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Abstract
Social relations have substantial impacts on the poten-

tial trajectories of each individual. Modeling these dynam-
ics has been a central solution for more precise and ac-
curate trajectory forecasting. However, previous works ig-
nore the importance of ‘social depth’, meaning the influ-
ences flowing from different degrees of social relations. In
this work, we propose HighGraph, a graph-based pedes-
trian relational reasoning method that captures the higher-
order dynamics of social interactions. First, we construct
a collision-aware relation graph based on the agents’ ob-
served trajectories. Upon this graph structure, we build
our core module that aggregates the agent features from
diverse social distances. As a result, the network is able
to model complex social relations, thereby yielding more
accurate and socially acceptable trajectories. Our High-
Graph is a plug-and-play module that can be easily ap-
plied to any current trajectory predictors. Extensive exper-
iments with ETH/UCY and SDD datasets demonstrate that
our HighGraph noticeably improves the previous state-of-
the-art baselines both quantitatively and qualitatively.

1. Introduction
Human trajectory forecasting is vital for designing safer
engineering applications such as urban planning [24] and
autonomous vehicles [6, 8, 27]. However, human motion
is easily susceptible to heterogeneous external forces, and
handling these factors still remains a challenge. Undoubt-
edly, one of the most dominant forces that affect human be-
havior in a crowded scene is a ‘social force’, and many pre-
vious works attempt to model this by incorporating inter-
agent relations for trajectory prediction.

Early works demonstrate the importance of modeling so-
cial relations by extracting pair-wise interaction features.
For example, Social-LSTM [2] and Social-GAN[9] de-
velop pooling mechanisms that encode pair-wise attrac-
tions. Social-STGCNN [22] formulate inter-agent relations
as a graph and perform graph convolution to aggregate the
features of neighboring pairs. However, considering the
‘flocking behavior’ of humans, these methods are unavail-
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Figure 1. Example of different types of social relations. Higher-
order relations contrast from pair-wise and group-wise relations in
that they capture the indirect and long-ranging influences of so-
cially distant interactions. To the best of our knowledge, our work
is the first to consider higher-order social relations for pedestrian
trajectory prediction. Best viewed in color.

able to capture the scaled interactions. Therefore, recent
works suggest group-wise relational reasoning for a more
comprehensive understanding of human behaviors [17, 36].
These methods construct hypergraphs that encode social
behaviors in diverse group sizes. Increasing the topologi-
cal magnitude of the relations offers a wider perception of
the scenes. Nevertheless, directly pairing each neighbor or
speculating their behaviors as a group may overlook the im-
portance of indirect higher-order influences of each agent.

Social relations are in-depth. Human decisions are af-
fected not only by direct and nearing factors but also by
socially distant ones. A certain pair-wise interaction be-
tween the local neighbors influences their future behaviors,
and the decision they make may further affect the future be-
haviors of the third person in the distance, and so on. This
chain-rule effect can be easily found in an urban crowded
scene. For example, when two acquaintances walk toward
each other, the relationship affects the path of those whose
original destination is near the meeting point of the two.
This trivial modification of the trajectories may further es-
calate to influence the following pedestrians’ motions.

Despite its massive impact on future behaviors, incorpo-
rating higher-order social relations for trajectory forecasting
has not well been explored. In this work, for the first time
in the literature, we propose a novel method that models the
higher-order dynamics of social interactions. Our work em-
phasizes the substantial influences of indirect interactions
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of each individual, which differs from existing group-wise
relations where the social scale was the main consideration.
The comparison is visualized in Figure 1.

We develop HighGraph, a graph-based pedestrian rela-
tional reasoning method that infers higher-order relations in
a crowded scene. First, we devise a new kernel function to
construct a graph adjacency based on the observed social
dynamics. Specifically, we update the potential collision
point of the pedestrians for each time frame and provide
weights based on the distance from the current position to
the potential collision point. Then, based on this adjacency,
we build our core module. We leverage the relational rea-
soning power of graph convolutional networks (GCNs)[14],
but further modify in a way that aggregates the combina-
tions of the features from diverse social degrees. The con-
secutive powers of the adjacency matrix enable linear fusion
of the features with adjustable observation depth size. This
results in more complex social understanding by yielding
more accurate and socially acceptable outputs.

Our HighGraph is a plug-and-play module that can be
attached to any existing predictors to improve its perfor-
mance. We show how to plug our HighGraph into diverse
models ranging from conventional recurrent models to re-
cent conditional variational autoencoder (CVAE) [31] based
models. With ETH/UCY and SDD datasets, we apply our
HighGraph to previous state-of-the-art methods and show
noticeable improvements both quantitatively and qualita-
tively. This demonstrates the importance of higher-order
relational reasoning for pedestrian trajectory prediction.

The main contributions of this work are as follows:
• To the best of our knowledge, our work is the first to rea-

son about indirect higher-order social relations of each
individual for trajectory prediction.

• We develop HighGraph, a graph-based higher-order rela-
tional reasoning module based on a novel collision-aware
kernel function.

• Our HighGraph module is designed to be a plug-and-play
that can seamlessly integrate with any existing state-of-
the-art methods, offering a simple and effective way to
enhance their performance.

2. Related Work
2.1. Social Relations for Trajectory Prediction
Social relational reasoning is crucial for understanding the
complex consequences of human behaviors [19, 29]. Con-
ventional methods approach this in a statistical manner by
inferring probabilistic dependencies between variables [7].
With the success of deep neural networks in many do-
mains, many works exploit high-dimensional latent fea-
tures, which enable them to model more complex social re-
lations. Social-LSTM [2] and Social-GAN [9] design pool-
ing mechanisms that encode pair-wise attractions. Social-
Attention [32] assigns relative importance to each pair with

an attention module. Several works, such as [12, 15, 22] uti-
lize graph structures to perform neighborhood aggregation
between the paired entities. However, these methods fail
to view the social scene from a broader perspective (e.g.
group-wise interaction). Traditional group-aware methods
use clustering algorithms to group the agent behaviors [4].
Recent deep learning-based works such as [17, 36] propose
a group-wise relational reasoning method with multiscale
hypergraphs. Our work contrasts with the previous social
models in that the main focus of this work is to capture the
higher-order influences from socially distant interactions.
which has never been explored in the literature.

2.2. Graph Convolutional Networks
Our HighGraph is built upon the feature aggregation algo-
rithm of GCNs [14], which is widely used to learn the rep-
resentations of relational data. Its idea is to aggregate the
messages of the neighboring nodes in a non-linear manner
to update the status of the target nodes. Due to its efficiency,
GCN is utilized in diverse domains such as recommenda-
tion [10, 13, 33, 34], human action recognition [5, 20, 39],
visual question answering [18, 23], and many more. How-
ever, the vanilla GCN is designed to interact only with the
local neighboring nodes, limiting itself to observing deeper
and long-ranging connections. MixHop [1] introduces the
higher-order GCN by using the powers of the adjacency ma-
trix. This motivates many studies to reason about deeper
graphical relations of the data [35, 40]. Our work further
enhances this concept to be applicable to the trajectory pre-
diction task. First, we construct a collision-aware relational
graph. The powers of its adjacency represent the com-
plex social influences from both local and distant neighbors.
Then, we add combination layers at the end of each higher-
order graph convolution, which compiles the social features
from diverse degrees as one representative feature. Further
details will be explained in the following sections.

3. Preliminaries
3.1. Trajectory Prediction
The objective of the task is to predict the future trajecto-
ries of the agents given their historical observations. For-
mally, let X ∈ Rh×N×2 be the past h frames of observed
trajectory coordinates of N agents, and Y ∈ Rf×N×2 be
the f frames of ground truth trajectories continuing from
the observed sequences. With given observations, the deter-
ministic models predict the 2D coordinate values, whereas
the probabilistic models estimate the conditional distribu-
tion p(Y |X; Θ), where Θ denotes the model parameters.

3.2. Graph Convolutional Networks

For a given graph G = (V,E) with V and E as a set of
nodes and edges, respectively, the message passing in layer
l of vanilla GCN can be formulated as follows:
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Figure 2. The higher-order relational reasoning architecture of HighGraph. First, we define the social interactions with the proposed
collision-aware kernel function. Then HighGraph recursively aggregates the social features from diverse distances and combines them to
obtain complex social influences. These fruitful feature embeddings can be used in any existing trajectory network. Best viewed in color.

H(l+1) = σ(ÂH(l)W(l)), (1)

where H ∈ R|V |×d is a d-dimensional feature matrix of
the nodes, Â = D− 1

2 (A+ I)D− 1
2 is a symmetrically nor-

malized adjacency matrix of A, W ∈ Rd×d′
is a train-

able weight matrix and σ(·) is an activation function. Our
HighGraph module is built upon this neighborhood aggre-
gation architecture. With our proposed collision-aware ker-
nel function and the higher-order feature combination tech-
nique, HighGraph is able to infer deeper and long-ranging
social relations.

4. HighGraph
In this section, we explain our proposed HighGraph in de-
tail. First, we introduce a novel collision-aware graph ker-
nel function that quantifies the strength of each pair-wise
interaction based on the agent dynamics. Then, our High-
Graph performs higher-order graph convolution upon the
constructed graph. The learned embeddings of HighGraph
can be plugged into the encoders of any existing prediction
methods and enhance the performance. The overall archi-
tecture is illustrated in Figure 2.

4.1. Collision-aware Kernel Function

Pedestrians in a crowd walk in a way that avoids collision
with each other. Considering this social prior, we come up
with a kernel function that assigns interaction weight for
each agent pair. First we construct a social graph G for
each timestamp, with its adjacency matrix A = {aij |∀i, j ∈
{1, ..., N}}, where the initial value of aij is set as 0 if i = j,

and 1 if i ̸= j. Then, our collision-aware kernel function
takes the elements of the adjacency matrix as input and as-
signs weights for each pair. Specifically, we find a poten-
tial collision point C for each pair. This is computed by
the intersection of two half-lines starting from each agent’s
previous location coordinate P and passing the point of the
current location Q. Formally, for an agent i, its trajectory
half-line can be denoted as

−−→
PiQi. Then the potential colli-

sion point between two agent pair {i, j} can be described as

Cij = (xij , yij) =
−−→
PiQi ∩

−−−→
PjQj . (2)

Next, we calculate the distance from each agent’s current
locations Qi and Qj to their potential collision point, where
our kernel function assigns higher weights for the interac-
tions with imminent potential collision. The overall equa-
tion of our collision-aware kernel function is as follows:

g(aij) =

{
1/
(
dij

∑
e∈{i,j} ∥Cij −Qe∥2

)
, if ∃Cij ∈ R2

0, otherwise
(3)

where dij = ∥Qi−Qj∥2 is the distance between the agents’
current location. We use this to scale the proximity of the
interaction. Finally, we normalize the weighted adjacency
matrix as described in section 3.2 and obtain Â. We pro-
vide a visualization of the method in Figure 3 for better un-
derstanding. Further details of the kernel method will be
explained in the supplementary material.
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Figure 3. Visualization of social interaction modeling of our
collision-aware kernel function. Case (a) and (b) describe the sit-
uation where two agents are expected to collide at a certain point.
We assign weight values based on the distance between the po-
tential collision point to each agent and the distance between each
other. Case (c) is an example where no collision is expected. We
assign 0 for the kernel weight in such a case. Best viewed in color.

4.2. HighGraph Layers

Higher-order Graph Convolution. Powering the adja-
cency matrix opens up the path to the nodes in distant hops.
HighGraph leverages this concept to model the higher-order
social influences between individuals. We first make M ad-
jacency matrices for each layer, each of which represents
the mth-powers of our collision-aware adjacency matrix Â
from section 4.1, where m ∈ {1, ...,M}. Multiplying each
of them with the agent social feature X computes the mth-
order social influences between the agents:

H(l)
m = ÂmX(l)W(l)

m , (4)

where l is a layer number and W
(l)
m is a trainable weight

matrix that learns the mth-order social relations in layer l.

Combintation Layer. Now we devise a combination
layer that distills influential social interactions from vari-
ous distances and integrates them as one representative vec-
tor. First, our combination layer concatenates the M higher-
order features. Then it goes through the mixture function
F , where we utilize multi-layer perceptrons (MLPs) with a
non-linear activation function. The described combination
layer can be formulated as follows:

X(l+1) = F(λ1H
(l)
1 ∥ λ2H

(l)
2 ∥ ... ∥ λMH

(l)
M ), (5)

where λm denotes the trainable weight for the mth-order
feature, and ∥ denotes column concatenation. By letting∑

m∈{1,...,M} λm = 1, the model discriminates the social

influences from different degrees. We repeatedly stack the
explained HighGraph layers in order and obtain the higher-
order relation embeddings.

5. Experiments
5.1. Datasets
ETH/UCY. The dataset [16, 26] is a classical benchmark
for the pedestrian trajectory prediction task. It consists of
five different top-down viewed scenes, with coordinate val-
ues given in meters. We follow the conventional ‘leave-one-
out’ evaluation strategy [9, 21, 30] and predict the trajecto-
ries of 12 frames (4.8 seconds) with 8 frames (3.2 seconds)
of observed history.
Stanford Drone Dataset. We also evaluate our method
with another widely-used benchmark Stanford Drone
Dataset (SDD) [28]. Unlike ETH/UCY, the coordinates of
SDD are represented in pixel values. We follow the standard
setup from the previous works [30, 37] and report the pre-
diction result of 12 (4.8 seconds) frames with 8 frames (3.2
seconds) of trajectories as inputs.

5.2. Evaluation Metrics
We use two Euclidean-distance-based metrics minADEK

and minFDEK for evaluation. minADEK measures the
minimum of L2 distances between the ground truth trajec-
tories and the predicted trajectories across K predictions.
minFDEK calculates the minimum of L2 distances between
the ground-truth endpoint and the predicted endpoint across
K predictions. Following the previous works [9, 22, 38], K
is set as 20 in our experiments.

5.3. Implementation Details
We implement HighGraph with PyTorch [25]. Since High-
Graph is a plug-and-play module, the optimal way of plug-
ging the module differs between models, and the implemen-
tation for each baseline is explained in Section 5.4. The
number of graph layers and the higher-order observation de-
gree M is searched within {1,2,3,4,5}, since a larger num-
ber rather deteriorates the performance.

5.4. Baselines
HighGraph generates highly beneficial social represen-
tations. Accordingly, it can be merged with any ex-
isting methods and enhance its prediction. There-
fore, we validate the efficacy of HighGraph by plug-
ging it into previous state-of-the-art models: Social-
GAN[9], SoPhie[30], Social-STGCNN[22], BiTraP[38],
SocialVAE[37] and EigenTrajectory[3]. For Social-GAN
and SoPhie, we feed the output of their recurrent encoder
as our HighGraph’s input. Among the variants of SoPhie,
we reproduced SoPhie+TA + IA by generating the im-
age features by using map features. Since our higher-order
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ETH HOTEL UNIV ZARA1 ZARA2 AVG SDD
Social-GAN [9] 0.92/1.77 0.71/1.43 0.58/1.22 0.37/0.74 0.40/0.91 0.60/1.21 27.23/41.44
+ HighGraph 0.88/1.52 0.49/0.99 0.56/1.18 0.35/0.71 0.39/0.79 0.53/1.04 18.60/37.00

4%/14% 31%/31% 3%/3% 5%/4% 3%/13% 9%/13% 31%/10%
SoPhie [30] 0.75/1.51 0.80/1.69 0.59/1.31 0.34/0.64 0.39/0.80 0.57/1.19 16.27/29.38
+ HighGraph 0.62/1.14 0.62/1.28 0.51/1.25 0.32/0.61 0.29/0.75 0.47/1.01 14.60/27.41

17%/25% 23%/24% 14%/5% 6%/5% 26%/6% 18%/15% 10%/7%
Social-STGCNN [22] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75 20.60/33.10
+ HighGraph 0.60/0.93 0.31/0.40 0.40/0.70 0.33/0.49 0.29/0.45 0.39/0.59 15.38/26.41

6%/16% 36%/52% 9%/11% 3%/7% 3%/6% 11%/21% 25%/20%
BiTraP [38] 0.56/0/98 0.17/0.28 0.25/0.47 0.23/0.45 0.16/0.33 0.27/0.50 9.09/16.31
+ HighGraph 0.47/0.73 0.17/0.27 0.25/0.47 0.18/0.33 0.11/0.23 0.24/0.41 8.83/14.90

16%/25% 0%/3% 0%/0% 21%/26% 31%/30% 11%/18% 3%/8%
SocialVAE [37] 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33 8.10/11.72
+ HighGraph 0.40/0.55 0.13/0.17 0.20/0.33 0.17/0.27 0.11/0.21 0.20/0.30 7.98/11.42

2%/5% 0%/11% 5%/11% 0%/7% 15%/5% 4%/7% 1%/3%
EigenTrajectory [3] 0.36/0.57 0.13/0.21 0.24/0.49 0.20/0.35 0.15/0.26 0.22/0.38 8.05/13.25
+ HighGraph 0.33/0.56 0.13/0.21 0.23/0.47 0.19/0.33 0.15/0.25 0.21/0.36 7.81/11.09

8%/2% 0%/0% 4%/4% 5%/8% 0%/4% 5%/4% 3%/16%

Table 1. minADE20/minFDE20 result of HighGraph. Our method noticeably improves the previous state-of-the-art methods in both
datasets, demonstrating the importance of higher-order relational reasoning. The third rows in each baseline are the relative improvements
in percentage. The performance improvement achieved by our proposed method is indicated in bold.

graph convolution includes pair-wise reasoning, we replace
the existing graph convolution module in Social-STGCNN
with the HighGraph network. For conditional variational
autoencoder (CVAE) [31] based models, we concatenate
the HighGraph representations to their original encoded fea-
tures. We report the quantitative result of BiTraP-NP from
SocialVAE for the recently reported issue [37]. Addition-
ally, we report the result of SocialVAE with final position
clustering (FPC) for a fair comparison. Lastly, we added
a recent state-of-the-art EigenTrajectory+SGCN as a new
baseline to emphasize the capacity of our method. The rest
of the configurations are adopted from the official reposi-
tory of each baseline. More details of implementation are
provided in the supplementary material.

5.5. Quantitative Analysis

In this section, we analyze the impact of reasoning higher-
order relations for trajectory prediction by plugging our pro-
posed HighGraph into previous state-of-the-art baselines.
The results are reported in Table 1.

HighGraph consistently improves the minADE20 and
minFDE20 results for all baselines. Especially, applying
HighGraph in Social-GAN and Social-STGCNN achieves
more than 52% performance gain of HOTEL subset in
minFDE20. The relative increase in the CVAE-based meth-
ods is minor compared to that of non-CVAE-based base-
lines. We assume this is because the models are more
drawn to learning the CVAE latent space for better sam-
pling. However, as will be shown in the following qualita-

Figure 4. The distribution of the number of pedestrians for the
UNIV subset data. UNIV data is trained with sequences with a
small number of pedestrians, while the test set contains sequences
with a larger number of pedestrians. Best viewed in color.

tive results, HighGraph stands out in producing much more
socially reasonable trajectories, even with the small quanti-
tative increase in the metrics.

For a more thorough analysis, we provide the distribu-
tions of the pedestrians in the UNIV and HOTEL subset of
the ETH/UCY dataset in Figure 4. The distribution shows
that the UNIV subset is trained with data with a relatively
small amount of pedestrians in the sequences(average 4.4
peds/seq). However, the amount of pedestrians in the test
set is comparably larger than the other subsets(average 25.6
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Figure 5. Visualization of the qualitative influence of HighGraph. We illustrate the result of each subset of the ETH/UCY dataset,
comparing the original model and the HighGraph-plugged model. Best viewed in color.

peds/seq), indicating the shortage of training data for the
model to learn complex social interactions. Accordingly,
we observe that the benefits of HighGraph are lowest in the
UNIV data for all baselines. However, the other datasets,
such as HOTEL, are trained with sufficient social interac-
tions, thereby showing substantial improvements.

5.6. Qualitative Analysis
The previous section demonstrated the quantitative effi-
ciency of HighGraph. In this section, we present the quali-
tative results of HighGraph that the numerical metrics were
unable to highlight. Specifically, we first analyze the gen-

eral prediction results of a single agent. Then we move on
to the multi-agent predictions with more complex social in-
teractions to validate the higher-order relational reasoning
power of our HighGraph.

5.6.1 Single-agent General Prediction.
First, in Figure 5, we visualize the enhancement of the pre-
dictions of the general cases when HighGraph is combined
with existing models. We use Social-STGCNN and Social-
VAE as baselines for our qualitative analysis since Social-
STGCNN is a representative graph-based method and So-
cialVAE is a recent CVAE-based state-of-the-art method. In

15256



Scenario 1 Scenario 2

Scenario 4Scenario 3

Figure 6. Visualization of how HighGraph can improve the predictions in higher-order social scenarios. The scenes are selected from
ETH/UCY subsets. Best viewed in color.

every illustrated case, the predicted distributions of High-
Graph are closer to the ground truth. While the benefits
of the probabilistic models are in multiple trajectory predic-
tions, some of the examples in Social-STGCNN and Social-
VAE generate socially unacceptable ones (e.g. colliding,
walking into the driveway). However, HighGraph notice-
ably adjusts the trajectories to be socially acceptable while
being closer to the ground truth.

5.6.2 Multi-agent Higher-order Prediction.

Next, we illustrate the social scenarios with explicit higher-
order influences and emphasize the strength of HighGraph’s
relational reasoning. Especially, we refine the multi-agent
trajectory prediction of Social-STGCNN. We manually
choose the social scenarios where higher-order influences
between agents seem significant. Then, we illustrate the
ground truth trajectories, baseline prediction, and our re-
fined prediction in order for each scenario in Figure 6. For
the clarity of the illustration, we remove the background
image and other less-influential agents from the scene.
Scenario 1. The first scenario depicts a case where two
groups of parallel-walking agents (first-order) are walking
toward each other. This triggers a potential collision, and
naturally, the groups avoid collision by walking to their
right (second-order). This interaction between them further
influences the yellow agent behind them to navigate to the
right (third-order). Scenario 2. This scenario demonstrates
a case where three agents (green, red, blue) are gathering at
one place (first-order). Therefore, a following agent (pur-
ple) stirs its path to the right (second-order). These succes-
sive flow of interactions eventually affects the yellow agent
to slow down to avoid collision with the purple agent. Sce-
nario 3. The yellow agent in this scene runs into the agents

coming from its left (red, blue). Therefore, it turns right
and passes the agents with a faster velocity (first-order).
Accordingly, the red and blue agents slow down (second-
order) and this further affects the purple and green agents to
slow down as well (third-order). Scenario 4. The last sce-
nario also well-describes the chaining influences of higher-
order relations. The trajectories of the grey agent stir the
path of the green agent (first-order). This causes the purple
agent to detour (second-order), and as a consequence, the
red and blue agents turn left (third, fourth-order).

Comparing the predicted trajectories in such scenarios,
the results commonly demonstrate the necessity of High-
Graph for two main reasons. First, HighGraph clearly
avoids collisions. We speculate this is the benefit of our
collision-aware kernel function, which explicitly models
potential collisions. Second, with higher-order graph con-
volutions, HighGraph generates more ‘socially influenced’
trajectories that can not be captured only with pair-wise re-
lational reasoning. More examples of the comparison will
be presented in the supplementary material.

5.7. Ablation Study

5.7.1 Effect of the Collision-aware Kernel Function.
In this section, we demonstrate the effectiveness of our
collision-aware kernel function. Table 2 illustrates the AVG
results of Social-STGCNN differing with the choice of the
kernel functions. The velocity-based function proposed in
[22] does not take the distance between agents into consid-
eration and naively assigns equal weights to agents with the
same observed velocity. However, our collision-aware ker-
nel function models the complex pair-wise relations based
on the social prior that pedestrians walk in a way that avoids
collision. Therefore, it naturally generates fewer prediction
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No Velocity Ours
Weights -based w/o d w/ d

AVG 0.49/0.79 0.44/0.75 0.43/0.71 0.39/0.61

Table 2. We compare the average minADE20/minFDE20 result
of 5 ETH/UCY subsets with different kernel functions applied to
Social-STGCNN.

LSTM +GCN +MixHop +HighGraph
ETH 2.13/3.30 2.11/3.31 2.03/3.13 1.95/3.07
HOTEL 1.01/1.38 1.02/1.35 1.02/1.34 0.97/1.29
UNIV 0.94/1.08 0.95/1.06 1.02/1.21 0.88/1.01
ZARA1 1.43/2.36 1.41/2.30 1.37/2.19 1.21/2.02
ZARA2 1.10/1.50 1.08/1.46 1.07/1.42 0.95/1.38
AVG 1.32/1.92 1.31/1.90 1.30/1.86 1.19/1.75

Table 3. minADE20/minFDE20 result of a simple LSTM
model with different GNN variants for social relation modeling.
ETH/UCY dataset is used for this experiment.

errors than the previous method. Furthermore, we scale the
interactions with the distance between the agents d, and re-
fine the weight values, which produces better results.

5.7.2 Comparison with GNN Variants.
Next, we distinguish our HighGraph against other graph
neural network (GNN) variants. This is done by attaching
GNNs to a simple long short-term memory (LSTM) [11]
encoder-decoder based trajectory network. We compare
the social relation modeling ability of HighGraph with
GCN [14] and MixHop [1]. For a fair comparison, the num-
ber of graph layers is equally set as 3, and the higher-order
observation degree is set as 2 for MixHop and HighGraph.
The results are summarized in Table 3. We observe that
enabling a simple RNN model to incorporate relational rea-
soning with graphs improves performance. MixHop and our
HighGraph generate better results than GCN for their abil-
ity to reason about higher-order features. However, with
complex interaction modeling with a collision-aware ker-
nel function, and a combination layer that combines and
distills influential information from higher-order features,
HighGraph performs best among the compared variants.

5.7.3 Component Analysis.
HighGraph consists of two main components: the collision-
aware kernel function (C.A) and the higher-order graph con-
volution (H.G.C). This section analyzes how each of these
components contributes to the overall performance of High-
Graph. We begin from Social-STGCNN and apply C.A and
H.G.C each in order, where M = 2 for H.G.C. Then we
combine all the components to form the complete version
of HighGraph. The results are reported in Figure 7. We
observe that both of the components of HighGraph show
noticeable improvements in reducing displacement errors.
Specifically, the average of ETH/UCY benefits more from
the higher-order graph convolution, and SDD benefits more
from the collision-aware kernel function. However, assem-

Figure 7. Results of how each component of HighGraph im-
proves the performance when applied to the baseline model Social-
STGCNN. Combining them all together as HighGraph yields the
best result. Best viewed in color.

bling all the components together leads to a further decrease
in both minADE20 and minFDE20, emphasizing the impor-
tance of higher-order relational reasoning based on complex
social interaction modeling.

6. Conclusion
Behind each and every human decision lies an immea-
surable amount of chaining social relations that originate
the behavior. This work focuses on learning these indi-
rect higher-order influences from socially distant neigh-
bors, which haven’t yet been explored in the literature.
Therefore, we develop HighGraph, a graph-based higher-
order relational reasoning method for trajectory prediction.
Our collision-aware kernel function first constructs a so-
cial graph adjacency based on the prior that pedestrians
walk in a way that avoids collision. Powering the designed
adjacency matrix expands the social observation, enabling
HighGraph to aggregate and combine influences from var-
ious distances. We develop HighGraph as a plug-and-play
module and demonstrate how HighGraph can be applied to
existing state-of-the-art methods and improve their perfor-
mance both quantitatively and qualitatively.
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