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Abstract

Visual Relationship Detection (VRD) has seen signif-
icant advancements with Transformer-based architectures
recently. However, we identify two key limitations in a con-
ventional label assignment for training Transformer-based
VRD models, which is a process of mapping a ground-truth
(GT) to a prediction. Under the conventional assignment,
an ‘unspecialized’ query is trained since a query is ex-
pected to detect every relation, which makes it difficult for
a query to specialize in specific relations. Furthermore, a
query is also insufficiently trained since a GT is assigned
only to a single prediction, therefore near-correct or even
correct predictions are suppressed by being assigned ‘no
relation (@)’ as a GT. To address these issues, we pro-
pose Groupwise Query Specialization and Quality-Aware
Multi-Assignment (SpeaQ). Groupwise Query Specializa-
tion trains a ‘specialized’ query by dividing queries and
relations into disjoint groups and directing a query in a
specific query group solely toward relations in the corre-
sponding relation group. Quality-Aware Multi-Assignment
further facilitates the training by assigning a GT to multi-
ple predictions that are significantly close to a GT in terms
of a subject, an object, and the relation in between. Ex-
perimental results and analyses show that SpeaQ effec-
tively trains ‘specialized’ queries, which better utilize the
capacity of a model, resulting in consistent performance
gains with ‘zero’ additional inference cost across multi-
ple VRD models and benchmarks. Code is available at
https://github.com/mlviab/Speal.

1. Introduction

Visual Relationship Detection (VRD) is the task of de-
tecting instances (i.e., subject, object) and their relation
(i.e., predicate) given an image, including Scene Graph

*Equal contribution.
Corresponding author.

Generation (SGG) and Human-Object Interaction (HOI)
Detection tasks. The task has a wide range of applica-
tions, including image retrieval [13], visual question an-
swering [10, 29, 34] and image captioning [39]. Re-
cently, Transformer-based architectures have been increas-
ingly adopted for VRD tasks [3, 14, 16, 22], demonstrating
remarkable performances.

To train Transformer-based VRD models, a label assign-
ment is required, which is a process of mapping a ground-
truth (GT) to a prediction. Following DETR [1], the Hun-
garian matching algorithm [19] has been a standard of la-
bel assignment for Transformer-based VRD models. How-
ever, we observe that queries trained under a standard label
assignment are largely ‘unspecialized’, therefore leaving a
large portion of a model’s capacity underutilized. To this
end, we first identify two major limitations of a standard la-
bel assignment that ends up training unspecialized queries.

Firstly, under a standard assignment, a query is trained
to detect every relation rather than focusing on a specific
relation. Such multiple roles imposed on a query make it
difficult for a query to specialize in a specific role since
it provides ambiguous training signals overall. The long-
tailed property of relation distributions of VRD benchmarks
even aggravates the problem since unbalanced training sig-
nals make it harder for a query to successfully balance be-
tween multiple relations. Secondly, due to a constraint in
a standard assignment that a GT can only be assigned to
a single prediction, near-correct or even correct predictions
are assigned ‘no relation (&)’ as a GT, which provides neg-
ative signals that suppress the predictions. For instance,
about 45% of high-quality predictions' are assigned ‘no re-
lation (&)’ as a GT in the case of a model trained on the
Visual Genome benchmark. In sum, an unspecialized query
is trained due to multiple roles that defer the specialization
of a query, and the deficiency in positive training signals
under the standard assignment.

A high-quality prediction is defined as a prediction that is correctly
classified and overlaps with the GT on subject and object with IoU over
0.6.
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To address these limitations, we propose a Group-
wise Query Specialization and Quality-Aware Multi-
Assignment (SpeaQ). SpeaQ includes two components:
Groupwise Query Specialization and Quality-Aware Multi-
Assignment. With Groupwise query specialization, a spe-
cific target relation group is designated to a query and a
query is trained to only detect relations that belong to a des-
ignated relation group. As a result, a query learns a spe-
cialized role instead of struggling to learn to detect every
relation due to ‘specific’ training signals provided. Quality-
aware multi-assignment further facilitates the training of
specialized queries, providing ‘abundant’ training signals
by assigning a GT to multiple high-quality predictions that
are significantly close to GT.

Experimental results demonstrate that SpeaQ be ap-
plied to various architectures across Scene Graph Genera-
tion (SGG) and Human-Object Interaction (HOI) Detection
tasks, resulting in a consistent performance gain. Due to
the specialized queries, SpeaQ covers a wider range of rela-
tions where previous models fail (e.g., rare relations), while
also improving the performance on relations where previ-
ous models show decent performance. As a result, SpeaQ
achieves the best performance in both of the two contradict-
ing R@k and mR@k metrics on the VG benchmark [18],
which are biased toward common and rare relations, re-
spectively. Notably, such improvements are achieved with-
out any additional post-processing, model parameters, in-
ference cost, or modification in the inference pipeline com-
pared to the baseline. In sum, our contributions are three-
fold:

* We introduce a Groupwise Query Specialization, which
trains a ‘specialized’ query by dividing queries and re-
lations into disjoint groups and directing a query solely
toward relations in a corresponding relation group.

* We propose a Quality-Aware Multi-Assignment which
assigns a GT to multiple predictions considering the
triplet-level prediction quality, therefore adaptively pro-
viding richer training signals to promising predictions.

¢ Overall, Groupwise Query Specialization and Quality-
Aware Multi-Assignment (SpeaQ) effectively trains a
specialized query, which better leverages the model ca-
pacity and therefore consistently improves performance
across multiple VRD models and benchmarks with zero
additional inference cost.

2. Related Works
2.1. Transformers for Visual Relationship Detection

Visual Relationship Detection (VRD), including Scene
Graph Generation (SGG) [18] and Human-Object Interac-
tion (HOI) Detection [2] is the task of detecting triplets ex-
isting in an image, where a triplet consists of instances (i.e.,
subject, object) and a relation between those instances (i.e.,

predicate). Recently, a line of research developing better
Transformer-based [35] architectures for VRD tasks have
been conducted [3, 6, 14, 16, 22, 25, 28, 31, 42] following
the success of DETR [1]. In this paper, we propose a way
to better train Transformer-based VRD models, which can
be applied to multiple architectures to better leverage the
capacity of those models.

2.2. Effective training of VRD models

To mitigate the long-tailed property of VRD benchmarks,
multiple learning strategies have been proposed, including
data resampling [5, 21], loss re-weighting [14, 38, 40], and
building class-specific classifiers [7]. However, such an ap-
proach inevitably results in a loss in common classes since
it seeks a trade-off between common and rare classes under
the same model capability. Our work differs from these ap-
proaches in that ours enhances the model’s capability itself
by training a specialized query, therefore improving perfor-
mance across classes regardless of frequency. On the other
hand, recent works in object detection tried tailoring a label
assignment process for detectors, including multiple works
actively providing training signals to predictions with low
localization costs [4, 11, 12,27, 36] on a single object. Mo-
tivated by those works, we introduce an enhanced label as-
signment strategy for VRD tasks that comprehensively con-
siders a triplet-level localization and classification quality,
which is an initiative work exploring the better label assign-
ment strategy for VRD tasks.

3. Method

In this section, we briefly introduce the structure of
Transformer-based VRD models and the standard label as-
signment strategy (Sec. 3.1). We then propose a Groupwise
Query Specialization that directs a query toward a specific
predicate group (Sec. 3.2). We also present a Quality-Aware
Multi-Assignment which assigns a GT to multiple high-
quality predictions considering the triplet-level prediction
quality, and the overall pipeline (Sec. 3.3).

3.1. Preliminary

Transformer-based visual relationship detection. A
Visual Relationship Detection (VRD) dataset D =
{(Z;, 7})}2‘1 consists of pairs of an image Z; and a corre-
sponding GT set 7;. A GT set 7; = {t; = (s;,pj, 0])}‘11‘1
is a set of GT triplets ¢;, where a triplet t; = (s;,p;,0;)
consists of a subject s;, a predicate p; and an object o;.
Note that the ‘relation” between instances are often termed
as ‘predicate’ in the context of VRD. The subject, predicate
and object are represented by bounding boxes b7, b? b7 €
R* and class labels o, cf ; ¢j. Note that 7; includes ‘no re-
lation (@)’ label padded to N; GT labels, so that |7;| = N,

holds, where N, is the number of decoder queries. Given
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Figure 1. Overview of the proposed SpeaQ. SpeaQ consists of two key components: Groupwise Query Specialization and Quality-Aware
Multi-Assignment. Groupwise Query Specialization (Sec. 3.2) divides predicates and queries into disjoint predicate groups and query
groups and assigns a GT in a specific predicate group only to a query in the corresponding query group, therefore designating a specialized
role to a query. Quality-Aware Multi-Assignment (Sec. 3.3) adaptively assigns a GT to a different number of predictions considering
overall prediction quality on a subject, object, and predicate to provide richer training supervision to predictions that are close to a GT.

an image Z;, typical Transformer-based VRD models out-
put the set of predictions 7; = {f; = (éj,ﬁj,éj)}ji"l.
Typical Transformer-based VRD models consist of a CNN
backbone and encoder-decoder Transformers. A conven-
tional CNN backbone network (e.g., ResNet [9]) first gen-
erates a visual feature F; € RE*XH*W given an input im-
age Z;. Then, the visual feature F; is fed into a Trans-
former encoder which outputs an encoded feature Z; €
RE*HW - Transformer decoders take Z as a feature for
cross-attention and transform Q = {g;}* 21, the set of Ny
learnable queries into output embeddings. Finally, output
embeddings are translated into final predictions, where the
set of whole predictions is denoted as 7.

Label assignment for Transformer-based VRD models.
Label assignment maps a ground-truth to a prediction to
train a Transformer-based VRD model. For the label as-
signment in Transformer-based architectures, the Hungar-
ian matching algorithm [19] that finds a one-to-one as-
signment between ground-truths and predictions is widely
adopted. Given a GT set 7; and a prediction set Ti Hungar-
ian matching algorithm finds oy, pian € S, the permu-
tation of predictions with the minimal matching cost below:

Ny
argmln E Hmatch

O'EGNq

O’}Tungarian t o(i )) ) (1)
where Hmaeeh 1S @ matching cost between a ground-truth ¢;
and a prediction tg( y with an index o (7). In VRD tasks, the

overall matching cost Haich 1s defined as:

Humaten (ti, fa(i))

= Liti20) [Cs (805 80)) + Cp (Pis o)) + Co (04,60())]
2)

where 1 is an indicator function and Cs, C,, C, denote sub-
ject, predicate and object matching cost, respectively. Each
matching cost consists of a classification cost (e.g., cross-
entropy loss) and the sum of localization costs (e.g., L1 and
generalized IoU loss).

3.2. Groupwise Query Specialization

Frequency-based predicate and query grouping. To let
a query specialize on specific target predicates, we first di-
vide the set of whole predicate classes into IV, disjoint pred-

icate groups {GV ng:gl based on their frequencies. Predi-
cates with similar frequencies are grouped to ensure a more
balanced distribution of frequencies within each predicate
group, which helps to avoid optimization difficulties caused
by the class imbalance. Further details about the predicate
grouping are provided in the Sec. A and Alg. 1 of the sup-
plementary material. The set of query Q with N, queries
is also divided into N, query groups {G? }fV:f’l To divide
the query set Q into [N, groups, we propose a proportional
query grouping, where the number of queries in the k’th
query group is set proportional to the sum of frequencies
of predicates in the k’th predicate group in the training set,
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Group ‘ Number of GTs  Number of queries

Group 1 990k (48.4%) 146 (48.7%)
Group2 | 398k (19.5%) 58 (19.3%)
Group3 | 299k (14.6%) 43 (14.3%)
Group 4 173k (8.5%) 25 (8.3%)
Group 5 186k (9.1%) 28 (9.3%)

Table 1. Statistics of query groups when N, = 5.

formulated as:

|D| |T:l

1Gil o< Y > [k € GE)/ D). 3)
]

The detailed algorithm for the proportional query grouping
is provided in Alg. 1 of the supplementary material. An
example of the sum of predicate frequencies of a predicate
group G} and |G/|, the number of queries in each query
group is in Tab. 1. Proportional query grouping enables an
output distribution to better resemble the GT distribution by
design, where related results are presented in Fig. 2.

Groupwise query specialization. Given N, query groups

{G] zN:gl and predicate groups {G? }f\i"l defined as above,
groupwise query specialization forces a query to only detect
predicates in the corresponding predicate group. In other
words, a query in an i’th query group G/ is forced only to
detect predicates in the i’th predicate group G?, instead of
struggling to detect predicates in gf where i # j. To do
so, we first define two mapping functions &,, and &,. The
first function ®,, returns the index of a predicate group in
which a GT t; with a predicate label ¢! belongs to. Simi-
larly, the second function &, returns a query group in which
a prediction fj from a query ¢; belongs to as defined below:

Qsp(ti) =k 1fcf S Qg,

qu(fj) = kif q; € QZ @
If a GT ¢; has a predicate label ¢!’ that belongs to the k’th
predicate group, ®,(¢;) = k holds. Similarly, if a predicted
triplet fj is from a query g; that belongs to the £’th query
group, Qiq(fj) = k holds. Based on the mapping functions
defined above, a grouping cost Hgroup is defined as:

ngoup (ti;fj) = {07 § Qsp (tZ) B qu (tj) orti =2,
00, otherwise.

®)
Then, the groupwise query specialization is done by adding
the grouping cost Hgroup to the original matching cost
H match as below:

Ng

J:pec = argmin Z Hmatch (ti7 tAO'(i)) + Hgmup (tiv fo’(i)) .
c€G N,
(6)

%

Adding Hgroup to the original matching cost results in a GT
exclusively being assigned to predictions from the query
with a group index identical to that of the GT, since the
matching cost is set to co otherwise.

3.3. Quality-Aware Multi-Assignment

The conventional assignment has a constraint that a GT
can only be assigned to a single prediction. Due to the
constraint, near-correct or even correct predictions are sup-
pressed by being assigned a ‘no relation (&)’ as a GT, which
hinders proper training. Therefore, we adopt the multi-
assignment, which assigns a GT ¢; to d; number of high-
quality predictions instead of only assigning it to a single
prediction.

Triplet quality-aware determination of d,. Since the
number of high-quality predictions that correspond to a GT
t; may vary, we determine d; adaptively considering the
overall triplet-level prediction quality of a subject, object,
and the predicate on a GT ¢;, instead of setting d; equal
for every GT. In detail, vectors that represent subject, ob-
ject and predicate prediction qualities between a GT ¢; and

every prediction {Z; }jvqu are firstly calculated as:

Vs = [IoU (bf,z};)f_l € RN,

v = [1oU (52,52)] " € mNo (7
¢ [ ( v <7)L=1 ’

o =[], e RM,

where IoU is a function that outputs an IoU between two
bounding boxes, and E’?(cf ) denotes the predicted proba-
bility of a GT predicate label ¢! of a prediction fj. The
7’th element in the resulting vectors represents the predic-
tion quality of fj on a GT ¢;. Concretely, for a GT triplet
t;, IoU between the GT subject box b] and predicted sub-
ject boxes I;j from every prediction fj is calculated to form
a subject quality vector v € RMa, where object quality
vector v¢ € RN« is also analogously defined. Moreover, a
predicate quality vector v; is defined as a predicted score of
a GT predicate label. Then, d; is calculated given subject,
object and predicate quality vectors as below:

v; = R (v5,0?) + Aervl € RNo,
d; = Lmax (Z top-k (v;) , 1)J €N, ®

where R is the element-wise function (e.g., min, max), and
top-k is a function that only retains k largest elements in the
vector, and sets the value as zero otherwise. The triplet-level
quality vector v; is firstly obtained by combining the output
of a relation function R and the predicate quality vector v,
and then fed into the top-k function. Then, the floored result
of the sum of elements in the resulting vector from the top-k

28163



Method R@50/100 mR@50/100 ||  AvgR@50/100 F@50/100
X101-FPN backbone

Motifs [41] 32.1/36.9 5.5/6.8 18.8/21.9 9.4/11.5
VCTree [32] 31.8/36.1 6.6/7.7 19.2/21.9 10.9/12.7
VCTree-TDE [33] 19.4/23.2 9.3/11.1 14.4/17.2 12.6/15.0
VCTree-EBM [30] 20.5/24.7 9.7/11.6 15.1/18.2 13.2/15.8
VCTree-BPLSA [8] 21.7/25.5 13.5/15.7 17.6/20.6 16.6/19.4
DT2-ACBS [5] 22.0/24.4 15.0/16.3 18.5/20.4 17.8/19.5
ResNet-101 backbone

RelDN [22, 45] 30.3/34.8 44/54 17.4/720.1 7.7/9.3
BGNN [21, 22] 28.2/33.8 8.6/10.3 18.4/22.1 13.2/15.8
AS-Net [3] 18.7/21.1 6.1/7.2 12.4/14.2 9.2/10.7
SGTR [22] 25.1/26.6 12.0/14.6 18.6/20.6 16.2/18.9
HOTR* [16] 22.4727.1 6.9/9.7 14.7/18.4 10.6/14.3
HOTR* + SpeaQ (Ours) | 24.7(+2.3)/29.1(+2.0)  9.6(+2.7)/ 12.7(+3.0) || 17.2(+2.5)/20.9(+2.5) 13.8(+3.2)/ 17.7(+3.4)
ISGE [14] 29.5/32.1 7.4/84 18.5/20.3 11.8/13.3
ISG;C+ SpeaQ (Ours) 32.9(+3.4)/36.0(+3.9) 11.8(+4.4)/14.1(+5.7) || 22.4(+3.9)/25.1(+4.8) 17.4(+5.6)/20.3(+7.0)
ISG* 27.2/30.1 15.0/16.6 21.1/23.4 19.3/21.4
ISG*+ SpeaQ (Ours) 32.1(+4.9)/35.5(+5.4) 15.1(+0.1) / 17.6(+1.0) || 23.6(+2.5)/26.6(+3.2) 20.5(+1.2)/23.5(+2.1)

Table 2. Performance on Visual Genome. The best results among models with ResNet-101 backbone are marked in bold. * denotes
reproduced results. t denotes the performance without loss re-weighting proposed in [14].

function is set as d; if the sum is larger than 1. Otherwise, d;
is set as 1 to ensure that every GT is assigned to a prediction
at least once.

Quality-aware multi-assignment. With d; calculated in a
triplet quality-aware manner as elucidated above, an aug-
mented GT set 7, is constructed by duplicating ¢; for d;
times and padding @ until |7;/| reaches N,. Then, the
quality-aware multi-assignment is formally defined as:

Nq
Opa = argmin Z H match (ti/, fg(i/)) . 9)

c€G N, i’

Given the objective above, Hungarian algorithm finds the
permutation o, With the lowest matching cost between
the augmented GT set 7; and the prediction set ’ﬁ

Final training objective. Proposed groupwise query spe-
cialization and quality-aware multi-assignment are com-
bined to form the final assignment objective, dubbed as
Groupwise Query Specialization and Quality-Aware Multi-

Assignment (SpeaQ) as follows:

Nq
o = argmin Z Hinatch (ti’7 fo(i’)) + ngoup (ti’a to(i')) -

UGGNQ i

(10)
With the final matching cost defined above, the optimal
permutation of predictions o* with the lowest matching
cost is obtained. Then, the final training loss is de-
fined as the sum of the subject, predicate and object loss,

Lot (tir,toriry) = Ls (tirstoen) + Ly (tirstoen) +
L, (ti/, t:,*(,;/)). The subject loss L (ti/, fﬂ*(i/)) is defined
as:

L (tir, to= i) an
= Lus(c, 63*(1-,)) + ]l{ti,;éz}ﬁboa:(bf/»bi*(i’))v

where L(cf, éi*(z" ) is a classification loss (i.e., cross-
entropy) between the subject label and the predicted subject
logit and Lo, (b5, Bi* (Z.,)) is a sum of regression losses (i.e.,
L1 loss and GIoU loss) between the ground-truth bounding
box and the predicted bounding box. L, (¢, ty-(iy) and

Lo (tir,tox(iry) are analogously defined.

4. Experiments

In this section, we compare the performance of our method
SpeaQ with state-of-the-art methods for Scene Graph Gen-
eration and Human-Object Interaction Detection tasks. Fur-
ther implementation details are in the Sec. B of the supple-
mentary material.

4.1. Datasets

Visual Genome. Visual Genome dataset consists of 108k
images with 75k objects and 37k predicates. Following pre-
vious works [37, 41], we use the subset of Visual Genome
(i.e., VG150), which is composed of the most frequent 150
objects and 50 predicate categories. We report the perfor-
mance on two widely adopted metrics Recall@K (R@K)
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Method Full Rare Non-Rare
UnionDet [15] 14.25 10.23 15.46
PastaNet [24] 22.65 21.17 23.09
IDN [23] 23.36 22.47 23.63
HOITrans [46] 23.46 16.91 25.41
HOTR [16] 25.10 17.34 27.42
AS-Net [3] 28.87 24.25 30.25
QPIC [31] 29.07 21.85 31.23
MSTR [17] 31.17 25.31 32.92
CDN [42] 31.44 27.39 32.64
UPT [44] 31.66 25.94 33.36
GEN* [25] 33.12 27.12 3491

GEN* + SpeaQ (Ours) 34.000.83) 30.20(+3.08) 35.13(+0.22)

Table 3. Performance on HICO-DET. Best results are marked in
bold. * denotes reproduced result.

G Q | R@I00 mR@I00 || AvgR@100

32.1 8.4 20.3

v 33.1 9.2 21.2

v 353 13.5 244
v o/ 36.0 14.1 25.1

Table 4. Ablation study on main components. G : Group-
wise Query Specialization (Sec. 3.2), Q : Quality-Aware Multi-
Assignment (Sec. 3.3)

and Mean Recall@K (mR@K). Since R@K and mR@K
are known to be biased toward the most frequent and the
least frequent classes, we also report the arithmetic mean
(AvgR @K) [20] and the harmonic mean (F@K) [14, 43] of
two metrics to measure the overall balanced performance
across predicate frequency.

HICO-DET. For the Human-Object Interaction Detection
task, we report the performance on the HICO-DET [2]
benchmark, which contains 47k images (37.5k for train-
ing and 9.5k for test) with more than 150k annotations of
human-object pairs. It has 600 triplet classes, a subset of
possible combinations between 80 instance classes and 117
verb classes. We report mAP on three different sets: full
including all 600 classes, rare including 138 classes having
less than 10 training instances and non-rare including 462
classes with more than 10 training samples.

4.2. Experimental Results

Results on Visual Genome. In Tab. 2, we report the
performance of SpeaQ when applied to two competitive
Transformer-based models, ISG [14] and HOTR [16]. Ap-
plying SpeaQ on ISG results in a gain of 5.4 and 1.0 on
R@100 and mR@100, achieving the state-of-the-art re-
sult. The result is remarkable in that no previous work has
achieved the best performances on both of the two contra-
dicting metrics R@100 and mR@ 100, which is shown by
the best results on AvgR @100 and F@100. Similarly, when
applied to HOTR, improvements of 2.0 and 3.0 on R@100
and mR@100 are reported. Consistent gains in both mod-

\ GT 0.4 [N —e- Baseline
\\ —e- Baseline —+— Ours
0.4 \ —— Ours N
0.2
0.2
\‘
0.0 1 1 2 3 4 5

Group Index Group Index

(a) Prediction frequency per group. (b) mR@100 per group. The higher, the
The closer to the GT, the better. better.

Figure 2. Prediction frequency and mR@100 per group. Group

1 consists of the most frequent predicates, while group 5 consists
of the least frequent predicates.

els show the generalizability of the proposed SpeaQ. Note
that the boost in performance is gained with zero additional
model parameters or inference cost.

Results on HICO-DET. We also validate the effectiveness
and generalizability of SpeaQ by applying SpeaQ on top
of a competitive baseline in the Human-Object Interaction
(HOI) Detection task, GEN [25]. The result is reported in
Tab. 3. Applying SpeaQ to GEN results in a gain of 0.88,
3.08, and 0.22 in the full, rare, and non-rare sets, respec-
tively. Again, the result shows that applying SpeaQ results
in a consistent gain in performance across various tasks and
models.

Ablation study on main components. In Tab. 4, the ab-
lation results of the proposed components are reported.
Quality-aware multi-assignment consistently boosts both
performances on R@ 100 and mR @100 by 1.0 and 0.8 when
applied to the baseline. Also, Groupwise query specializa-
tion results in a gain of 3.2 and 5.1 on R@ 100 and mR @100
when applied to the baseline. With both components com-
bined, the best performance with 36.0 of R@100 and 14.1
of mR@100 is attained.

5. Analysis

In this section, we present various experimental results
along with analyses to validate the effectiveness of the
SpeaQ. ‘Baseline’ in all experiments denotes ISG [14].
Note that all experiments are done without the loss re-
weighting proposed in [14] to focus on the effect of compo-
nents since it largely biases a model toward rare predicates.
Analyses on output frequency and mR@100 per group.
In Fig. 2, the output frequency and mR@ 100 per predicate
group are plotted. Note that we define mR @ 100 of a group
as an average of recall of predicates in a group, similar to the
definition of conventional mR@100. By applying SpeaQ,
an overprediction of frequent classes and an underpredic-
tion of rare classes are relieved as shown in Fig. 2a, resulting
in an output distribution (red) closer to the GT distribution
( ) in every group compared to the baseline, which
was initially biased toward frequent predicates (blue). The
effect is shown in Fig. 2b, where consistent performance
gains in every group are reported. It is notable that the per-
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. N, K
Metrics ‘ 12 3 4 5 6 ‘ 12 3 4 5 6 7
mR@100 | 88 122 126 141 142 143 | 88 124 129 135 138 141 138
R@100 330 356 356 360 357 357|330 359 358 360 361 360 359
AVgR@100 | 209 239 241 251 250 250 | 209 242 244 248 250 251 249

Table 5. Performance under different numbers of groups N,, and k for top-k function in Eq. (8).

Method | N, | R@100 mR@100 || AvgR@100 Criterion | F | R@100 mR@100 || AvgR@100
Baseline | 300 32.1 8.4 20.3 Baseline | X | 32.1 8.4 [ 20.3
Baseline 600 323(+02) 78(-06) 201(-02) Random X 30.7 114 21.1
Ours 300 358 13.0 24.4 Semantic X 31.8 10.0 20.9
Ours | 600 | 36.0(+0.2) 14.1(+1.1) || 25.1(+0.7) BGNN [21] | v | 327 12.7 227
SHA [7] v 34.1 13.4 23.8
Table 6. Performance with a larger number of queries V,. Ours ‘ v ‘ 36.0 141 H 251

Method | R@100 mR@100 || AvgR@100

Baseline ‘ 32.1 8.4 H 20.3

Uniform 33.8 13.2 235
Proportional 36.0 14.1 25.1

Table 7. Ablation study on proportional query grouping.

formance improves in the most frequent group while the
prediction frequency declines, which shows that specialized
queries are better at performing a task even with a smaller
number of predictions compared to unspecialized queries.
Overall, results show that the specialization of queries im-
proves the performance of own target task of a query, and
the collection of specialized queries better resembles the GT
distribution.

Applying SpeaQ to the model with a larger V. In Tab. 6,
performances of the baseline and the model trained with
SpeaQ under a different number of queries NV, are reported.
Naively enlarging N, under a conventional training scheme
results in a drop of 0.6 on mR@ 100, which is three times
larger than the gain of 0.2 on R@100. In contrast, both
R@100 and mR@100 are improved by 0.2 and 1.1 as en-
larging N, when trained with SpeaQ. The result validates
that SpeaQ is better at fully leveraging a model’s capac-
ity by training specialized queries compared to the baseline
which fails to successfully handle the model capacity, there-
fore benefits by scaling up the number of queries.

Analysis on N,. In Tab. 5, experimental results under dif-
ferent numbers of groups /N, are reported. Compared to the
baseline (N, = 1), the performance gain is reported regard-
less of N,. AvgR@100 gradually improves as N, enlarges,
and plateaus at N, = 4 then slightly decreases afterward.
Based on the result, we suppose that partitioning queries
into an overly large number of groups may be suboptimal
since the lack in the amount of GTs in a group may result in
insufficient training signals.

Analysis on k. In Tab. 5, experimental results under dif-
ferent k for a top-k function used to calculate d; in Eq. (8)
are reported. The result shows that providing further posi-

Table 8. Analysis on predicate grouping criterion. ‘F’ denotes
that the predicates are grouped on a frequency-basis.

R \ R@100 mR@100 H AvgR@100
Baseline | 32.1 8.4 I 20.3
min 35.6 12.7 24.2
mean 36.0 13.3 24.7
max 36.0 14.1 25.1

Table 9. Analysis on relation function R.

tive signals consistently boosts the performance compared
to the baseline (k = 1), robust to the choice of k. The best
performance is achieved when & = 6 and the performance
slightly decreases afterward, since overly large k may pro-
vide positive signals even to non-promising predictions.
Ablation study on proportional query grouping. In
Tab. 7, the performances of the proportional query group-
ing (Eq. (3)) compared to the uniform query grouping are
reported, where the uniform query grouping denotes an
equal number of queries assigned to every query group. Re-
sults show that while a uniform grouping improves the per-
formance compared to the baseline by training specialized
queries, the best performance is achieved under the propor-
tional query grouping. Based on the result, we suggest that
providing a balanced amount of supervision to every query
on average helps better train queries.

Analysis on predicate grouping criterion. In Tab. 8,
results under different predicate grouping criteria are re-
ported. ‘Random’ denotes predicates are randomly grouped
into five groups with equal size, and ‘semantic’ denotes
predicates are divided into three groups (‘geometric’, ‘pos-
sessive’, and ‘semantic’) by their lexical semantics [41].
Also, we report performance under adopting predicate
groups from previous works [7, 21] split on a frequency-
basis. Further details about predicate groups are in Sec. C
in the supplementary material. Results show that adopting
the frequency-basis group as G¥ consistently outperforms
random or semantic criterion regardless of the choice of
the grouping strategy, since it relieves training difficulties
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GT : giraffe looking at building

GT : boy eating banana

GT : sign behind fence
Ours : giraffe looking at building (O)  Ours : sign behind fence (0)

E-l2 -
GT : cat in front of screen
Ours : cat in front of screen (O)

Ours : boy eating banana (0)
Baseline : boy holding banana (X) Baseline : giraffe near building  (X)
(a) (b)

: sign on fence (X) Baseline : cat in screen (x)

(c) (d)

Figure 3. Qualitative results on Visual Genome dataset. Predictions of the baseline and the model trained with SpeaQ are visualized
along with corresponding ground-truths. Correct and wrong prediction results are marked green and red, respectively.

Type | avg(d;) | R@100 mR@100 || AvgR@100

ToU 234 32 5.0 4.1
Single 1 32.1 8.4 20.3
Agnostic 3 33.0 9.0 21.0
Ours | 32 | 331 92 | 21.2

Table 10. Performances under various label assignment strate-
gies. avg(d;) : Average number of predictions a GT is assigned to.
caused by imbalanced training signals, while the proposed
grouping criterion results in the best performance.
Analysis on choice of R. In Tab. 9, performances under
adopting min, mean, and max as R in Eq. (8) are reported.
The best result is reported in both R@100 and mR@100
when adopting max as R, followed by mean and min func-
tions. Based on the result, we suggest that providing a
chance for cases where only a single instance is correctly
detected helps the model better learn samples that the model
is confused about (i.e., max) than conservatively rewarding
‘perfectly’ detected cases (i.e., min).

Quantitative results of quality-aware multi-assignment.
Experimental results in Tab. 10 support the effective-
ness of the quality-aware multi-assignment. We com-
pare performance when adopting conventional assign-
ment, quality-agnostic multi-assignment, and quality-aware
multi-assignment as a label assignment strategy, where each
is denoted as single, agnostic, and ours. A quality-agnostic
multi-assignment denotes that d; in Eq. (8) is set equal to
every GT. We also report the performance under a simple
IoU-based assignment commonly adopted in CNN-based
detectors, where a GT is assigned to predictions with IoU
over 0.5 for both subject and object. The result shows
that an IoU-based assignment completely fails in training
Transformer-based models. In contrast, quality-agnostic
multi-assignment improves the performance compared to
a single assignment, while quality-aware multi-assignment
further improves the performance showing the best result on
R@100 of 33.1 and mR@100 of 9.2. The result shows the
effectiveness of multi-assignment, and it could be further
improved with quality-aware determination of d;. For bet-
ter understanding, we further provide an intuitive running
example that demonstrates the importance of the proposed

assignment in Sec. D of the supplementary material.

Qualitative results. Fig. 3 presents qualitative examples
comparing prediction results from the baseline model and
SpeaQ. Regarding samples (a) and (b) of the figure, the
model trained with SpeaQ successfully detects challeng-
ing samples that require a detailed understanding of both
the predicate’s semantics and the image. This is in con-
trast to the baseline model, which struggles in these sam-
ples. Furthermore, as shown in samples (c) and (d), SpeaQ
helps the model detect less common predicates. Concretely,
the model trained with SpeaQ correctly classifies ‘behind’
and ‘in front of’, which are 17 and 18 times less frequent
compared to ‘on’ and ‘in’, predicted by the baseline. These
improvements are attributed to queries trained with SpeaQ,
which are specialized in target predicates, therefore, are bet-
ter at detecting rare and challenging samples.

6. Conclusion

In this paper, we propose a Groupwise Query Specialization
and Quality-Aware Multi-Assignment (SpeaQ). The first
component trains a ‘specialized’ query by dividing queries
and relations into groups and directing a query in a spe-
cific query group solely toward relations in the correspond-
ing relation group. The second component provides abun-
dant training signals considering the triplet-level quality of
multiple predictions. Our experiments show that SpeaQ re-
sults in performance gains across multiple VRD models and
benchmarks with zero additional inference cost.
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