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Abstract

Video deblurring aims to restore sharp frames from
blurred video clips. Despite notable progress in video de-
blurring works, it is still a challenging problem because of
the loss of motion information during the duration of the
exposure time. Since event cameras can capture clear mo-
tion information asynchronously with high temporal resolu-
tion, several works exploit the event camera for deblurring
as they can provide abundant motion information. How-
ever, despite these approaches, there were few cases of
actively exploiting the long-range temporal dependency of
videos. To tackle these deficiencies, we present an event-
based video deblurring framework by actively utilizing tem-
poral information from videos. To be specific, we first intro-
duce a frequency-based cross-modal feature enhancement
module. Second, we propose event-guided video align-
ment modules by considering the valuable characteristics
of the event and videos. In addition, we designed a hybrid
camera system to collect the first real-world event-based
video deblurring dataset. For the first time, we build a
dataset containing synchronized high-resolution real-world
blurred videos and corresponding sharp videos and event
streams. Experimental results validate that our frameworks
significantly outperform the state-of-the-art frame-based
and event-based deblurring works in the various datasets.
The project pages are available at https://sites.
google.com/view/fevd-cvpr2024.

1. Introduction
Motion blur often occurs due to the abrupt motion of the ob-

ject and/or the camera during the exposure time of a frame-

based camera. Motion deblurring aims to restore the latent

sharp frame from blurred frame, which is a highly ill-posed

problem [1, 16, 20]. With the recent development of deep

learning methods [27, 40, 59, 63], considerable progress has

been made in the field of motion deblurring. However, it

still fails in cases of substantial motion magnitude.

Event cameras record per-pixel brightness changes with

micro-second-level temporal resolutions. Thanks to their

*The first two authors contributed equally.
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Figure 1. The visualization of blur and sharp videos with event se-

quences in spatial and frequency domains. We utilize the discrete

fourier transform (DFT) to visualize the frequency spectrum.

high dynamic range and motion blur resilience, event cam-

eras can be effectively utilized in extreme scenarios across

diverse fields [4, 9, 10, 53]. In particular, event cameras

provide degradation information of blurred frames for mo-

tion deblurring. Thus, recent event-based motion deblurring

works [21, 42, 43, 62] utilized the advantages of event cam-

eras to restore the sharp frames from motion blurred ones.

However, there are still unexplored aspects in event-

based deblurring research. In conventional frame-based

video deblurring, temporal information from video has been

actively utilized to improve restoration quality. In con-

trast, event-based motion deblurring still predominantly fo-

cuses on single-image deblurring despite the rich tempo-

ral information from event cameras. Although previous

works [21, 43] use a pair of consecutive images for deblur-

ring, there is currently no research actively leveraging the

temporal information in larger continuous video sequences.

In this paper, we first explore the potential of rich tem-

poral information of the events for video deblurring. To

effectively leverage the characteristics of both the video

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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and the events, we propose two temporal feature alignment

modules leveraging the events. Specifically, we first pro-

pose an Event-guided Local-windowed Temporal Propaga-

tion (ELTP) module. The ELTP module effectively lever-

ages multi-frame information by utilizing temporal infor-

mation of the events from adjacent neighbor frames. In

addition, we propose a Bidirectional Temporal Feature Fu-

sion (BTFF) module to fully exploit information across

the entire video inputs by fusing long-term temporal fea-

tures. These modules effectively extract temporal informa-

tion from the videos, resulting in the generation of high-

quality sharp features. Finally, we propose a Frequency-

aware Cross-Modal Feature Enhancement (FCFE) module

to achieve more reliable feature enhancement between im-

ages and events. In contrast to feature fusion methods

that solely occur in the spatial domain, the FCFE module

fuses cross-modality features based on the spectral domain

analysis [8, 15, 23, 26, 54, 67]. The events record bright

changes of the scene, providing information about the high-

frequency components of the latent sharp frame we aim

to restore. Therefore, the high-frequency components of

the latent sharp frame are similar to those of the events, as

shown in Fig. 1. Therefore, to actively leverage these char-

acteristics, we propose a method that efficiently fuses the

frame and event modality by observing them in the spectral

domain and analyzing their correlations between modali-

ties. Moreover, the FCFE module performs adaptively en-

hance the features along with the spatial and channel dimen-

sion between different modalities in the frequency domain.

As a result, we obtain a more robust cross-modal feature

representation with the assistance of the frequency domain.

Furthermore, to contribute a real-world dataset to the

community, we built a new dataset consisting of real-world

motion blur with events, called the Real-world Event Video

Deblurring (REVD) dataset. Our dataset contains high-

quality and high-resolution motion-blurred images, corre-

sponding sharp images, and events.

Our contributions can be summarized as: 1) We pro-

pose a novel frequency-aware event-based video deblur-

ring framework. 2) We propose a Frequency-aware Cross-

modal Feature Enhancement (FCFE) module to effec-

tively enhance cross-modality features in the frequency do-

main. 3) We propose two temporal alignment modules,

named Event-guided Local-windowed Temporal Propaga-

tion (ELTP) and Bidirectional Temporal Feature Fusion

(BTFF), effectively leveraging the rich temporal informa-

tion of events. 4) To the best of our knowledge, we provide

the first real blur dataset for event-based video deblurring.

2. Related Works
2.1. Frame-based Image and Video Deblurring

The deep learning-based approaches [27, 29, 52, 57, 59]

have demonstrated the potential to find non-uniform and

variant blur kernels using a single image. They intri-

cately designed networks using CNNs with various tech-

niques such as attention [23, 41, 45, 58], multi-stage de-

sign [7, 57, 59], and multi-scale fusion [3, 12, 27]. Video

deblurring [6, 28, 34, 66] has improved the quality of de-

blurring by leveraging temporal information of videos. It

aggregates sharp patches from adjacent frames to fill in

missing information from a single image. Most meth-

ods utilize optical flow [14, 32] and deformable convolu-

tion [19, 60] to perform temporal feature alignment between

adjacent frames. However, when severe and continuous blur

is present, it becomes challenging to consider temporal cor-

relation among video frames, leading to limitations in tem-

poral alignment performance improvement.

2.2. Event-based Motion Deblurring

Event cameras, a bio-inspired sensor, can record tempo-

rally dense information with pixel-wise intensity changes.

Early works [17, 35, 36] succeeded in modeling relation-

ships between a sharp image and a blurry image using

the physical model-based formulation. Following event-

based deblurring works [20, 24, 49], deep learning-based

deblurring methods have been introduced to leverage the

advantages of event data. In recent works, efforts have

been directed towards designing more advanced architec-

ture [42, 61] and addressing real-world scenarios more ef-

fectively [11, 43, 55, 56, 62], including challenges such

as non-consecutive blurry videos [38] and videos with un-

known exposure time [21]. Existing methods use dynamic

filters [21, 24] or attention mechanisms [42] to fuse images

and events from different modalities. Unlike these works,

we propose a method that combines information between

the two modalities in the frequency spectrum. Furthermore,

while previous approaches mainly used a single image with

corresponding events occurring during the exposure to re-

store a sharp image, we propose a method that effectively

extracts the long-term temporal dependencies in videos by

leveraging the rich temporal information from events.

3. Method
3.1. Overall Framework

Figure 2 illustrates the overall framework of the proposed

method. We convert the event stream into voxel grid [65]

representation, where voxel grid E ∈ R
B×H×W with bin

size B. Given T sequential blur frames {Bi}Ti=1 and cor-

responding voxel grid {Ei}Ti=1, we first extract features

through 3D convolution with kernel size of 1 × 3 × 3.

Then, we reduce the spatial dimension of features to one-

fourth using two 3D convolution layers with a kernel size

of 3 × 3 × 3 and a stride size of 1 × 2 × 2. F(E)si and

F(B)si represent the event and blur features, respectively,

where s is the scale factor. The spatial dimensions of the
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Figure 2. Overall framework of the proposed methods. Sequential blur frames and voxel grids are first processed through 3D convolutions

to extract multiple-scale features. The Frequency-aware Cross-modal Feature Enhancement (FCFE) module performs cross-modal fusion

in the frequency spectrum at the lowest resolution. Then, the Event-guided Local-windowed Temporal Propagation (ELTP) module aligns

adjacent neighbor frames through temporal propagation. Finally, after upsampling to increase spatial resolution, the Bidirectional Temporal

Feature Fusion (BTFF) facilitates interaction among all frames within a rich spatial context.

features at scale factor s are denoted as Hs and Ws, and

Hs = H/2s,Ws = W/2s. After the encoding step, we

extract useful information from each modality’s features in

the frequency domain through the Frequency-aware Cross-

modal Feature Enhancement (FCFE) module. After that,

at a scale factor s of 2, the Event-guided Local-windowed

Temporal Propagation (ELTP) module aligns temporal fea-

tures between adjacent video frames. Finally, at a scale fac-

tor s of 1, we perform temporal feature alignment with the

help of the events through the Bidirectional Temporal Fea-

ture Fusion (BTFF) modules.

3.2. Frequency-aware Cross-Modal Feature En-
hancement Module

Since the events provide clear motion information within

the exposure time, effectively integrating this information

with blur frames can significantly aid in restoring sharp

frames. However, due to the inherent modality differences

between events and blur frames, cross-modality feature fu-

sion is challenging yet crucial in event-based deblurring

tasks. The most straightforward way of cross-modality fu-

sion is to use standard convolution with a fixed-sized ker-

nel by utilizing two modality features. However, standard

convolution can lead to sub-optimal feature fusion results

as it does not consider the context differences between the

two modalities as it applies a fixed-sized filter across the

entire pixels. Therefore, for more reliable cross-modality

fusion, we require a content-adaptive dynamic filter-based

fusion method that can aggregate features based on spatial

or channel content instead of using standard convolution.

To achieve this goal, we first revisit the convolution the-

orem [31]. According to this theorem, the element-wise

multiplication of two signals in the frequency domain is

equivalent to the convolution between two signals. That is,

performing frequency-domain filtering can be interpreted

[Real, Imag]

Spatial
Frequency Filter

Conv1x1

Conv3x3
Depth-wise
Convolution

ReLU
Sigmoid

Element-wise 
Product
Element-wise 
Summation

Concatenation

Norm

FFT
FFT

iFFT

Norm

1D-FFT

Channel
Attention

Global Channel 
Frequency Filter

1D-iFFT

Channel
Split

Spatial Filtering
Global Channel 

Filtering

Reshape

TCxHxW

TxCxHxW

TxCxHxW Filter 
Generation 

GEGLU

Cross 
Attention

OutputEvent
Feature

Image
Feature

Figure 3. Frequency-aware Cross-modal Feature Enhancement

(FCFE) modules.

as conducting dynamic filtering with a large receptive field

size. Based on this fact, we propose a Frequency-aware

Cross-Modal Feature Enhancement (FCFE) module to over-

come the inherent differences between the two modalities.

Within the FCFE module, we aim to filter the blur fea-

tures by leveraging event features in the frequency domain.

Our module can be classified into two branches: spatial fre-

quency filtering and global channel filtering. As shown in
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Fig. 3, given T sequential blur features {F(B)si}Ti=1 and

event features {F(E)si}Ti=1 with a scale factor s of 2, we

first apply layer normalization [2] layers to each modality

feature. We then concatenate these two features in the chan-

nel dimension to consider the correlation between blur and

event features and apply a 1×1 convolution layer to get the

correlated features {F(C)i}Ti=1 (omit the scale factor for

the simplicity), where F(C)i ∈ R
C×Hs×Ws .

For spatial filtering, we perform a 2D Fast Fourier Trans-

form (FFT) [30] for correlated features and concatenate the

real and imaginary parts of the FFT results to obtain the

frequency representation such as F(C)i = FFT(F(C)i),

where F(C)i ∈ R
2C×Hs×(�Ws

2 �+1). Then, through con-

volution, ReLU, and Sigmoid layers, we generate a spatial

frequency filter fs ∈ R
C×Hs×(�Ws

2 �+1) to extract valuable

information observed in the frequency spectrum. Similarly,

by applying FFT with convolution layers to the blur feature,

we obtain F(B)i ∈ R
C×Hs×(�Ws

2 �+1), and the proposed

spatial filtering is calculated as follows:

F(B̂)i = F(B)i ⊗ fs, (1)

where ⊗ denotes element-wise multiplication. After apply-

ing convolution and ReLU layers, we transfer the spatially

filtered feature F(B̂)i in the frequency space to the spatial

domain using an inverse FFT as:

F(B̂)i = iFFT(ReLU(Conv1×1(F(B̂)i))). (2)

In spatial frequency filtering, fs can be interpreted as a dy-

namic filtering operation with a large receptive field that ex-

tracts valuable information from cross-modalities. Hence,

Eq. (1) more reliably enhances blur features by leveraging

event features in the frequency domain.

We have extracted crucial cross-modality information

from the spatial domain through spatial frequency filtering.

However, the feature’s channels also contain a substantial

amount of information. To address this, we design a global

channel frequency filtering mechanism that learns a special-

ized frequency filter. This module modulates the frequency

feature spectrum based on the global channel context. For

this, we first reshape the spatially filtered feature along with

the channel dimension as {F(B̂)i}Ti ∈ R
T×C×Hs×Ws →

F(B̂)1:T ∈ R
(T×C)×Hs×Ws , denoted (T × C) as M for

simplicity. We apply 1D FFT along the flattened channel di-

mension to obtain the channel-wise frequency domain fea-

tures as:

F(B̂)1:T = 1D-FFT(F(B̂)1:T ), (3)

where F(B̂)1:T ∈ R
(�M

2 �+1)×Hs×Ws . To generate fre-

quency filters for the global channel dimension, we add

F(C)i and F(B̂)i through skip connections to generate

F(C)′i = F(C)i + F(B̂)i followed by channel atten-

tion [66] block, Ai ∈ R
C×1×1.

The channel attended feature F(Ĉ)i can be obtained

by multiplication F(Ĉ)i = F(C)′i ⊗ Ai. Then, we

also flatten the attended feature such as {F(Ĉ)i}Ti ∈
R

T×C×Hs×Ws → F(Ĉ)1:T ∈ R
M×Hs×Ws . We apply a

1 × 1 convolution layer to the attended feature to calcu-

late the channel filter, ft ∈ R
(�M

2 �+1)×Hs×Ws . The global

channel-filtered feature can be calculated as:

F(B̃)1:T = F(B̂)1:T ⊗ ft. (4)

After that, we apply inverse 1D FFT as follows:

F(B̃)1:T = 1D-iFFT(F(B̃)1:T ). (5)

ft is also an adaptive filter that performs correlation in the
global channel dimension through a 1 × 1 convolution, en-
abling discriminative channel filtering. Similar to fs, ac-
cording to the convolution theorem, Eq. (4) is equivalent to
performing dynamic kernel operations for the global chan-
nel dimension. We reshape the dimensions of the feature
as

F(B̃)1:T ∈ R
(T×C)×Hs×Ws → {F(B̃)i}Ti ∈ R

T×C×Hs×Ws ,

As spatial feature enhancement branch, we adopt a widely

used transformer architecture [42, 58] as cross-attention

to fuse F(E)i and F(B̃)i Finally, we generate the output

feature F̃(B)i by adding the results of the GEGLU func-

tion [39] to the original blur feature F(B)i using a residual

connection.

3.3. Event-guided Temporal Feature Alignment

Temporal alignments aim to mine valuable information

from neighboring video frames. Conventional feature

alignment methods explicitly use optical flows [51] and

deformable convolutions [13, 50]. Despite the notable

progress in frame-based feature alignment methods, there

needs to be more research for aligning video frames by

leveraging information from event streams. To better lever-

age the advantages of events, we first revisit the concept

of event-based video interpolation works and utilize this

concept to perform temporal alignment. Recently, event-

based video interpolation works [22, 46, 47] have intro-

duced the concept of “synthesis-based alignment” for in-

terpolating supporting frames to the reference frames using

both event and image modalities without optical flows. This

concept allows us to leverage the advantages of the events

without extensive computation of optical flows, enabling di-

rect alignment of supporting features using the events. In-

spired by these concepts, we devise two temporal feature

alignment modules, Event-guided Local windowed Tempo-

ral Propagation (ELTP) and Bidirectional Temporal Feature

Fusion (BTFF). The ELTP module performs temporal align-

ment using the information of neighboring video frames at

relatively lower spatial resolution (scale s of 2). We then en-

hance the adjacent and current features through frequency
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Figure 4. Event-guided Local-windowed Temporal Propagation (ELTP) module.

domain analysis to improve alignment. After the ELTP

module, we introduce the BTFF module to improve deblur-

ring effectiveness. It achieves this by conducting temporal

alignment to leverage the abundant temporal information

from events at elevated spatial resolutions (scale s of 1),

utilizing bi-directional structures.

Event-guided Local-windowed Temporal Propagation.
As illustrated in Fig. 4, we aim to simultaneously align the

left and right video frame features F̃(B)i+1, F̃(B)i−1 with

the reference blur video frame features F̃(B)i. In this mod-

ule, we consider both left and right features to align a single

current frame feature. In this way, we can simultaneously

integrate information from both forward and backward di-

rections, thereby reducing the negative influence of occlu-

sion, compared to using information from only one direc-

tion. To this end, we first align the supporting blur frame

features F̃(B)i+1, F̃(B)i−1. To align a single supporting

blur feature, we need event features that correspond to the

time duration from the starting point of the exposure time

of the reference frame feature to the end of the exposure

time of the supporting frame feature. Therefore, we perform

synthesis-based feature alignment utilizing the supporting

blur frame feature along with two event features (F(E)i and

F(E)i+k). That is, we concatenate the supporting blur fea-

ture F̃(B)i+k with the current and supporting event features

(F(E)i, F(E)i+k) with containing motion information of

both the current and supporting blur frames during exposure

time where k ∈ {−1,+1}. We then apply ResBlocks [18]

to produce aligned features as:

G(B)fi = Res[F̃(B)i−1,F(E)i,F(E)i−1] (6)

G(B)bi = Res[F̃(B)i+1,F(E)i,F(E)i+1]

where [·] denotes channel-wise concatenation and Res

denotes Resblocks and G(B)fi , G(B)bi denote aligned

feature from the forward and backward direction within

local windows, respectively. In this way, we align the

features of the left and right frame frames by leveraging

the rich temporal contexts of the events. To achieve

better alignment, we perform feature fusion between

the current frame feature and the aligned frame fea-

tures in the frequency domain. We concatenate the

features of the two aligned features and apply several

convolutions: G(B)bfi = Conv3×3([G(B)bi ,G(B)fi ]).
We then apply FFT transforms from the aligned fea-

ture G(B)bfi to G(B)bfi and from the current feature

F̃(B)i to F̃(B)i. Following this step, we concatenate

the real and imaginary parts of each transformed fea-

ture F̃(B)i, G(B)bfi to make the feature YF as YF =

Conv1×1[R(G(B)
bf
i ), I(G(B)

bf
i ),R(F̃(B)i), I(F̃(B)i)]

where R and I represent the real and imaginary parts of

the transformed feature. To apply the channel attention for

each feature in the frequency domain, we aim to estimate

the frequency-domain channel attention map.

Ki = σ(Fconv([AvgPool(YF ),MaxPool(YF )])), (7)

where Fconv represents “Conv1×1 − ReLU− Conv1×1”

function. We then perform a split feature Ki along the

channel dimension resulting in two independent channel-

wise features, K1
i and K2

i . We apply channel attention to

each blur frame feature G(B)bfi and F̃(B)i in the frequency

domain. Additionally, we apply Fconv operation for each

feature and then conduct an inverse FFT. In this way, we

can effectively fuse the advantages of the frequency domain

for each feature to combine temporal features. Afterward,

we apply resblocks to the enhanced two features in the fre-

quency domain and perform concatenation with the current

event feature to carry out the final alignment results, G̃(B)i.
Bidirectional Temporal Feature Fusion. The BTFF mod-

ule serves two distinct purposes compared to the ELTP

module: (1) The ELTP module focuses solely on adja-

cent local information. In contrast, BTFF aims to convey

long-range and non-local information to all blurred images.

(2) While ELTP extracts high channel-dimensional features

at the lowest resolution, leveraging the advantages of fre-
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quency domain for video alignment to restore highly fine

and detailed portions, BTFF operates at more higher reso-

lution, targeting overall content-based temporal consistency

maintenance, utilizing rich spatial context. To effectively

leverage long-term temporal information, BTFF module is

designed with a bidirectional structure that allows for the

better utilization of non-local frame information. We illus-

trate the process of BTFF module at time i in Fig. 5. The

BTFF utilizes features with a scale factor s of 1 to leverage

rich spatial context. To align features from different time

steps, we fuse events for the current time, i, with events

from the target previous i − 1 or subsequent i + 1 to ob-

tain the event feature S(E)
{f,b}
i for alignment. Note that

extracting additional event features for alignment allows us

to synthesize the aligned features better since they contain

explicit motion information between frames. The forward

fused features, H(B)fi , considering the previous fused fea-

tures, are calculated as follows:

S(E)fi = Conv3×3([F(E)i−1,F(E)i]), (8)

H(B)fi = F f
Res([G̃(B)i,S(E)fi ,H(B)fi−1]),

where F f
Res denotes “Conv3×3 − ReLU− ResBlocks”

function for forward. Similarly, backward fused features,

H(B)bi , are obtained as:

S(E)bi = Conv3×3([F(E)i,F(E)i+1]), (9)

H(B)bi = F b
Res([G̃(B)i,S(E)bi ,H(B)bi+1]),

and we aggregate the forward and backward fused features:

H̃(B)i = Conv3×3([H(B)bi ,H(B)fi ]) (10)

Finally, we obtain the sharp latent frames as:

Si = Conv3×3(U(H̃(B)i)) + Bi, i = {1, ..., N} (11)

where U denotes the transposed 2D convolution block to

upsample features. Finally, we obtain the estimated sharp

video frames {Si}Ti=1.

Table 1. Comparison of our REVD dataset with publicly available

REBlur dataset [42], recorded by DAVIS346 camera.

REVD (Ours) REBlur [42]

№ total frames 6.3 k 1.5 k

Image Resolution 1024× 768 346× 260
№ frames in Seq. (Min) 299 6

Blur type Real Real

Event type Real Real

Color � �

4. Real-world Event Video Deblurring Dataset
Several event-based deblurring works have employed se-

quential sharp frames to synthesize blurred images using

GoPro [21, 24, 44] or DAVIS [21]. In the case of syn-

thetic deblurring datasets, we often observe the unrealis-

tic blur frames (e.g., shutter effects) due to a discrete av-

eraging process using consecutive sharp images. Due to

these discrepancies between synthetic and real-world blur

frames, deep learning models trained on the synthetic de-

blurring dataset show limited generalization ability to real-

world blurry video frames. Therefore, we need real-world

deblurring datasets with synchronized real-events for the

generalization ability on the real-world blurry videos.

Recently, Sun et al. [42] introduced an event-based real-

world deblurring dataset by capturing blur frames, corre-

sponding sharp frames, and actual events with a DAVIS-346

camera. However, as shown in Tab. 1, REBlur dataset [42]

has a limited number of frames in the sequence, so it is not

suitable for an event-based video deblurring research since

we can not evaluate the model by leveraging long-range

temporal dependency of videos. Furthermore, DAVIS-346

camera has low image quality and resolution. Therefore,

high resolution and quality event-based real-world video

deblurring datasets are essential for evaluating event-based

video deblurring research communities.

To this end, we design a hybrid camera system where

two same FLIR BlackFly cameras and one Prophesee Gen4

event camera are co-axis aligned utilizing a two-way 50:50

beam-splitter system as illustrated in Fig. 6. The three cam-

eras are hardware-level temporally synchronized with a mi-

crocontroller system. Then, we set a longer exposure time

for the capturing blurry video frames (32ms) compared to

the sharp video frames (4ms). We adjust the irradiance in-

tensity of the camera for capturing blurry videos to be 1/8

of that of the camera for sharp videos in order to maintain a

consistent irradiance intensity. To account for the additional

half reduction in irradiance intensity as it passes through the

beam-splitter, a 25% neutral density filter is physically in-

serted in front of the camera for capturing blurry videos.

5. Experiments
5.1. Datasets

GoPro Dataset. We evaluate the proposed method on the

GoPro dataset [27], which has been widely used in existing

24971



Figure 6. Camera system for acquiring the Real-world Event Video Deblurring (REVD) dataset. As shown in (b), to equalize the total

illumination received by cameras due to different exposure times, we install a neutral density filter in front of the camera with a longer

exposure time, thus reducing the irradiance.

Table 2. Quantitative evaluations on the GoPro dataset. † represents the results we obtained from training the networks using the same

event raw data and representation as ours. All other results are obtained from the original paper.

Frame-based IFRNN [28] ESTRNN [64] CDVD-TSP [33] MMP-RNN [51] STDAN [60] ERDN [19] DSTNet [34]

PSNRs 29.97 31.07 31.67 32.64 32.29 32.48 34.16

SSIMs 0.895 0.902 0.928 0.936 0.931 0.933 0.968

Event-based eSL-Net† [48] REDNet† [56] D2Nets [38] UEVD† [21] EFNet [42] EFNet† [42] Ours

PSNRs 28.69 35.07 31.60 35.93 35.46 35.87 36.70
SSIMs 0.908 0.971 0.940 0.975 0.972 0.974 0.978

event-based deblurring researches [21, 38, 42]. We used the

event simulator (ESIM) [37] for generating synthetic events

and performing comparisons with other methods.

REVD Dataset provides 21 sequences, including dynamic

scenes and extreme blurs. We use 13 sequences for train-

ing and 8 sequences for the test set. The image and event

resolution is 1024×768. We capture videos of typical ur-

ban scenes encompassing diverse motion modes, including

ego-motion, object motion, and a combination of both.

5.2. Implementation Details

We set the batch size of 8 and bin size of event voxels as 16.

We randomly crop the images and event voxels to 256×256
for the same locations in training time. All networks are

trained by utilizing AdamW [25] optimizer with an initial

learning rate of 1× 10−4 using the charbonnier loss [5].

5.3. Comparison on Synthetic Datasets

Table 2 presents the quantitative results on the GoPro

dataset. Since the performance results for some existing

works [21, 48, 56] on GoPro were not publicly available,

we train those models from scratch ourselves, denoted by

†, using the same event representation as ours for a fair

comparison. The majority of event-based methods out-

perform frame-based single and video-based methods in

terms of performance. Among them, our method achieves

the highest performance, leveraging the ability to utilize

multi-frame information, which results in a difference of

0.83∼8.01 dB compared to existing event-based methods.

Table 3. Quantitative evaluations on the REVD dataset.

Methods Event PSNR SSIM
Time FLOPs

(ms) (T)

STDAN [60] � 29.84 0.8893 929 57.32

ESTRNN [64] � 30.51 0.9049 177 6.38

RNN-MBP [66] � 31.77 0.9212 2238 153.5

eSL-Net [48] � 26.99 0.7868 6 0.25

EFNet [42] � 31.75 0.9208 244 13.00

REDNet [56] � 31.90 0.9207 479 19.07

UEVD [21] � 31.97 0.9211 598 39.03

Ours � 32.99 0.9326 484 30.27

5.4. Comparison on Real-blur Datasets

As shown in Table 3, we compare our method with other

frame- and event-based methods on the REVD dataset. We

provide the inference times for each model running on an

NVIDIA RTX A6000 GPU for a single frame at a resolu-

tion of 1024×768, along with the Floating Point Operations

(FLOPs) for processing five video clips. Event-based de-

blurring methods generally outperform frame-based video

deblurring methods. However, RNN-MBP [66] shows com-

parable performance to event-based methods, i.e., 31.77 dB,

which is 0.02 dB higher than EFNet [42]. Due to factors

such as the inherent noise in events being much more severe

in real-world datasets compared to synthetic data, and the

presence of saturated pixels that cannot be restored by blur

kernels within a single frame, these degradations make it

challenging to restore even with the use of events. However,

RNN-MBP is computationally inefficient due to the con-
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Figure 7. Qualitative comparison of our methods with other methods on the REVD dataset. Please zoom in for a better visualization.

siderable operations required for accurate alignment. On

the other hand, our method effectively leverages the event

modality, especially in the frequency domain, to restore fine

structures. With the help of two temporal alignments based

on the properties of the video, our approach achieves su-

perior performance, with a PSNR 1.02 dB higher than the

second-best method, UEVD [21]. Furthermore, our ap-

proach features an efficient design leveraging events, result-

ing in time and FLOP requirements that are significantly

lower than the best frame-based method, RNN-MBP, and

even more efficient than the second-best model, UEVD.

Figure 7 illustrates highly challenging blur scenarios. The

results of our method are more realistic and clean than other

methods.

6. Ablation Study

Table 4 presents the ablation study for each module. Start-

ing from the baseline, excluding all modules, we conduct

an ablation study by incrementally adding each module. For

FCFE, 3D convolutions with concatenation are used as a re-

placement, while other modules that can be freely removed.

Frequency-aware Cross-modal Feature Enhancement.
FCFE performs feature fusion between the two modalities

in the frequency domain. This effect is distinctly evident

when compared to the baseline. The baseline performs fu-

sion between events and images solely in the spatial do-

main using a 3D convolution block but exhibits significantly

lower performance. In contrast, adding FCFE module to

this baseline results in a 2.25 dB improvement in PSNR. We

also note an improvement in performance ranging from 0.23

to 0.52 dB compared to models utilizing alignment tech-

niques like ELTP, BTFF, or a combination of both.

Event-guided Temporal Feature Alignment. We perform

temporal feature alignment through the ELTP and BTFF

modules. Examining the results of models with and with-

out these alignments highlights the importance of tempo-

ral feature alignment in video deblurring. Compared to

the baseline, ELTP and BTFF yield improvements of 4.22

Table 4. Ablation study on the GoPro dataset.

FCFE � � � �
ELTP � � � �
BTFF � � � �
PSNR 31.14 33.39 35.36 35.59 36.08 36.45 36.60 36.70

dB and 4.94 dB in PSNR, respectively. While BTFF may

have a performance advantage over ELTP due to its ability

to utilize rich context information in the spatial domain at

higher resolutions, the significance of ELTP lies in its ca-

pability to perform alignment in both the spatial and fre-

quency domains, even at the lowest resolution, enabling

efficient restoration of fine details. Hence, when utilized

together, their performance exceeds that of BTFF alone

by an improvement of 0.37 dB. Finally, when both cross-

modal feature enhancement and temporal feature alignment

are present, they collectively deliver the best performance,

thereby validating the efficacy of each module.

7. Conclusion
We propose a framework for event-based video deblurring,

including cross-modal feature enhancement and event-

guided temporal feature alignment. Specifically, we have

developed modules in which we can effectively leverage

the advantages of events and frames in the frequency

domain. Our approach significantly outperforms existing

state-of-the-art methods. Additionally, we provide, for the

first time, a real-world dataset for the event-based video

deblurring communities, acquired using an RGB-Event

hybrid camera system.
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