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Figure 1. Group Anything with Radiance Fields (GARField): GARField distills multi-level groups represented as masks into a NeRF
to create a scale-conditioned 3D affinity field (top left). Once trained, this affinity field can be clustered at a variety of scales to decompose
the scene at different levels of granularity, like breaking apart the excavator into its subparts (bottom). 3D assets can be extracted from this
hierarchy by extracting every group in the scene automatically or via user clicks, as visualized here (top right).

Abstract
Grouping is inherently ambiguous due to the multiple

levels of granularity in which one can decompose a scene—
should the wheels of an excavator be considered separate or
part of the whole? We propose Group Anything with Radi-
ance Fields (GARField), an approach for decomposing 3D
scenes into a hierarchy of semantically meaningful groups
from posed image inputs. To do this we embrace group
ambiguity through physical scale: by optimizing a scale-
conditioned 3D affinity feature field, a point in the world
can belong to different groups of different sizes. We optimize
this field from a set of 2D masks provided by Segment Any-
thing (SAM) in a way that respects coarse-to-fine hierarchy,
using scale to consistently fuse conflicting masks from dif-
ferent viewpoints. From this field we can derive a hierar-

chy of possible groupings via automatic tree construction
or user interaction. We evaluate GARField on a variety of
in-the-wild scenes and find it effectively extracts groups at
many levels: clusters of objects, objects, and various sub-
parts. GARField inherently represents multi-view consistent
groupings and produces higher fidelity groups than the in-
put SAM masks. GARField’s hierarchical grouping could
have exciting downstream applications such as 3D asset
extraction or dynamic scene understanding. Project site:
https://www.garfield.studio/

1. Introduction

Consider the scene in Figure 1. Though recent technologies
like NeRFs [20] can recover photorealistic 3D reconstruc-
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tions of this scene, the world is modeled as a single volume
with no structural meaning. As humans, not only can we
reconstruct the scene, but we also have the ability to group
it at multiple levels of granularity — at the highest level, we
see the parts of the scene i.e. the excavator, bushes, and the
sidewalk, but we are also able to decompose the excavator
into its parts such as its wheels, crane, and the cabin. This
ability to perceive the scene at multiple levels of groupings
is a key component of our 3D understanding, enabling us
to interact with the world by understanding what belongs
together. However, these different levels of granularity in-
troduce ambiguity in groups, making it a challenge to rep-
resent them in a coherent 3D representation. While there
are multiple ways to break this ambiguity, we focus on the
physical scale of entities as a cue to consolidate groups into
a hierarchy.

In this work we introduce Group Anything with Ra-
diance Fields (GARField), an approach that, given posed
images, reconstructs a 3D scene along with a scale-
conditioned affinity field that enables decomposing the
scene into a hierarchy of groups. For example, GARField
can extract both the entire excavator (Fig. 1 Top Right) as
well as its subparts (Bottom Right). This dense hierarchical
3D grouping enables applications such as 3D asset extrac-
tion and interactive segmentation.

GARField distills a set of 2D segmentation masks into
a 3D volumetric scale-conditioned affinity field. Because
grouping is an ambiguous task, these 2D labels can be over-
lapping or conflicting. These inconsistencies pose a chal-
lenge for distilling masks into consistent 3D groups. We
ameliorate this issue by leveraging a scale-conditioned fea-
ture field. Specifically GARField optimizes a dense 3D fea-
ture field which is supervised such that feature distance re-
flects points’ affinity. The scale conditioning enables two
points to have higher affinity at a large scale but low affinity
at a smaller scale (i.e. wedges of the same watermelon), as
illustrated in Figure 2.

Though in principle GARField can distill any source of
2D masks, we derive mask candidates from Segment Any-
thing Model (SAM) [15] because they align well with what
humans consider as reasonable groups. We process input
images with SAM to obtain a set of candidate segmenta-
tion masks. For each mask, we compute a physical scale
based on the scene geometry. To train GARField, we distill
candidate 2D masks with a contrastive loss based on mask
membership, leveraging 3D scale to resolve inconsistencies
between views or mask candidates.

A well-behaved affinity field has: 1) transitivity , which
means if two points are mutually grouped with a third, they
should themselves be grouped together, and 2) containment,
which means if two points are grouped at a small scale, they
should be grouped together at higher scales. GARField’s
use of contrastive loss in addition to a containment auxiliary
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Figure 2. Importance of Scale When Grouping A single point
may belong to multiple groups. GARField uses scale-conditioning
to reconcile these conflicting signals into one affinity field.

loss encourages both of these properties.
With the optimized scale-conditioned affinity field,

GARField extracts a 3D scene hierarchy via recursively
clustering them at descending scales until no more clus-
ters emerge. By construction, this recursive clustering en-
sures that generated groups are subparts of the prior clus-
ter in a coarse-to-fine manner. We evaluate GARField on
a variety of real scenes with annotated hierarchical group-
ings, testing its ability to capture object hierarchy, and its
consistency across different views. By leveraging multiple
views, GARField is able to produce detailed groupings, of-
ten improving upon the quality of input 2D segmentation
masks. Moreover, these groups are 3D consistent by de-
sign, while 2D baselines do not guarantee view consistency.
We show downstream applications of GARField for hierar-
chical 3D asset extraction and click-based interactive seg-
mentation. Given GARField’s scene decomposition capa-
bilities, we’re hopeful for its potential in other downstream
applications like enabling robots to understand they can in-
teract with or as a prior for dynamic reconstruction. See
https://www.garfield.studio/ for code, data,
and additional visualizations.

2. Related Work

Hierarchical Grouping Multi-level grouping has long
been studied in 2D images since the early days of fore-
ground segmentation [28]. Several methods build on this
idea of spectral clustering for multi-level segmentation [5]
and more complex hierarchical scene parsing [1, 25, 31].
These approaches rely on extracting contours either via
classic texture cues and create a hierarchy either via a top-
down [37] or bottom-up consolidation [1]. More recent
deep learning approaches use edges [36] computed at multi-
ple scales to create the hierarchy, and Ke et al. [11] proposes
a transformer based unsupervised hierarchical segmentation
approach guided by the outputs of a classic hierarchical seg-
mentation [1].

Many works circumvent the question of ambiguity in
grouping by defining a set of categories within which in-
stances are to be segmented, i.e. panoptic segmentation [10,
14]. Recently, Segment Anything (SAM) [15] off-loads this
ambiguity into prompting, where at each pixel multiple seg-
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Figure 3. GARField Method: (Left) given an input image set, we extract a set of candidate groups by densely querying SAM, and assign
each a physical scale by deprojecting depth from the NeRF. These scales are used to train a scale-conditioned affinity field (Right). During
training, pairs of sampled rays are pushed apart if they reside in different masks, and pulled together if they land in the same mask. Affinity
is supervised only at the scale of each mask, which helps resolve conflicts between them.

mentation masks can be proposed. However SAM does not
recover a consistent set of hierarchical groups in the scene,
which we enable by multi-scale 3D distillation.

Hierarchical part decomposition has also been explored
in 3D objects, either in a supervised [17, 21, 35], or un-
supervised manner [24]. Our approach distills information
from a 2D model, and we consider full scenes while these
approaches focus on 3D objects.
Segmentation in NeRFs Existing approaches for segmen-
tation in NeRFs typically distill segmentation masks into
3D either by using ground-truth semantic labels [29, 38],
matching instance masks [18], or training 3D segmenta-
tion networks on NeRF [34]. However, these techniques
do not consider hierarchical grouping, and are only inter-
ested in a flat hierarchy of objects or instances. Ren et al.
[27] leverages human interaction in the form of image scrib-
bles to segment objects with interaction. More recently, Cen
et al. [3] try to recover a 3D consistent mask from SAM
by tracking the 2D masks between neighboring views via
user prompting. Chen et al. [4] attempt this by distilling
SAM encoder features into 3D and querying the decoder.
In contrast with these approaches, our approach GARField
does not require user input; it is able to obtain a hierarchical
grouping of the scene automatically, and furthermore the
recovered groups are view-consistent by definition.
3D Feature Fields Distilling higher-dimensional features
into a neural field, in tandem with a radiance field (view-
dependent color and density), has been thoroughly ex-
plored. Methods like Semantic NeRF [38], Distilled Feature
Fields [16], Neural Feature Fusion Fields [33], and Panoptic
Lifting [29] distill per-pixel 2D features into 3D by optimiz-
ing a 3D feature field to reconstruct the 2D features after
volumetric rendering. These features can be either from
pretrained vision models such as DINO or from semantic
segmentation models. LERF [13] extends this idea to a
scale-conditioned feature field, enabling the training of fea-
ture fields from global image embeddings like CLIP [26].

GARField similarly optimizes a scale-conditioned feature
field in 3D; however, the purpose of the multi-scale
features is to resolve ambiguity in grouping, instead of
reconstructing an explicit 2D feature like CLIP. In addition
LERF has no spatial grouping, a shortcoming GARField
addresses. The aforementioned methods are based on direct
supervision from image features, while other methods such
as NeRF-SOS [8] and Contrastive Lift [2] optimize an
arbitrary feature field at a single scale using a contrastive
loss between pairs of rays based on similarity. GARField
uses this contrastive approach because it allows for defining
pairwise relationships between points based on mask
labels. However, we design a scale-conditioned contrastive
loss, which allows for distilling conflicting masks into
3D. In addition, GARField does not require the slow-fast
formulation of Bhalgat et al. [2] for stable training, perhaps
enabled by scale-conditioned training.

3. Method
3.1. 2D Mask Generation

GARField takes as input a set of posed images and produces
a hierarchical 3D grouping of the scene, along with a stan-
dard 3D volumetric radiance field and a scale-conditioned
affinity field. To do this, we first pre-process input images
with SAM to obtain mask candidates. Next, we optimize a
volumetric radiance field along with the affinity field which
takes in a single 3D location and a euclidean scale, and
outputs a feature vector. Affinity is obtained by compar-
ing pairs of points’ feature vectors. After optimization, the
resulting affinity field can be used to decompose a scene by
recursively clustering the feature embeddings in 3D at de-
scending scales in a coarse-to-fine manner, or for segment-
ing user specified queries. The overall pipeline is illustrated
in Figure 3.

In order to train a GARField, we first mine 2D mask
candidates from an image and then assign a 3D scale for

21532



Densified Scale Supervision

Naive Scale Supervision

1. Continuous Supervision 2. Containment

0

PUSH PULLUndefined? Undefined?

s0 s1

MB

MC

MC

s0 s1

s ∼ U(0,s0), U(s0, s1), … ∀s ≥ s1, x ≡ y

MA

MA

MB
MC

r1

r2

r1

r2

r1
r2

Figure 4. Densified Scale Supervision: Consider two grapes
within a cluster. Naively using scale for contrastive loss supervises
affinities only at the grape and grape trio levels, leaving entire in-
tervals unsupervised. In GARField, we densify the supervision by
1) augmenting scale between mask euclidean scales and 2) impos-
ing an auxiliary loss on containment of larger scales.

each mask. Specifically, we use SAM’s automatic mask
generator [15], which queries SAM in a grid of points and
produces 3 candidate segmentation masks per query point.
Then, it filters these masks by confidence and deduplicates
nearly identical masks to produce a list of mask candidates
of multiple sizes which can overlap or include each other.
This process is done independently of viewpoint, producing
masks which may not be consistent across views. In this
work we aim to generate a hierarchy of groupings based on
objects’ physical size. As such, we assign each 2D mask a
physical 3D scale as in Fig. 3. To do this we partially train a
radiance field and render a depth image from each training
camera pose. Next, for each mask we consider the 3D points
within that mask xi and set the 3D scale to ||2 ∗ std(xi)||.
This method ensures the 3D scale of masks resides in the
same world-space, enabling scale-conditioned affinity.

3.2. Scale-Conditioned Affinity Field

Scale-conditioning is a key component of GARField which
allows consolidating inconsistent 2D mask candidates: The
same point may be grouped in several ways depending on
the granularity of the groupings desired. Scale-conditioning
alleviates this inconsistency because it resolves ambiguity
over which group a query should belong to. Under scale-
conditioning, conflicting masks of the same point no longer
fight each other during training, but rather can coexist in the
same scene at different affinity scales.

We define the scale-conditioned affinity field Fg(x, s) 7→
Rd over a 3D point x and euclidean scale s, similar to the
formulation in LERF [13]. Output features are constrained
to a unit hyper-sphere, and the affinity between two points
at a scale is defined by A(x1, x2, s) = −||Fg(x1, s) −
Fg(x2, s)||2. These features can be volumetrically rendered

Figure 5. 3D Asset Extraction with Interactive Selection: Users
can interactively select view-consistent 3D groups with GARField
using a click point and a scale.

with a weighted average using the same rendering weights
based on NeRF density to obtain a value on a per-ray basis.

3.2.1 Contrastive Supervision

The field is supervised with a margin-based contrastive ob-
jective, following the definition provided by DrLIM [9].
There are two core components of the loss: at a given scale,
one which pulls features within the same group to be close,
and another which pushes features in different groups apart.

Specifically, consider two rays rA, rB sampled from
masks MA,MB within the same training image, with cor-
responding scales sA and sB . We can volumetrically ren-
der the scale-conditioned affinity features along each ray
to obtain ray-level features FA and FB . If MA = MB ,
the features are pulled together with L2 distance: Lpull =
||FA − FB ||. If MA ̸= MB , the features are pushed apart:
Lpush = ReLU(m − ||FA − FB ||) where m is the lower
bound distance, or margin. Importantly, this loss is only
applied among rays sampled from the same image, since
masks across different viewpoints have no correspondence.

3.2.2 Densifying Scale Supervision

The supervision provided by the previous contrastive losses
alone are not sufficient to preserve hierarchy. For example
in Fig. 10, although the egg is correctly grouped with the
soup at scale 0.22, at a larger scale it fragments apart. We
hypothesize this grouping instability is because 1) scale su-
pervision is defined sparsely only when a mask exists and 2)
nothing imposes containment such that small scale groups
remain at larger scales. We address these shortcomings here
by introducing the following modifications:

Continuous scale supervision By using 3D mask
scales, groups are only defined at discrete values where
masks are chosen. This results in large unsupervised re-
gions of scale, as shown at the top of Fig. 4. We densify
scale supervision by augmenting the scale s uniformly ran-
domly between the current mask’s scale and the next small-
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Figure 6. 3D Decomposition: GARField can be recursively queried at decreasing scale to cluster a scene into objects and their subparts.

est mask’s scale. When a ray’s mask is the smallest mask
for the given viewpoint, we interpolate between 0 and s0.
This ensures continuous scale supervision throughout the
field leaving no unsupervised regions.

Containment Auxiliary Loss: If two rays r1 and r2 are
in the same mask with scale s, then they should also be
pulled together at any scale larger than s. Intuitively, two
grapes within the same cluster (Fig. 4) are also grouped
together at larger scales (e.g., the entire bunch). At each
training step, for the rays grouped together at scale s, we
additionally sample a larger scale s′ ∼ U(s, smax) at which
the rays are also pulled together. This ensures that affinities
at smaller scales are not lost at larger scales.

3.2.3 Ray and Mask Sampling

Just like standard NeRF training, we sample rays over
which to compute losses. Because GARField uses a con-
trastive loss within each train image, naively sampling pix-
els uniformly during training is inadequate to provide a
training signal in each minibatch of rays. To ensure suf-
ficient pairs in each train batch, we first sample N images,
and sample M rays within each image. To balance the num-
ber of images as well as the number of point pairs for su-
pervision, we sample 16 images and 256 points per image,
resulting in 4096 samples per train iteration.

For each ray sampled, we must also choose a mask to use
as the group label for the train step in question. To do this,
we retain a mapping from pixels to mask labels through-
out training, and at each train step randomly select a mask
for each ray from its corresponding list of masks. There
are two important caveats in this sampling process: 1) The
probability a mask is chosen is weighted inversely with the
log of the mask’s 2D pixel area. This prevents large scales
from dominating the sampling process, since larger masks
can be chosen via more pixels. 2) During mask selection
we coordinate the random scale chosen across rays in the
same image to increase the probability of positive pairs. To
do this, we sample a single value between 0 and 1 per im-
age, and index into each pixel’s mask probability CDF with
the same value, ensuring pixels which land within the same

group are assigned the same mask. Otherwise, the loss is
dominated by pushing forces which destabilize training.

3.3. Implementation Details

The method is built in Nerfstudio [32] on top of the Nerfacto
model by defining a separate output head for the grouping
field. The grouping field is represented with a hashgrid [23]
with 24 layers and a feature dimension of 2 per layer, and a
4-layer MLP with 256 neurons and ReLU activation which
takes in scale as an extra input concatenated with hash-
grid feature. We cap scale at 2× the extent of cameras,
and normalize the scale input to the MLP using sklearn’s
quantile transform on the distribution of computed 3D mask
scales (Sec 3.1). Output embeddings are d = 256 dimen-
sions. Gradients from the affinity features do not affect the
RGB outputs from NeRF, as these representations share no
weights or gradients.

We begin training the grouping field after 2000 steps of
NeRF optimization, giving geometry time to converge. In
addition, to speed training we first volumetrically render the
hash value, then use it as input to the MLP to obtain a ray
feature. With this deferred rendering, the same ray can be
queried at different scales with only one extra MLP call.
Both volume-rendered (2D) and point-wise (3D) hashgrid
values are normalized before inputting them to the MLP.
Preprocessing SAM masks takes around 3-10 minutes, fol-
lowed by about 20 minutes for training on a GTX 4090.

4. Hierarchical Decomposition
Once we have optimized a scale-conditioned affinity,
GARField generates a hierarchy of 3D groups, organized
in a tree such that each node is broken into potential sub-
groups. To do this we recursively cluster groups by decreas-
ing the scale for affinity, using HDBSCAN [19], a density
based clustering algorithm which does not require a prior on
number of clusters. This clustering process can be done in
2D on volumetrically rendered features in an image which
yields masks, or in 3D across points to yield pointclouds.
See Fig. 6 for a visualization of scene decomposition.
Initialization: First, to initialize the top-level nodes in the
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Figure 7. Results: From a GARField we extract objects from the global scene by selecting top-level clusters, then visualize their local
clusters at decreasing scales. GARField can produce complete 3D object masks, and break these objects into meaningful subparts based
on the input masks. We use Gaussian Splats [12] to produce these visualizations in 3D. See the website for video results.
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Figure 8. Segment-Anything [15] vs. GARField: SAM’s auto-
matic mask generator may struggle with recalling all masks, espe-
cially when there are clusters of small masks and the camera is far
away from the object. In contrast, GARField’s scale-conditioned
affinity field incorporates masks from multiple viewpoints in 3D.

Figure 9. GARField using SLIC as input: Superpixel groups
from varying viewpoints are reconciled into 3D hierarchy.

hierarchy, we first globally cluster features at a large scale
smax, which we set to 1.0 for all experiments, corresponding
to the extent of the input cameras’ positions.
Recursive Clustering: Next, to produce a hierarchical tree
of scene nodes, we iteratively reduce scale by a fixed ep-
silon (we use 0.05), running HDBSCAN on each leaf node.
We use a relative resolution, instead of calculating a met-
ric one (e.g. 5cm), to use across both small- and large-scale
scenes. If HDBSCAN returns more than one cluster for a
given node, we add those clusters as children and recurse.
When all nodes reach scale 0, we return the current tree.

5. Experiments

We assess GARField’s ability to decompose in-the-wild 3D
scenes into hierarchical groups which vary widely in size
and semantics. Existing 3D scan datasets tend to focus on
object-level scans [7, 22], are simulated [2], or contain pri-
marily indoor household scenes [6]. To evaluate GARField,
we instead use a wide variety of indoor and outdoor scenes
from the Nerfstudio and LERF datasets, as well as addi-
tional captures for this paper. We experiment on scenes
which possess significant object hierarchy, testing the de-
composition ability of GARField.

Affinity w/

GARField (-dense hierarchy)

GARField

s 0.0 0.06 0.22 0.50.04

Figure 10. Ablation: Without dense hierarchy supervision, affini-
ties may be inconsistent across scales, e.g. spurious large affinities
at unsupervised scales, or unexpected drops at larger scales.

5.1. Qualitative Scene Decomposition

We use Gaussian Splatting [12] to visualize the decomposi-
tion by querying GARField’s affinity field at gaussian cen-
ters. GS’s explicit representation speeds up the process of
clustering, segmenting, and manipulating a scene compared
to NeRFs, which would require densely sampling points
to cluster, then propagating those groups to the underlying
field. See the Appendix for a full description of the pipeline.
All renderings are of complete 3D models, not segmenta-
tions of 2D image views.

We visualize two types of hierarchical clustering results.
In Fig. 7 scenes are globally clustered at hand-selected
coarse scales, then from these scene-wide clusters we se-
lect groups corresponding to few objects and further decom-
pose them into subgroups. We visualize clusters obtained
at successively decreasing scales, increasing the granularity
of groups. GARField achieves high-fidelity 3D groupings
across a wide range of scenes and objects, from man-made
objects – such as keyboards, where each key is considered
a group at a small scale, to the parts of the NERF gun and
the Lego bulldozer – to complex natural objects like plants,
where it groups individual flowers as well as their petal and
leaves. See Fig. 11 for scene-wide cluster visualizations.

In Fig. 6 we visualize a tree decomposition produced by
the method described in Sec. 4. We first show the global
clustering at a top level node, from which we select the
central statue to illustrate the tree decomposition. Arrows
denote children in the hierarchy, illustrating how the stat-
ues decomposes gradually all the way down to its hair, legs,
torso, etc. See the Supplement for more tree visualizations.

5.2. Quantitative Hierarchy

We quantitatively evaluate our approach against annotated
images using two metrics: the first measuring view con-
sistency against annotations from multiple views and the
second measuring recall of various hierarchical masks via
mIOU against ground truth human annotations. See the
Supplement for the full list of scenes and annotations.
3D Completeness: For downstream tasks it is useful for
groups to correspond to complete 3D objects, for example
groups that contain an entire object rather than just one of its
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Fine Medium Coarse
Scene SAM Ours SAM Ours SAM Ours

teatime 81.6 92.7 97.3 97.9 - -
bouquet 17.4 76.0 73.5 81.6 76.1 85.4
keyboard 65.3 88.8 73.6 98.4 - -
ramen 53.3 79.2 74.7 90.7 92.6 95.5
living room 85.3 90.5 74.2 80.7 88.6 94.4

Table 1. 3D Completeness. We report mIOU of scene annotations
for one point with up to three levels of hierarchy. SAM struggles
to produce view-consistent fine groups compared to GARField.

Scene SAM [15] Ours Ours Ours(-scale) (-dense)

ramen 74.9 64.1 74.1 85.6
teatime 64.9 67.7 66.1 86.6
keyboard 23.2 57.6 73.1 77.9
bouquet 34.4 49.8 72.9 76.4
living room 59.6 49.7 62.1 76.6

Table 2. Hierarchical Grouping Recall: We report mIOU against
human annotations of multi-scale groups of different objects.

sides. Though GARField always produces view-consistent
groups by construction, it may not necessarily contain com-
plete objects. We evaluate for completeness by checking
that an entire 3D object is grouped together across a range
of viewpoints. To do this, on 5 scenes we choose a 3D point
to be projected into 3 different viewpoints, and label 3 cor-
responding view-consistent ground truth masks containing
that point at coarse, medium, and fine levels. At these points
we mine multiple masks from GARField across multiple
scales at 0.05 increments, where at each scale a mask is ob-
tained based on feature similarity thresholded at 0.9. We
also compare against SAM by clicking the point in the im-
age and taking all 3 masks. We report the maximum mIOU
computed over all candidate masks for both methods.

Results are shown in Table 1. GARField produces more
complete 3D masks than SAM across viewpoints, resulting
in higher mIOU with multi-view human annotations of ob-
jects. This effect is especially apparent at the most granular
level, like the keyboard keys from afar in Fig. 8. See sup-
plement for more comparisons and groundtruth masks.
Hierarchical Grouping Recall: Here we measure
GARField’s ability to recall groups at multiple granulari-
ties. Across 5 scenes, we choose one novel viewpoint and
label up to 3 groundtruth hierarchical groups for 1-2 ob-
jects. GARField outputs a hierarchy of masks as described
in Section 4 by clustering image-space features. We com-
pare against SAM’s automatic mask generation by keeping
all output masks. We ablate GARField in two ways: (-scale)
removes scale-conditioning; and (-hierarchy) removes the
densified supervision in Sec. 3.2.2.

Figure 11. Scene-Wide Clustering: selected scenes from Fig. 7.

In Table 2 we report mIOU of the ground truth mask
with the highest overlap, either from the set of SAM masks
or the tree generated by GARField. Because GARField has
fused groups from multiple perspectives, it results in higher
fidelity groupings than any single view of SAM, leading to
higher mIOU with annotations. Our ablations show that
scale conditioning and scale densification is necessary for
high quality groupings. Fig. 10 illustrates affinity degrad-
ing at higher scale with naive supervision.

6. Limitations
GARField at its core is distilling outputs from a 2D mask
generator, so if the masks fail to contain a desired group,
this will not emerge in 3D. We handle group ambiguity
using physical size, but there could be multiple groupings
within a single scale. For example, conflicts may happen
with objects contained in a container because the container
with and without the object can have the same scale. Future
work could consider other ways to resolve grouping ambi-
guity such as affordances. Large groups in the background
may fail due to scale clamping (smax = 2× camera extent).

7. Conclusion
We present GARField, a method for distilling multi-level
masks into a dense scale-conditioned affinity field for hi-
erarchical 3D scene decomposition. By leveraging scale-
conditioning, the affinity field can learn meaningful groups
from conflicting 2D group inputs and break apart the scene
at multiple different levels, which can be used for extracting
assets at a multitude of granularities. GARField could have
applications for tasks that require multi-level groupings like
robotics, dynamic scene reconstruction, or scene editing.
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