci
defines the camera parameters corresponding to the i-th
view, and g is the NeRF rendering function dependent on
the parameters of ϕ. Through this process, the NeRF model
is supervised to produce images that are consistent with
the specified perspectives of ci, aligning the NeRF-rendered
views with the diffusion model’s predictions.
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Figure 3. Overview of CorrespondentDream. We employ NeRF [23] for 3D representation, optimized alternately using the SDS loss
(LSDS) and cross-view correspondence loss (Lcorr). The LSDS is based on the multi-view formulation from Eq. (2) in MVDream [27].
To compute Lcorr, we render two adjacent view sets from NeRF with identical noise, inputting them into a frozen pre-trained multi-view
diffusion model. We then extract multi-layer features from the diffusion U-Net’s upsampling layers to establish correspondences (corrdiff)
between each view pair. Utilizing ground-truth camera parameters and NeRF-rendered depth, we reproject pixels to obtain corrNeRF. By
minimizing the discrepancy between corrNeRF and corrdiff, the pseudo ground-truth, we correct NeRF’s 3D infidelities in the NeRF depths.

Due to the large azimuthal distances between each of
the N views, there is limited viewpoint overlap between
adjacent views, making direct correspondence computation
challenging and prone to error. To address this, we ren-
der two interlinked sets of N views, V1 and V2, ensuring
that each view in V1 has an adjacent view in V2, thereby
minimizing azimuthal separation. The azimuth angles for
the two sets are articulated as {αi}Ni=1 and {βi}Ni=1, where
βi is defined as αi + ∆α, with ∆α being a small, prede-
termined angular increment. This approach simplifies the
computation of correspondences by providing more over-
lapping fields of view, thus ensuring a robust set of corre-
spondences for subsequent optimization processes.

4.2. Annotation-free feature extraction

We take advantage of the U-Net architecture within our
multi-view diffusion model, which is adept at generating N
synchronized views. In the optimization of 3D representa-
tions for text-to-3D generation, we add Gaussian noise η to
the NeRF-rendered views, modulated by a timestep t, cre-
ating noisy images ṽ(i)t = v

(i)
t +

√
αtη, with η distributed

as N (0, I), and αt being a variance schedule function of
the timestep t, which controls the noise level. The diffusion
model ϵθ then predicts the noise component as:

η̂(i) = ϵθ(ṽ
(i)
t ; y, ci, t)

During this predictive step, we extract intermediate fea-
tures {f (i)

l } from the U-Net’s upsampling layers l. We
build on existing studies that demonstrate the robustness of
multi-layer features [14, 22] to extract intermediate features
across multiple layers. These features are expressed as:

f
(i)
l = Ul(ṽ

(i)
t ; θl) (3)

where Ul is the upsampling function at layer l, and θl are
the learned parameters specific to that layer. This process
yields a comprehensive set of features without additional
training or explicit feature extraction algorithms. Previous
studies [17, 30] show that these diffusion U-Net features
are surprisingly informative and discriminative, enabling
the establishment of robust image correspondences.

4.3. Cross-view correspondence computation

After obtaining the multi-view features for 2N views,
{f (i)

l } and {f (i+N)
l } for i = 1 to N , we compute the cor-

respondences between each pair of adjacent views, yielding
N sets of adjacent-view correspondences. The feature maps
extracted from the diffusion U-Net possess varying spatial
dimensions across different layers, and are interpolated to a
common resolution H ′ ×W ′, as follows:

f
′(i)
l = B(f (i)

l , H ′,W ′), f
′(i+N)
l = B(f (i+N)

l , H ′,W ′)
(4)
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where B represents the bilinear interpolation function.
Prior to computing the correlation map, the feature maps

are normalized to ensure comparability. The correlation
map C

(i)
l at each feature level l is computed to encapsu-

late pairwise similarity across all spatial positions, resulting
in a 4D tensor with dimensions H ′ ×W ′ ×H ′ ×W ′. The
element C(i)

l (p, q, r, s) represents the L2 distance between
the vectors at positions (p, q) and (r, s):

C
(i)
l (p, q, r, s) =

f
′(i)
l (p, q) · f

′(i+N)
l (r, s)∥∥∥f ′(i)

l (p, q)
∥∥∥
2

∥∥∥f ′(i+N)
l (r, s)

∥∥∥
2

(5)

Subsequently, we aggregate the correlation maps from all
feature levels to form the cumulative correspondence map
C(i) for each view i, defined by the sum:

C(i) =
∑
l

C
(i)
l (6)

This 4D correlation map C(i) integrates the feature-level
similarities into a singular comprehensive map [15].

For each spatial location (p, q), correspondences are de-
termined by identifying the position with the highest value
in C(i), signifying the nearest neighbor:

corr(p, q) = argmax
r,s

C(i)(p, q, r, s) (7)

where corr(p, q) designates the corresponding spatial loca-
tion in the adjacent view for the point at (p, q). This dense
correspondence field between each pair of adjacent views
serves as a 3D geometric prior, which is instrumental in su-
pervising the NeRF model for improved 3D fidelity.

As we know the ground-truth camera parameters for
each rendered view, we can filter out implausible correspon-
dences, adhering to constraints like the epipolar constraint.
We guide the readers to the supplementary for the details of
correspondence post-processing.

4.4. Cross-view correspondence loss

Having established N sets of correspondences between ad-
jacent NeRF-rendered image pairs, we leverage the depth
information provided by the NeRF rendering process along-
side the known camera parameters to reproject points from
one view to the corresponding points in the adjacent view
through a reprojection function denoted as π. For each pair
of adjacent images, we now possess two distinct sets of
correspondences: one derived from the diffusion features,
corrdiff, and the other obtained via reprojection using cam-
era parameters and NeRF-rendered depths, corrNeRF. The
reprojection function is defined as:

corrNeRF(p) = π(depthϕ(p), c, p) (8)

where depthϕ(p) is the depth value at pixel p, and c repre-
sents the camera parameters.

Our assumption posits that diffusion features are both in-
formative and discriminative, yielding correspondences that
not only associate semantically similar features but also ad-
here to geometric consistency, aligning with human percep-
tual reasoning. To enforce this assumption, we take inspi-
ration from SPARF [31] to formulate a cross-view corre-
spondence loss, which penalizes the NeRF-reprojected cor-
respondences when they diverge from the diffusion feature
correspondences, i.e., incoherent to common sense:

Lcorr =
∑
p

ω(p) · Huber(corrdiff(p), corrNeRF(p)) (9)

Here, Huber(·) represents the Huber loss function [5], and
ω(p) is a weighting factor proportional to the similarity
value at position p in the correlation map, enhancing the
influence of high-confidence correspondences. This loss
function serves to align the NeRF model’s depth predictions
with the geometrically and semantically robust correspon-
dences derived from diffusion features, thereby correcting
infidelities in the NeRF-rendered depths and enhancing the
model’s coherence to common sense.

4.5. NeRF optimization

In optimizing the NeRF model, we consider two distinct ob-
jectives: LSDS, which ensures that NeRF-rendered views are
consistent with the pre-trained diffusion model, and Lcorr,
which improves the 3D fidelity of the NeRF-inferred ge-
ometry. Given the potential for these objectives to con-
flict—wherein the 3D geometry updates from Lcorr may not
align with updates steered by LSDS—we employ an alternat-
ing optimization strategy to mitigate conflict between the
objectives. This strategy is particularly pertinent as fea-
tures conducive to accurate correspondence are typically ex-
tracted at lower timesteps (e.g., t = 0), while LSDS benefits
from a wide range of sampled timesteps during the 3D op-
timization process [25, 27].

We define the total number of optimization iterations as
T , with a predefined range [tstart, tend] within which Lcorr
is active. The SDS loss is applied to NeRF at every it-
eration by default. However, for iterations t such that
tstart ≤ t ≤ tend and t is even (t%2 = 0), we alternate to
apply Lcorr without LSDS. This alternating approach lever-
ages the strengths of both losses, facilitating a balanced op-
timization that enhances both the visual coherence and 3D
geometric fidelity of the NeRF-rendered scenes.

5. Experiment
5.1. Implementation details

We implement CorrespondentDream on top of the open-
sourced multi-view diffusion model MVDream [27], which
implements a zero-shot text-to-3D pipeline on top of the
threestudio [4] library. We use final image dimensions of
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“A bichon fries wearing academic regalia” “A very cool and trendy pair of sneakers (…)” “A turtle standing on its hind legs (…)”
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“A yellow schoolbus” “A gummy bear driving a convertible (…)” “A pug made out of modeling clay (…)”
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“Samurai koala bear” “A DSLR photo of a vintage record player” “An origami bulldozer sitting (…)”

Ba
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lin

e
O
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“An astronaut riding a horse” “A colorful camping tent (…)” “A DSLR photo of a corgi puppy”
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Figure 4. Qualitative results of our CorrespondentDream across various prompts. It can be seen that CorrespondentDream yields
substantially improved 3D fidelity across various prompts. The 3D infidelities from the baseline (MVDream [27]) are highlighted and
zoomed in white squares. Best viewed on electronics, zoom in for better visualization.

10654



128×128 for NeRF-rendered views for improved latency
and memory overhead1. We noticed that the quality of text-
to-3D using MVDream is maintained at image dimensions
of 128×128; and in the presence of 3D infidelities, the er-
rors are also consistent at these image resolutions. We illus-
trate qualitative evidence for this in the supplementary.

For our NeRF, we use the implicit-volume implementa-
tion in the Nerfacc library [16]. We use tstart = 3000 and
tend = 7000, leading to 2000 iterations of correspondence
loss supervision without SDS supervision. To compensate
for this, we optimize our NeRF model for a total number
of iterations T = 120002. We optimize the NeRF model
using an AdamW optimizer [21] with a constant learning
rate of 0.01. LSDS and Lcorr are weighted at 1.0 and 1,000
respectively. For adjacent multi-view NeRF rendering, we
uniformly sample from [10◦, 30◦] for ∆α, and ensure that
the adjacent views are added with the same noise, modu-
lated with t = 03. We use the output feature maps from
the 6th and 9th upsampling layers of the UNet to compute
the correlation map. The NeRF optimization with normal
rendering takes about 2 hours on a Tesla V100 GPU.

5.2. Qualitative results

We present comparative qualitative results between Cor-
respondentDream and MVDream [27]. Other 2D lift-
ing methods that rely on single-view diffusion model pri-
ors [18, 25] suffer from unresolved multi-view consistency
issues, i.e., the Janus face and the content drift problems.
This overwhelms the 3D infidelities, making in inappropri-
ate to qualitatively compare against such methods (??). The
results are shown in Fig. 4, where it can be seen that Corre-
spondentDream can visibly remove 3D infidelities i.e., con-
cavities or missing surfaces, across various prompts, im-
proving the 3D fidelity of NeRF-rendered geometry.

As our proposed cross-view correspondence affects the
NeRF model directly via the NeRF-rendered depths, it can
be seen that the output appearance i.e., size, color or the
overall appearance, of the output itself may also differ com-
pared to using the SDS loss alone. For example, the 3D
outputs of the prompt ”A bichon fries wearing academic
regalia” are wearing differently coloured regalias, and the
3D outputs of the prompt ”A pug made out of modeling
clay” exhibit different colours as well. Nonetheless, the out-
put when using our method is still coherent with the input
prompt, but with improved 3D fidelity.

1Stable Diffusion v2.1 base model [26] generates images at resolutions
of 512×512. MVDream [27] uses a reduced image size of 256×256 when
finetuning the Stable Diffusion model for multi-view image generation,
and also when rendering NerF-rendered views for text-to-3D.

2which is 2000 higher than the number of iterations used in MVDream.
3Inspired from existing work on diffusion-based image matching [17,

30] which show that t = 0 gives the most robust features.

5.3. Comparative analysis

In this section, we perform analytical experiments to quali-
tatively evidence the design choices of our approach.

tcorr = tSDS = 0 tcorr, tSDS ∼ U(0,T) tcorr = 0, tSDS ∼ U(0,T) tcorr = 0, tSDS ∼ U(0,T)

Simultaneous Alternating

“Samurai koala bear”

Figure 5. Analysis of alternating supervision. Noticeable 3D
inaccuracies are marked with white squares. Our alternating su-
pervision approach demonstrates superior qualitative outcomes.

Analysis on alternating supervision of LSDS and Lcorr.
We compare the scheme of supervising NeRF with alternat-
ing LSDS and Lcorr to non-alternating (simultaneous) alter-
natives. Under the simultaneous setting, we either (1) fix
the timestep t to be always randomly sampled (as done for
LSDS), or (2) always set at t = 0 (as done for Lcorr), or (3)
randomly sample the timestep t for LSDS, and use t = 0
for Lcorr when modulating the diffusion model. Note that
the (3) results in increased computation costs as the conse-
quence of multiple forwards of the diffusion model for the
same input. We illustrate the results in Fig. 5, where it can
be seen that our alternating scheme yields the best results.

Ours w/o adjacent rendering

“Wall-E, cute, render, super detailed, best quality, 4K, HD”

Ours

“A cute steampunk elephant”

Figure 6. Ablation of adjacent multi-view rendering. Without
adjacent rendering, we establish correspondences between adja-
cent views within only a single set of rendered views. This results
in a very small overlapping region, leading to erroneous cross-
view correspondence, and consequently worsened output.

Ablation on adjacent multi-view rendering. We perform
an ablation on adjacent multi-view rendering, and show the
results in Fig. 6. It clearly shows that our current scheme

10655



of adjacent multi-view rendering yields much better results.
As explained in Sec. 4.1, the azimuthal distance between
adjacent views within a single set of multi-view renderings
would be too large, i.e., lower overlap region between view-
points, making it challenging to establish dense, robust cor-
respondences for appropriate supervision.

5.4. User study

Method User preference %
MVDream [27] 30.4
CorrespondentDream (ours) 69.6

Table 1. User study. Users were asked to pick their preference
based on perceived 3D fidelity and overall quality. Our method
was selected more than twice compared to the baseline [27].

Due to the absence of ground-truth 3D scenes corre-
sponding to text prompts, it is difficult to conduct a quantita-
tive evaluation on the 3D fidelity of the text-to-3D outputs.
Instead, we perform a user study on generated models from
40 non-cherry-picked prompts, where each user is asked to
select the preferred 3D model in terms of the 3D fidelity i.e.,
coherence to the 2D images, and the overall quality of the
output. 767 responses from 25 participants were collected,
and the results are shown in Table 1. It can be seen that Cor-
respondentDream was selected to be more favorable more
than twice compared to MVDream alone.

5.5. Drawbacks and failure cases.

“A DSLR photo of a bear dressed in medieval armor”

Baseline CorrespondentDream
10000 it 12000 it10000 it

Figure 7. Varying iterations. Even with the same number of itera-
tions as the baseline [27], i.e., lower number of effective SDS opti-
mization steps, CorrespondentDream still improves the 3D fidelity
of the output while achieving high-quality colour and texture.

The main drawback of our method is the increase in opti-
mization iterations due to the alternating supervision. How-
ever, we note that we used a larger number of iterations
to keep the number of SDS-supervised iterations the same
with the baseline for a fair comparison. Figure 7 shows

“Darth Vader helmet, highly detailed” “A puffin standing on a rock (…)”

Ba
se
lin

e
O
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s

Figure 8. Failure cases. In the presence of shiny homogeneous
surfaces (helmet, left), or many repetitive patterns (feathers, right),
our method occasionally falls short at correcting the 3D infidelity.

the result when we use the same number of iterations as
the baseline. CorrespondentDream still shows high-quality
colour and texture albeit improved fidelity4.

CorrespondentDream shows to often fail in cases where
there are shiny homogeneous surfaces or repeated patterns
within the image as shown in Figure 8. We conjecture this
is because such cases may be challenging for diffusion fea-
tures to yield robust and dense correspondences between the
rendered views, being unable to provide sufficiently infor-
mative 3D prior during the NeRF optimization.

6. Conclusion
We have presented CorrespondentDream, a novel method
that leverages annotation-free, cross-view correspondences
computed from diffusion features to additionally supervise
the 3D representation in zero-shot text-to-3D models for
improved 3D fidelity. By formulating the cross-view corre-
spondence loss computed using the NeRF-reprojected pix-
els and the cross-view correspondences, we can correct the
geometric flaws in NeRF depths caused by the ambigui-
ties that cannot be handled by multi-view 2D image priors
alone. Notably, this does not require any additional explicit
priors or off-the-shelf modules. We demonstrate the effi-
cacy of our approach via qualitative results and a user study
on a large collection of varying text prompts. Our work
aims to shed light onto the neglected issue of 3D geometric
fidelity of diffusion-guided text-to-3D models, paving the
way for enhanced applicability to practical scenarios.
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