
GALA: Generating Animatable Layered Assets from a Single Scan

Taeksoo Kim1* Byungjun Kim1* Shunsuke Saito2 Hanbyul Joo1

1Seoul National University 2Codec Avatars Lab, Meta
{taeksu98, byungjun.kim, hbjoo}@snu.ac.kr shunsukesaito@meta.com

https://snuvclab.github.io/gala/

ReposingLayered Decomposition and Canonicalization Novel Human Avatars via Composition

Figure 1. GALA. Given a single-layer 3D mesh of a clothed human (left), our approach enables Generation of Animatable Layered Assets
for 3D garment transfer and avatar customization in any poses by decomposing and inpainting the geometry and texture of each layer with a
pretrained 2D diffusion model in a canonical space.

Abstract

We present GALA, a framework that takes as input a
single-layer clothed 3D human mesh and decomposes it into
complete multi-layered 3D assets. The outputs can then be
combined with other assets to create novel clothed human
avatars with any pose. Existing reconstruction approaches
often treat clothed humans as a single-layer of geometry
and overlook the inherent compositionality of humans with
hairstyles, clothing, and accessories, thereby limiting the util-
ity of the meshes for down-stream applications. Decompos-
ing a single-layer mesh into separate layers is a challenging
task because it requires the synthesis of plausible geometry
and texture for the severely occluded regions. Moreover, even
with successful decomposition, meshes are not normalized in
terms of poses and body shapes, failing coherent composition
with novel identities and poses. To address these challenges,

*Equal contribution

we propose to leverage the general knowledge of a pretrained
2D diffusion model as geometry and appearance prior for
humans and other assets. We first separate the input mesh
using the 3D surface segmentation extracted from multi-view
2D segmentations. Then we synthesize the missing geometry
of different layers in both posed and canonical spaces using
a novel pose-guided Score Distillation Sampling (SDS) loss.
Once we complete inpainting high-fidelity 3D geometry, we
also apply the same SDS loss to its texture to obtain the com-
plete appearance including the initially occluded regions.
Through a series of decomposition steps, we obtain multiple
layers of 3D assets in a shared canonical space normalized
in terms of poses and human shapes, hence supporting ef-
fortless composition to novel identities and reanimation with
novel poses. Our experiments demonstrate the effectiveness
of our approach for decomposition, canonicalization, and
composition tasks compared to existing solutions.
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1. Introduction
As social interactions become increasingly online, the

ability to customize digital representations of oneself is more
important than ever. This is particularly critical in the do-
main of virtual try-on and photorealistic avatar customiza-
tion. However, creating assets that can be easily layered
on top of any avatars typically requires substantial manual
efforts by artists. Our goal is to enable the automatic cre-
ation of reusable 3D layered assets that can be effortlessly
composed to any human with any pose.

Unlike artist-created 3D assets, reconstruction-based
3D assets are becoming widely accessible. In addition
to high-quality 3D scans [4, 62], single-view reconstruc-
tion methods [3, 66, 67] or text-to-3d generation tech-
niques [12, 44, 60] further simplify the creation of 3D mod-
els. Despite these advancements, using these 3D models
for virtual try-on or avatar customization remains an open
challenge because these models are typically single-layered.
Different attributes such as hair, clothing, and accessories
are glued into a single triangle mesh, and anything beneath
the outermost layer is fully occluded. Moreover, self-contact
regions are connected, making re-animation challenging.

To address this, we propose a fully automatic framework
for creating compositional layered 3D assets from a single-
layer scan. Unlike the existing text-based 3D generation
methods [44, 60] that only support the generation of each
asset in isolation, our approach learns to decompose a mesh
into multiple layers and inpaint missing geometry and ap-
pearance for compositing the decomposed assets into novel
identities. Our key idea is to complement missing geometric
and appearance information by leveraging a strong image
prior built from a large-scale image collections. In particular,
we leverage a latent diffusion model [63] that is trained on
an extremely large corpus of images. Using a score distilla-
tion sampling (SDS), we inpaint the occluded regions while
retaining the originally visible regions.

For reposing, simply inpainting the geometry and appear-
ance in an input posed space is not sufficient. For garment
transfer across different identities with various poses, we
need to represent the target asset and the remaining human
layer in individual canonical spaces. However, we observe
that the vanilla SDS loss often provides poor guidance by
ignoring the target pose information. We address the lack
of pose-sensitivity in the SDS loss by introducing a pose-
guided SDS loss. Specifically, we derive the SDS loss with
a pose-conditioned diffusion model [88]. This allows us to
supervise the shape and appearance jointly in both posed and
canonical spaces. Once we obtain the canonicalized object
and human layers, we can mix and match with other assets
to create virtual try-on as shown in Fig. 1. The composite
results are further refined with penetration handling.

As there is no established benchmark for decomposition,
canonicalization, and composition from a single scan, we

establish a new evaluation protocol to quantitatively assess
our approach. For decomposition, our approach significantly
outperforms recent text-driven 3D editing methods. We also
show that the proposed pose-guided SDS enables robust
canonicalization even for challenging cases, outperforming
existing methods. Lastly, we show garment transfer to create
novel avatars only from a collection of single-layer clothed
humans. Our contributions can be summarized as follows:
• We propose a new task of multi-layer decomposition and

composition from a single-layer scan, which offers a prac-
tical compositional asset creation pipeline.

• We present a pose-guided SDS loss, enabling the robust
modeling of layered clothed humans in a canonical space
for garment transfer and reposing from a single scan.

• We provide a comprehensive analysis of generating ani-
matable layered assets from a single scan with a newly
established evaluation protocol. We will release code for
benchmarking future research on this novel task.

2. Related Work
Clothed Human Modeling. 3D parametric human mod-
els [35, 46, 58, 82] have been proposed to model diverse
poses and shapes of humans, allowing us to reconstruct min-
imally clothed 3D humans [8, 36, 58, 64, 87]. To represent
clothed humans, follow-up work leverages 3D displacements
on top of the template body model [1, 2, 47], or separate
mesh layers [6, 59]. Yet, the topological constraints and the
resolution of the template model limit their ability to model
clothing with complex shapes and high-frequency details.
In recent years, deep implicit shape representations [17, 48,
53, 56, 79] have emerged as a significant breakthrough in
modeling 3D humans, demonstrating their efficacy in recon-
structing detailed clothed humans from images, scans, depth
maps, or pointclouds [22, 52, 66–68, 74, 76, 80, 81, 85, 89].
Extending work enables the animations of these reconstruc-
tions [14, 16, 22, 51, 52, 68, 74, 76] by learning a canonical
3D shape in a space normalized in terms of human poses
and shapes. Since these approaches treat the clothed human
as a single-layer mesh, several work [5, 7, 13, 57, 59, 75]
attempts to model the clothing of humans as a separate layer.
SMPLicit [19] models clothing with implicit shape represen-
tation on top of the parametric mesh model. There are a few
attempts to enable compositional and animatable modeling
of avatars. SCARF [23] and MEGAN separately models hu-
mans and clothing from video observations using a hybrid
representation of mesh and NeRF [53]. MEGANE [42] mod-
els high-fidelity compositional heads and eyeglasses from
multi-view videos. NCHO [40] learns a compositional gen-
erative model of humans and objects from multiple scans
with and without objects. Unlike existing approaches, our
approach enables the modeling of animatable multi-layer as-
sets from a single scan. To enable this, we exploit an image
prior from a pretrained diffusion model [63].
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3D Content Generation. Recent advancements in 3D rep-
resentations [53, 79] and generative modeling [26, 29] have
spurred active research for 3D content generation. Genera-
tion from text, in particular, has gained popularity due to its
intuitive interface. Early work like Text2Shape [11] trains
text and shape encoders to learn joint embeddings to gen-
erate text-consistent 3D shapes. Due to the challenges of
collecting large-scale paired text-3D datasets, several ap-
proaches [30, 34, 50, 54] utilize pretrained CLIP model [61]
for text-guided 3D content generation. With the recent rise
of diffusion models [29, 73] for high-quality image gener-
ation [21, 63], DreamFusion [60] proposes score distilla-
tion sampling (SDS) loss for optimizing 3D scenes repre-
sented as NeRF [53] by leveraging the 2D diffusion prior.
Various 3D representations such as point clouds [55, 86],
meshes [12, 44, 45], and neural fields [49, 70] have also
been utilized. Some approaches [31, 32, 39, 72, 77] incor-
porates additional 3D datasets with diffusion model to en-
able high-quality 3D generation. MVdream [72] generates
multi-view images by finetuning the diffusion model with
multi-view rendering of Objaverse [20]. Chupa [39] and
HumanNorm [32] finetune the diffusion model to generate
normal or depth maps of 3D humans. However, current 3D
content generation methods generate 3D assets as a single-
layer mesh, limiting their utility for composition with other
assets. In contrast, our approach leverages the 2D diffusion
prior to create decomposed layers of attributes in a canonical
space, facilitating garment transfer and reposing.
3D Editing and Completion. Editing or completing 3D
scenes has traditionally been a task for experienced artists,
but recent work [18, 25, 27, 38, 43, 69, 90] shows the great
potential of text-based automatic 3D content manipulation.
Instruct-NeRF2NeRF [27] edits the pretrained NeRF using
prompt by iteratively updating training images. DreamEd-
itor [90] exploits mesh-based neural fields [83] to enable
local and flexible editing via SDS loss [60] using a diffusion
model finetuned with DreamBooth [65]. Vox-E [69] simi-
larly utilizes SDS loss but enables local editings using the
3D attention map aggregated from the 2D attention maps of
a diffusion model. FocalDreamer [43] employs an additive
approach to edit the geometry of input 3D scans, creating
reusable independent assets. While our approach shares the
motivation of FocalDreamer [43] in the sense of generating
reusable 3D assets, our method does not require the desig-
nated editing region as an additional input and focuses on the
decomposition of the input 3D scan into multiple reusable
layers instead of the addition of new components.

3. Preliminaries

3.1. Score Distillation Sampling

To synthesize 3D scenes without requiring large-scale
3D datasets, DreamFusion [60] introduces Score Distillation

Sampling (SDS) loss. SDS loss leverages the knowledge of
a pretrained 2D diffusion model. Given the target prompt,
the loss optimizes over the 3D volume parameterized with θ
using the differentiable renderer g, such that the generated
image x = g(θ) closely resembles samples from the frozen
diffusion model, ϕ. The gradient of the loss is calculated as,

∇θLSDS(x, ϕ) = E
[
ω(t)(ϵ̂ϕ(xt;y, t)− ϵ)

∂x

∂θ

]
, (1)

where y denotes text condition and t is the noise level. xt

denotes the noised image, ϵ̂ϕ(xt;y, t) represents the noise
prediction for the sampled noise ϵ, and ω(t) is the weighting
function defined by the scheduler of the diffusion model.

3.2. Deep Marching Tetrahedra

We adopt Deep Marching Tetrahedra [71] (DMTet) as
our geometric representation. DMTet employs a deformable
tetrahedral grid denoted as (XT , T ), where XT represents
the grid’s 3D vertices and T defines the tetrahedral structure,
where each tetrahedron contains four vertices in XT . For
each vertex xi ∈ XT , DMTet predicts the signed distance
value s(xi) from the surface and the position offset ∆xi of
each vertex and extracts a triangular mesh from the implicit
field using the differentiable Marching Tetrahedral (MT)
layer. Since the pipeline is fully differentiable, losses defined
explicitly on the surface mesh can be used for optimizing
the surface geometry represented by DMTet.

4. Method
Our method decomposes a single-layer 3D human scan

into two complete layers of the target object and the rest of
the scan in separate canonical spaces. Following the previous
work [12], we first model the geometry and subsequently
model the appearance, and adopt DMTet [71] as our geo-
metric representation (Sec. 4.1). To reconstruct visible parts
of each layer, we lift multi-view 2D segmentations of the
target object onto the input 3D scan. Using forward linear
blend skinning (LBS), we transform the canonical geometry
of each layer to the pose of the input scan and reconstruct
visible parts based on the acquired segmentation. We further
leverage a 2D diffusion prior via our pose-guided SDS loss
applied in canonical space to enable canonicalization of a
single scan and complete the geometry of the occluded re-
gions (Sec. 4.2). Once we optimize the geometry of each
layer, we model the appearance using similar SDS losses in
the canonical space (Sec. 4.3). Lastly, we refine the compo-
sition of the decomposed layers by reducing self-penetration
(Sec. 4.4). Fig. 2 shows an overview of our pipeline.

4.1. Representation and Initialization

We model the geometry of the human and an object in
separate canonical spaces using DMTet [71]. For a given
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Figure 2. Overview. GALA learns an object and the remaining human layers in a canonical space using DMTet [71]. The canonical space
colored orange and the original posed space colored purple are differentiably associated with linear blend skinning (LBS). Our novel
pose-guided SDS loss (right) guides the decomposition and inpainting in both the canonical and posed space. We also retain the fidelity of
visible regions via a reconstruction and segmentation loss (left-bottom).

tetrahedral grid for the human (XTh
, Th) and for the object

(XTo
, To), we utilize MLP networks Ψh and Ψo to predict

the signed distance and the deformation offset of every ver-
tex of the grids. Using the predicted signed distance and
offset, the canonical human mesh, Mc

h = (Vc
h,Fh), and the

canonical object mesh, Mc
o = (Vc

o ,Fo), can be extracted
from each grid via a differentiable MT layer, where Vc

h and
Vc
h denotes the vertices, and Fh and Fo denotes the faces

of each mesh. To obtain a posed mesh, we transform every
vertex of the reconstructed mesh via forward linear blend
skinning (LBS) [14, 68], utilizing the skinning weights of the
nearest neighbor vertex of the canonical SMPL-X mesh [58].
Formally, a vertex vc ∈ Vc

h ∪ Vc
o in canonical space is trans-

formed into a posed space with,

v̄p = (

nb∑
i=1

wi ·Ti(β,θ)) ·
[
I B(β,θ,ψ)
0 1

]
· v̄c, (2)

where v̄p, v̄c are homogeneous coordinates of vp,vc respec-
tively, nb is the number of bones, wi is the blend skinning
weight of the bone i, and Ti(β,θ) ∈ R4×4 is the transforma-
tion of the bone i in SMPL-X model given shape parameter
β ∈ R10 and pose parameter θ ∈ R55×3. Blend shapes
B(β,θ,ψ) are the summation of identity blend shapes,
pose blend shapes, and the expression blend shapes, where
ψ ∈ R10 is the expression parameter. By transforming all
vertices, we get the posed human mesh, Mp

h = (Vp
h,Fh),

and the posed object mesh, Mp
o = (Vp

o ,Fo). For ease of
notation, we use LBS(·) to specify the relationship between
the canonical mesh and posed mesh as follows:

Mp
{h,o} = LBS(Mc

{h,o}). (3)

We initialize our DMTets using SMPL-X mesh in canoni-
cal pose. We sample points q ∈ R3 in each space, compute

the signed distance SDF (q) from each point to the SMPL-X
mesh, and optimize the following loss functions.

Linit
h = ∥s(q;Ψh)− SDF (q)∥22 (4)

Linit
o = ∥s(q;Ψo)− SDF (q)∥22. (5)

4.2. Geometry Decomposition and Canonicalization

Given an input scan, we decompose and canonicalize
the scan into two separate geometries of human and object,
Mc∗

h ,Mc∗
o , which minimizes the following total loss:

Lgeo = λrec
hgeo

Lrec
hgeo

+ λrec
ogeoL

rec
ogeo (6)

+ λSDS
hgeo

LSDS
hgeo

+ λSDS
ogeo L

SDS
ogeo + λseg

compLseg
comp,

Mc∗
h ,Mc∗

o = argmin
Mc

h,Mc
o

Lgeo. (7)

We describe each loss in the following.

Reconstruction Loss. To decouple the geometry of the
human and object, we employ the 3D surface segmentation
of the target object. Specifically, we rasterize the scan from
multiple viewpoints and perform binary segmentation in 2D,
distinguishing the target object from other parts using an
off-the-shelf open-vocabulary segmentation tool [41]. Utiliz-
ing the aggregated pixel-to-face correspondence established
during the rasterization process, we cast votes for each face
of the mesh to determine whether it belongs to the specified
object or not. Consequently, the given input scan in posed
space, denoted as Mscan, is partitioned into two incomplete
surface meshes: the object mesh, Mscan

o , and the remaining
human figure mesh, Mscan

h , as shown in Fig. 3.
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To preserve the identity of visible regions of the input
scan, we employ rendering-based reconstruction losses in
the posed space. Using a differentiable rasterizer R and a
sampled camera k, we render masks A ∈ {0, 1}H×W and
normal maps N ∈ RH×W of the generated posed meshes
Mp

h and Mp
o, where H,W are the height and width of the

rendered masks and normal maps.

Ap
h,N

p
h = R(Mp

h,k) = R(LBS(Mc
h),k) (8)

Ap
o,N

p
o = R(Mp

o,k) = R(LBS(Mc
o),k) (9)

Together with the mask and normal map of the input mesh,
we additionally render segmentation masks Sscan

h ,Sscan
o ∈

{0, 1}H×W for the human and the object using the 3D sur-
face segmentation:

Ascan,Nscan,Sscan
h ,Sscan

o = R(Mscan,k). (10)

Finally, the losses for reconstruction are defined as follows:

Lrec
hgeo

= ∥Np
h ⊙ Sscan

h −Nscan ⊙ Sscan
h ∥22, (11)

Lrec
ogeo = ∥Np

o ⊙ Sscan
o −Nscan ⊙ Sscan

o ∥22 (12)

+ ∥Ap
o −Ascan ⊙ Sscan

o ∥22,

where ⊙ is the Hadamard product. We employ extra mask
loss to regularize the shape of the object in posed space,
assuming that the object is layered on top of the human.
Furthermore, to capture the intricate details of human faces
and hands, we render close-up views of these regions by
zooming in on the corresponding joints of the posed SMPL-
X mesh and apply the same reconstruction losses.

Pose-guided SDS Loss. Our goal is to obtain complete
3D assets in a neutral pose from a single posed scan, which
can be animated into arbitrary poses without artifacts. The
core challenges lie in the difficulty of (1) completing the
occluded regions of both assets and (2) modeling canonical
shape of each asset from a single scan. To overcome both
challenges, we propose a pose-guided SDS loss that lever-
ages the prior of the pretrained diffusion model equipped
with ControlNet [88] conditioned with OpenPose poses [10].
The gradient of our pose-guided SDS loss is defined as:

(13)
∇ΨLSDS

pose (zt(X),y,p,ϕ)

= E[ω(t)(ϵ̂ϕ(zt(X);y,p, t)− ϵ)
∂X

∂Ψ

∂zt(X)

∂X
],

where X is the rendered normal or texture of the mesh M,
zt(X) is the latent embedding with noise from the forward
process. y represents the positive and negative text prompts
where positive prompts describe the underlying human and
negative prompts describe the target object to remove. p

is the pose condition for ControlNet [88] converted by the
mapping from SMPL-X joints to OpenPose joints.

However, when the pose-guided SDS loss and reconstruc-
tion loss are applied in the posed space through the forward
transformation of Eq. (2), the output canonical shape suf-
fers from undesired artifacts due to many-to-one mapping
from the canonical space to the posed space (see Fig. 9 (b)).
While previous approaches [14, 78] address this ambiguity
by jointly learning from multiple scans or images with vari-
ous poses, we observe that these approaches perform poorly
when given only a single scan.

To enable plausible canonicalization from a single scan,
we apply our pose-guided SDS loss (Eq. (13)) in the canoni-
cal space. The gradients are derived as follows:

∇Ψh
LSDS
hgeo

= ∇Ψh
LSDS
pose (zt(Ñ

c
h),yh,p

c,ϕ), (14)

∇Ψo
LSDS
ogeo = ∇Ψo

LSDS
pose (zt(Ñ

c
comp),ycomp,p

c,ϕ),

(15)

where LSDS
hgeo

,LSDS
ogeo are the loss for the human and object

space, respectively. Ñc
h, Ñc

comp are the rendered normal map
concatenated with the mask of the human mesh and the com-
posite mesh in the canonical space, and zt(Ñc

h), zt(Ñ
c
comp)

are the downsampled version of them with noise produced
by the forward diffusion process as in Fantasia3D [12]. yh,
ycomp are the text prompts for the human and object space,
and pc is the neutral pose condition. Remarkably, our pose-
guided SDS loss in the canonical space along with the re-
construction loss in the posed space, effectively inpaints the
occluded regions and eliminates artifacts caused by the many-
to-one mapping between the canonical space and posed
space. To further remove artifacts tightly attached to the
human torso and assure the quality of decomposition in the
input pose, we additionally apply our pose-guided SDS loss
in a set of pre-defined poses including the input pose.

For the object space, we apply our pose-guided SDS loss
to the canonical composite mesh Mc

comp (Eq. (15)) with the
gradient of the human mesh detached. Since the OpenPose
ControlNet [88] is trained to generate pose-consistent hu-
man images, we obtain better guidance for the object space
through pose-guided SDS loss with the rendering of the
composite mesh than the object mesh. Please refer to the
supplementary material for details.

Segmentation Loss The aforementioned reconstruction
loss constrains each layer in isolation. However, we observe
that this alone is not sufficient to prevent penetration of the
layer beneath when incomplete regions are synthesized via
pose-guided SDS loss. Thus, we additionally incorporate a
segmentation loss to further regularize the geometry after
composition. Specifically, we assign one-hot encoded vec-
tor attributes [1, 0] and [0, 1], respectively to every face of
Mp

h and Mp
o, and rasterize both meshes together to get the
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Input scan Segmentation CompletionRemoval

Figure 3. Decomposition and Synthesis. We decompose humans
and objects using 3D segmentation lifted from 2D and synthesize
plausible geometry of the missing regions using pose-guided SDS.

(a) Input scan (b) Missing texture (c) Completion

Figure 4. Texture Generation. Applying SDS loss in canonical
space generates texture for regions occluded by objects along with
self-occluded regions.

segmentation masks for the human and the object, Sp
h and

Sp
o. We minimize the difference between Sp

h and Sp
o, and the

rendered segmentation masks of the input scan, Sscan
h and

Sscan
o , with the following loss:

Lseg
comp = ∥Sp

h − Sscan
h ∥22 + ∥Sp

o − Sscan
o ∥22. (16)

4.3. Appearance Completion

Given the inpainted canonical human mesh Mc
h, and

object mesh Mc
o, we model the appearance of each mesh

represented as vertex colors. We employ MLP networks Γh

and Γo to predict the albedo of every vertex.
The total loss for optimizing the texture is defined as,

Ltex = λrec
htex

Lrec
htex

+ λrec
otexL

rec
otex

+ λSDS
htex

LSDS
htex

+ λSDS
otex LSDS

otex . (17)

Similar to Sec. 4.2, we utilize the 3D surface segmentation
to initialize the color of the visible regions in the input mesh.
Specifically, we differentiably render RGB images, Iph, Ipo,
and Iscan of the posed meshes, Mp

h and Mp
o, and the input

scan, Mscan, and optimize the following losses:

Lrec
htex

= ∥Iph ⊙ Sscan
h − Iscan ⊙ Sscan

h ∥22, (18)

Lrec
otex = ∥Ipo ⊙ Sscan

o − Iscan ⊙ Sscan
o ∥22. (19)

To generate textures for the fully occluded regions, we
utilize the pose-guided SDS loss as shown in Fig. 4. We
use the vertex colors of Mc

h and Mc
comp to render the RGB

images, Ich and Iccomp, and optimize our texture MLPs, Γh

and Γo, by computing the gradients of following pose-guided
SDS losses:

∇Γh
LSDS
htex

= ∇Γh
LSDS
pose (zt(I

c
h),yh,p

c,ϕ), (20)

∇ΓoLSDS
otex = ∇ΓoLSDS

pose (zt(I
c
comp),ycomp,p

c,ϕ), (21)

where zt(Ich) and zt(Iccomp) represent the latent embeddings
of Ich and Iccomp, achieved using the pretrained image en-
coder of the diffusion model [63]. All other notations remain
consistent with those used in Eq. (14) and Eq. (15).

4.4. Composition

When composing the generated assets to novel identities,
penetration of the human layer beneath could happen. To
resolve this, we also introduce a refinement step. Given a
canonical human mesh Mc

h, and a canonical object mesh
Mc

o, we optimize the vertex positions of Mc
h along their

normal directions, nh. For each vertex vh ∈ Vc
h of Mc

h,
we find its nearest neighbor vertex vnnh ∈ Vc′

o ∈ Vc
o of

Mc
o, where Vc′

o denotes the visible vertices among Vc
o . We

introduce a penalty when
−−−−→
vhv

nn
h and nh are oriented in

opposite directions. Similarly, for each vertex vo ∈ Vc′

o , we
find its nearest neighbor vertex vnno ∈ Vc

h, and penalize when
−−−→
vov

nn
o and no have the same direction, where no denotes

the normals of vo. Formally, we minimize the following loss,

Lref = −
−−−−→
vhv

nn
h

∥
−−−−→
vhv

nn
h ∥

· nh +

−−−→
vov

nn
o

∥
−−−→
vov

nn
o ∥

· no + λdis∥∆vh∥22,

(22)

where the last term regularizes the displacements of vh.

5. Experiments
5.1. Datasets and Metrics

RenderPeople [62]: RenderPeople provides high-quality
sigle-layer 3D human scans, and we select 30 scans to cover
diverse categories of target objects to decompose. We evalu-
ate the quality of the decomposition against state-of-the-art
(SOTA) methods [9, 69]. Following the evaluation protocol
of previous editing work [9, 24, 27], we utilize the CLIP text-
image direction similarity which measures the alignment of
the performed edit with the text instruction. We also present
a novel metric named, pixel-wise object removal score (POR
Score), which measures the ratio of the number of pixels of
the target object, before and after the edit. During evalua-
tion, we render both the input and the edited output from 30
evenly distributed viewpoints and measure each metric.
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Figure 5. Decomposition and Canonicalization. In each set, we show the decomposition and canonicalization results of the leftmost sample.

(a) Before refinement (b) After refinement

Figure 6. Refinement. Our refinement stage successfully reduces
the misalignment between humans and objects.

CAPE Dataset [47] CAPE dataset contains the 3D se-
quences of clothed humans along with the corresponding
SMPL parameters. We utilize CAPE dataset to evaluate the
quality of canonicalization in comparison to existing meth-
ods and conduct ablation studies. For evaluation, we use 18
subjects, each wearing diverse clothing types that include
both long and short upper and lower garments. For each sub-
ject, we select 100 scans with equal intervals in the sequence,
and perform canonicalization using the last scan. We then
pose the modeled canonical shape into poses of the preced-
ing 99 scans, and calculate Intersection over Union (IoU)
and Chamfer distance (Chamf) to measure the alignment.
Since the dataset provides parameters of SMPL, we adapt
our pipeline to use SMPL instead of SMPL-X.1

5.2. Qualitative Evaluation

Decomposition and Canonicalization. Fig. 5 shows that
our method synthesizes realistic geometry and texture for
the occluded regions, and enables robust canonicalization of
both humans and objects, even in challenging poses.
Layered Decomposition. In Fig. 1, we highlight the key
advantage of our method by applying a series of decompo-
sitions to the input scan. By recomposing the decomposed
assets, our method enables the decomposition of specific
layers of clothing which was previously not feasible.
Composition and Refinement. Fig. 1 shows generated
avatars via combinations of the decomposed assets. The com-
position outputs can be further refined as shown in Fig. 6.

1All datasets used in this research were exclusively downloaded, accessed,
and utilized at SNU.

(a) Input scan (b) Ours (c) NN

Figure 7. Loose Clothing. Our method excels in modeling the
canonical geometry of loose clothing such as dresses or skirts
compared to existing canonicalization methods.

CLIP TI Direction Similarity ↑ POR Score ↓

Ours 0.1117 0.1144
I-N2N [27] 0.0621 0.4871
Vox-E [69] 0.0374 0.5583

Table 1. Quantitative Comparison on Decomposition. We report
CLIP similarity and pixel-wise object removal score to provide
quantitative metrics for the subjective editing task.

Loose Clothing. As shown in Fig. 7, our approach enables
the successful canonicalization and modeling of loose cloth-
ing, where a simple canonicalization method based on near-
est neighbor [28, 33] struggles.

5.3. Quantitative Evaluation

Decomposition. We evaluate the quality of decomposition
against the SOTA text-guided 3D editing methods [27, 69],
which we believe is the closest to our task. Instruct-
NeRF2NeRF [27] is a text-guided NeRF [53] editing method
based on the Instruct-Pix2Pix [9]. Vox-E [69] edits a 3D
scene by first fitting a ReLU field [37] with multi-view im-
ages and then editing the learned ReLU field using SDS loss.
We provide prompts for each method to remove the target
object and compare the decomposition results. Tab. 1 shows
that our method outperforms SOTA baselines, achieving the
highest CLIP text-to-image similarity and the lowest POR
Score. We also provide qualitative comparison in Fig. 8.
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Figure 8. Qualitative Comparison. In contrast to our approach,
other methods often face challenges in effectively removing the
intended object or resulting in deterioration in unrelated areas.

Method IoU↑ Chamf↓

Ours 84.70% 0.821
NN 83.93% 0.845
KNN 83.93% 0.846
Fast-SNARF (w/ 1 scan) [15] 27.90% 11.729
Fast-SNARF (w/ 10 scans) 41.56% 10.647
Fast-SNARF (w/ 50 scans) 86.87% 1.000
Fast-SNARF (w/ 100 scans) 91.35% 0.675
Fast-SNARF (w/ 200 scans) 94.47% 0.473

Table 2. Quantitative comparison of canonicalization. Chamfer
distances are in centimeters. We use K = 6 for KNN.

Canonicalization. We compare our canonicalization results
with baseline methods. To solely assess the quality of canon-
icalization, we exclude the decomposition process by mod-
eling the whole scan in a single space. We employ three
baselines for comparison. Nearest Neighbor (NN), trans-
forms each vertex to its canonical position based on the
skinning weights of the nearest neighbor SMPL vertex [33].
K-Nearest Neighbor (KNN) uses the weighted average of
skinning weights of k-nearest neighbor SMPL vertices [84].
Tab. 2 demonstrates that our method outperforms the base-
lines, reporting the highest IoU and the lowest Chamfer
distance when transformed into various poses. We also com-
pare our results with Fast-SNARF [15], the current SOTA for
canonicalization from multiple scans. However, we observed
severe instability in the learning of MLP-based skinning
fields with a small number of scans. Thus, we discard the
skinning field in Fast-SNARF, and use the nearest neigh-
bor skinning weights instead for comparison. Tab. 2 shows
that our method achieves comparable performance with Fast-
SNARF trained with up to 50 scans. Note that the original
Fast-SNARF is trained with a significantly larger dataset

Cano. SDS Loss Pose-Guided SDS IoU↑ Chamf↓

✗ ✗ 79.97% 1.384
✓ ✗ 82.89% 1.227
✓ ✓ 83.59% 1.184

Table 3. Ablation study. We ablate the SDS loss in the canonical
space and the pose-guided SDS loss.
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(d) Ours(b) w/o
canonical SDS

(c) w/o
pose-guided SDS

(a) Input scan

Figure 9. Ablation study. We show the effect of applying SDS loss
in canonical space and the importance of the pose-guided SDS loss
for robust canonicalization.

of around 3000 scans. Please refer to the supplementary
material for qualitative comparison.
Ablation Study. Tab. 3 and Fig. 9 summarize an ablation
study to evaluate our design choices. First, we validate the
importance of the SDS loss in the canonical space. Without
the SDS loss in the canonical space, we observe artifacts in
the canonical shape as shown in Fig. 9 (b), leading to implau-
sible reposing results. We further validate our pose-guided
SDS by using the vanilla SDS loss without a pose condition.
As illustrated in Fig. 9 (c), the use of the vanilla SDS loss
leads to noticeable artifacts near the armpits and often lack
large body parts. In contrast, using the proposed pose-guided
SDS loss achieves more plausible canonicalization without
artifacts as shown in Fig. 9 (d) and Tab. 3.

6. Conclusion
We presented GALA, a framework that turns a single

static scan into reusable and animatable layered assets. Our
experiments show that decomposing and inpainting separate
layers in 3D is now possible with the 2D diffusion prior.
Our pose-guided SDS loss allows us to jointly optimize each
component in both posed and canonical space to produce
clean textured 3D geometry. The resulting layered assets can
be plausibly composed with novel identities and be further re-
posed to a target pose. Our method demonstrates significant
improvements compared to existing editing or canonicaliza-
tion methods, both qualitatively and quantitatively.
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