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Abstract

Removing noise from images, a.k.a image denoising, can
be a very challenging task since the type and amount of
noise can greatly vary for each image due to many fac-
tors including a camera model and capturing environments.
While there have been striking improvements in image de-
noising with the emergence of advanced deep learning ar-
chitectures and real-world datasets, recent denoising net-
works struggle to maintain performance on images with
noise that has not been seen during training. One typical
approach to address the challenge would be to adapt a de-
noising network to new noise distribution. Instead, in this
work, we shift our focus to adapting the input noise itself,
rather than adapting a network. Thus, we keep a pretrained
network frozen, and adapt an input noise to capture the fine-
grained deviations. As such, we propose a new denoising
algorithm, dubbed Learning-to-Adapt-Noise (LAN), where
a learnable noise offset is directly added to a given noisy
image to bring a given input noise closer towards the noise
distribution a denoising network is trained to handle. Con-
sequently, the proposed framework exhibits performance
improvement on images with unseen noise, displaying the
potential of the proposed research direction.

1. Introduction
Noise, an unwanted byproduct during image processing,
can cause severe degradation not only in image quality but
also in high-level computer vision tasks. As such, noise has
been a target to eliminate in the field of image denoising.
One of the main challenges in image denoising is how to
distinguish a noise from an original source without know-
ing the noise distribution a priori.

To tackle such a challenging problem, a myriad of
learning-based models have been proposed to learn to re-
move noise that follows known distributions. To do so,
models are trained on datasets composed of pairs of clean
images and corresponding noisy images that are synthe-
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Figure 1. Overview of the motivation of our framework,
Learning-to-Adapt-Noise (LAN). Instead of adapting a denois-
ing network to unseen noise, LAN adapts the input noise itself by
directly learning to offset the deviations between the unseen noise
and the noise distribution a denoising network is trained on.

sized by adding noise to clean images. Under such for-
mulation, learning-based models have prominently marked
progress in the performance of image denoising, ever since
the emergence of convolutional neural networks (CNN)
and its advanced architectures designed for image denois-
ing [5, 11, 52, 54].

While early CNN-based models have brought substan-
tial improvements, such impressive results are only limited
to images with known noise distribution. Since early neu-
ral networks are trained on images with fixed and known
noise distributions, models fail to generalize to images that
contain unseen noise. Considering that images often con-
tain unseen/unknown noise, due to new environments and
camera models, in real-world applications, the incapability
of handling such noise is a critical shortcoming that needs
to be addressed.

To bridge the gap between the performance on controlled
environments and real-world environments, various works
have focused on constructing datasets consisting of real-
world clean-noisy image pairs [1, 3, 4, 37, 39, 48]. For in-
stance, SIDD [1] dataset, one of widely accepted and used
datasets, is constructed by capturing real-world noisy im-
ages with various smartphone cameras under different en-
vironment (e.g., ISO, shutter speed, and aperture settings).
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However, not only does the acquisition of such real-world
datasets require laborious human effort, but it remains diffi-
cult to achieve the generalization to unseen noise that is sub-
stantially different from noise distribution within the train
data.

In parallel with efforts in collecting real-world noise
dataset, there has been several attempts in improving the
performance on real-world noise with different approaches,
which can be mainly classified into two methodologies:
generative modeling and self-supervised learning. Genera-
tive modeling approaches employ generative models to syn-
thesize realistic noisy images [2, 9, 20, 23, 50, 51]. How-
ever, generative modeling approaches require clean images,
from which noisy images are conditionally generated.

On the other hand, self-supervised learning based blind
denoising approaches [6, 24, 27, 29, 30, 35, 40, 45] make
use of statistical assumptions that allow models to be trained
only using noisy images. Such self-supervised learning for-
mulations enable the model to be finetuned and adapted to
a given image with unseen noise. While there has been a
lot of efforts in designing more practical and effective self-
supervision tasks (e.g., loss functions, targets, etc.), the fo-
cus has been less on how models are finetuned with given
self-supervision tasks. Few works have attempted to adapt
the model to a given noisy image [16, 28].

In this work, instead of adapting the model to handle
fine-grained deviations in input image that unseen noise
brings, we propose to learn to directly offset the deviations
between the unseen noise distribution in the input and the
noise distribution expected by a pretrained denoising net-
work, as shown in Figure 1. To this end, we propose a new
framework, dubbed Learning to Adapt Noise (LAN), which
adapts an input noise with a learnable pixel-wise offset that
is trained with the aid of self-supervision tasks. Orthogonal
and complementary to self-supervised learning algorithms,
our framework is shown to bring substantial improvements,
in comparison to a model adaptation approach.

2. Related works
Single image denoising. Image denoising is a crucial area
of computer vision research. Early approaches include
total variation-based denoising [41], sparse coding-based
denoising [34], and self-similarity-based denoising meth-
ods [7, 12]. With the success of deep learning in com-
puter vision, many deep learning-based denoising methods
have been developed, starting with methods that combine
sparse coding and MLP [47]. DnCNN [54] focuses on
noise by residual structure. FFDNet [55] uses downsam-
pling and non-uniform noise level maps to achieve a faster
and more efficient performance. RIDNet [5] has further im-
proved performance especially on real-world noisy datasets,
such as SIDD [1], by incorporating a reinforcement atten-
tion module that utilizes global information such as feature

attention and local skip connection bases. In recent years,
vision transformers [13] have brought significant advance-
ments in image restoration. Several works have employed
vision transformers to bring futher improvements to denois-
ing [10, 31, 46, 53].

Blind image denoising. While denoising neural networks
achieve high performance, they require pairs of clean and
noisy images. However, obtaining clean images can be
challenging. Several blind denoising approaches [6, 40,
43, 45] have emerged to tackle unseen noise image denois-
ing without the need for clean images to training network.
Early strategy in blind denoising is based on an internal im-
age prior [43]. Recently, blind denoising approaches based
on self-supervised learning have endeavored to achieve per-
formance levels comparable to supervised learning. Under
the assumption that noise in each image is independent and
has a zero-mean distribution, Noise2Noise [30] takes dif-
ferent images of a scene that act as input and target im-
ages for training a network, respectively. Noise2Self [6]
is another self-supervised learning method that masks the
noisy image at regular intervals, using the remaining pix-
els as an input image and masked pixels as a target image.
On the other hand, recent works have focused on creating a
input-target pair by subsampling from a single noisy image.
Notably, Neighbor2Neighbor [17] is uses a random neigh-
bor sub-sampler to generate input-target pairs for training
a network. Zero-Shot Noise2Noise [35] is another self-
supervised learning approach that generates input-target
pairs by applying a filter that computes the mean of diag-
onal pixels. By test-time adaptation (TTA) [25, 44, 49] us-
ing these self-supervised learning approaches, a pretrained
denoising network can be either finetuned to handle unseen
noise [16, 28]. However, the misalignment between new
unseen noise and noise expected by a pretrained denois-
ing network may lead to suboptimal performance even after
adaptation. In this work, we approach the problem from a
different perspective: adapt a new noisy image itself to re-
duce the misalignment itself. Figure 2 outlines the major
differences between our framework LAN and standard ap-
proaches.

Domain adaptive image translation. Adaptation of an in-
put noisy image to handle the misalignment shares motiva-
tions with image translation for domain adaptation. Image
translation aims to learn to translate images from a source
domain to a target domain, through the aid of generative
models [15, 19, 22, 26, 32, 33, 56]. While our proposed
framework shares some similarities with these works from
the perspective of domain adaptation, domain adaptation
approaches either require a large amount of target-domain
images or require a large amount of images from various do-
mains in order to train a large generative model for image
translation. On the other hand, we do not need a separate
generative model for image translation. We also do not as-
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(a) Pretraining (b) Fine-tuning (c) LAN (Ours)

Figure 2. Overview of conventional methods and our framework, Learning-to-Adapt-Noise (LAN, ours). (a) Pretraining of a denois-
ing network is done with pairs of noisy-clean images, with standard L2 loss. (b) Fine-tuning of a whole denoising network is done with
only a given noisy image via self-supervision loss function, such as ZS-N2N [35], to handle unseen noise in the image. (c) Learning-to-
Adapt-Noise (LAN, ours) is similar to fine-tuning in that only a give noisy image is used with self-supervision loss. However, our method
keeps the whole denoising network frozen and only adapts a given noisy image to handle unseen noise.

sume the availability of a large amount of images with new
unseen noise distribution. In fact, we train a learnable off-
set that is directly added to each input image for adaptation,
without the need for an additional network for image trans-
lation or the need for other images. Furthermore, we believe
it is an interesting perspective to draw connections between
image denoising and domain adaptation.
Adversarial attack on image domain. Directly opti-
mizing the offset added to an image exhibit similar char-
acteristics as adversarial attack. Adversarial attack is often
performed via adversarial examples generated by adding a
learnable noise to the input, where noise is optimized to
make the neural network output deviate from its original
value [8, 42]. However, while adversarial attacks aim to
degrade the model performance, our work focuses on im-
proving the performance. Regardless, we introduce a new
interesting perspective, where denoising performance can
be improved with learnable anti-adversarial noise.

3. Proposed method
3.1. Preliminaries

Problem formulation. In this work, we aim to tackle a sce-
nario, where a new input image contains noise that follows
a different distribution from the distribution a denoising net-
work is trained with. Formally, a denoising network f with
parameters θ is pretrained with pairs of clean images xs and
their noisy counterparts ys that contain noise es assumed to
follow a certain distribution Ds, constructed as follows:

ys = xs + es, where es ∼ Ds. (1)

In particular, a denoising network fθ is trained to map noisy
images ys with certain noise es to their clean counterparts
xs via minimizing the empirical loss as follows:

θ∗ = argmin
θ

E
[∥∥fθ(ys)− xs

∥∥2
2

]
. (2)

During test time, we expect that a new input noisy image
yu contains an unknown clean image xu with unseen noise
eu that follows a distribution Du that is different from the
distribution seen during training (i.e., Ds):

yu = xu + eu, where eu ∼ Du. (3)

Under such formulation, challenges arise due to the domain
misalignment between a noise distribution a denoising net-
work is trained on and a new noise distribution encountered
during the test phase.
Self-supervised learning. One approach to handle such
misalignment would be to adapt a pretrained network to
given noisy image. However, only a noisy image yu is
available while a clean image xu is unavailable, making it
difficult to train or adapt a denoising network fθ via Equa-
tion 2.

To extract an underlying clean image from a noisy im-
age, a few recent works have introduced self-supervised
learning approaches [6, 18, 30, 35], given the following as-
sumption: clean image pixels and noise pixels exhibit dif-
ferent attributes. Namely, clean image pixels are highly cor-
related within local regions, whereas the noise pixels are in-
dependent. Upon the assumption, two independent noisy
images, yu

1 and yu
2 , are created out of the same scene from
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the original noisy image yu through two different transfor-
mations D1 and D2, such as downsampling [18, 35]. Then,
to approximate the optimization in Equation 2 without clean
images, one of two independent noisy images is used as an
input to a network while the other as a target:

Lself =
∥∥fθ(D1(y

u))−D2(y
u)
∥∥2
2
. (4)

3.2. Learning to adapt noise (LAN)

In this work, we aim to utilize a pretrained denoising net-
work fθ∗ to remove new unseen noise eu from a given
noisy image yu. However, when a denoising network fθ∗

is trained with noise es ∼ Ds via Equation 2 while a new
noisy image contains noise eu ∼ Du, there arises misalign-
ment between new input and what a pretrained network ex-
pects. Such misalignment may worsen as the difference be-
tween seen noise distribution Ds and unseen noise distribu-
tion Du is larger. The misalignment may lead to suboptimal
performance, when directly finetuning a pretrained denois-
ing network fθ∗ to minimize self-supervised loss function
(Equation 4) with new noisy images.

To resolve the noise misalignment issues, we shift the
attention to the noise itself at the input level. In particular,
we formulate a new unseen noise as deviation from the seen
noise distribution:

eu = es + ϵs→u, (5)

where ϵs→u represents how much eu deviates from an arbi-
trary noise es sampled from Ds. Thus, a new noisy image
yu can be seen as follows:

yu = xu + eu (6)
= xu + es + ϵs→u. (7)

Given the formulation, we observe that we can mitigate the
misalignment issues if we can adapt a given noisy image
yu to its translated counterpart noisy image yu→s with seen
noise es ∼ Ds, by removing the deviations ϵs→u as:

yu→s := xu + es (8)
= xu + es + ϵs→u − ϵs→u (9)
= yu − ϵs→u. (10)

Thus, our goal becomes to find a deviation offset −ϵs→u

that we can add to a given noisy image yu to adapt un-
derlying noise towards noise a pretrained network is more
familiar with. To this end, we add a learnable parameter ϕ
to a given noisy image yu and then train ϕ to approximate
the deviation offset −ϵs→u, as also illustrated in Figure 1:

yu→s ≈ yu + ϕ . (11)

However, we do not have access to such deviation offset
during the test phase, as new noise distribution is gener-
ally unknown and it would be also difficult to explicitly

model seen noise distribution. To approximate an unknown
−ϵs→u with ϕ, we train ϕ to minimize a self-supervision
loss function (Equation 4), under the assumption that loss
function is minimized when an input noise becomes closer
to seen noise distribution. The assumption is reasonable as
a self-supervision loss function is a surrogate of Equation 2,
which a pretrained network fθ∗ is trained to minimize with
seen noise distribution. Overall, our objective function to
train ϕ becomes:

ϕ∗ = argmin
ϕ

∥∥fθ∗(D1(y
u+ϕ))−D2(y

u+ϕ)
∥∥2
2
. (12)

Note that we freeze the parameters of a pretrained denois-
ing network θ∗ and only optimize ϕ. Then, finally, a clean
image is estimated by

x̂u = fθ∗(yu + ϕ∗). (13)

4. Experiments
We perform experiments on scenarios of test noisy images
with different noise from the training set, demonstrating the
effectiveness of our LAN framework. The implementation
details and experimental settings are in Section 4.1. Then,
we present the results in Section 4.2. The discussions on
zero-shot denoising, computational efficiency, and the ef-
fects of noise adaptation are covered in Sections 4.3, 4.4,
and 4.5, respectively.

4.1. Experimental setup

Dataset. For training denoising networks, we use one of
widely used real-world noise dataset SIDD [1]. To simulate
unseen new noise scenarios during the test phase, we utilize
other real-world noise datasets with noise distribution dif-
ferent from SIDD: in this work, PolyU [48] and Nam [37].
We split the original PolyU images into 512 × 512 patches
and crop them into 256 × 256. For Nam, we use patches
splited into 256× 256.
Models. We conduct experiments on prominent denoising
networks, DnCNN [54], Restormer [53], and Uformer [46].
For Restormer and Uformer, we employ the parameters of
SIDD-pretrained networks that are publicly available. On
other hand, DnCNN does not have publicly available SIDD-
pretrained network parameters. Thus, we train DnCNN
from scratch using the SIDD dataset.
Evaluation. We measure PSNR and SSIM to evalu-
ate the performance of SIDD-pretrained networks and our
LAN framework on noisy images from PolyU and Nam
datasets, against four alternative adaptation methods: adapt-
ing a whole network (‘full-trainable’), adapting only the
first layer (‘first-layer’), adapting only the last layer (‘last-
layer’), and adapting a whole network via meta-learning
using first-order MAML [14, 38] (‘meta-learning’). For
‘meta-learning’, we initialize the network from SIDD pre-
trained weights. Then we train with 200 samples and vali-
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date with 100 samples from the SIDD training and valida-
tion set. Such test-time adaptation is conducted individually
for each image, using only noisy images. The adaptation
runs for up to 20 iterations and is optimized through Adam
optimizer [21] with β1 = 0.9 and β2 = 0.999. At this time,
the learning rate of LAN is 5e-4. For alternative adaptation
schemes, we use 5e-6 for ‘full-train’, 5e-4 for ‘first-layer’
and 1e-4 for ‘last-layer’. The ‘meta-learning’ is with 1e-
5 learning rate on both adaptation and meta update. The
learning rates are empirically found for stable convergence
of models trained with self-supervision loss functions.

4.2. Experimental results

Quantitative results. We test the adaptation methods in
two scenarios: SIDD → PolyU and SIDD → Nam. SIDD
→ PolyU means a network is pretrained on SIDD dataset
and evaluated on PolyU dataset, while SIDD → Nam rep-
resents a scenario, where a network is pretrained on SIDD
and evaluated on Nam dataset. To demonstrate the appli-
cability of our framework, we also perform experiments
with various network backbones: namely, DnCNN [54],
Restormer [53], and Uformer [46] over different self-
supervised losses such as ZS-N2N [35] and Nbr2Nbr [17].
The experimental results are displayed in Table 1.

The results demonstrate that LAN exhibits notable per-
formance improvement even after performing adaptation
for only 5 iterations. Furthermore, our framework LAN is
shown to consistently outperform a ‘full-trainable’ method
that adapts all parameters of a network to a given noisy
image with the same self-supervision loss function (Equa-
tion 4) across problem settings and network backbones. For
instance, under the setting of Restormer with Nbr2Nbr self-
supervised loss on SIDD → NAM, our LAN framework
improves the pretraining performance by 0.35dB, while a
‘full-trainable’ method improves by only 0.05dB. As a mat-
ter of fact, a ‘full-trainable’ method often results in perfor-
mance degradation, let alone improve the performance of a
pretrained network.

One may argue that fine-tuning all parameters of a net-
work may lead to overfitting, hence the reason for the rela-
tively low performance gain. It can also be argued that our
method of directly adjusting the noise in the input image
can prevent overfitting and have similar effects to finetuning
only the first layer of a network. However, ‘full-trainable’
adaptation often leads to performance improvements. Fur-
thermore, finetuning only a first layer (denoted as ‘first-
layer’ in the table) results in inferior performance compared
to ‘full-trainable’ and our method. The results suggest that
our method does not have similar effects to finetuning only
the first layer. In contrast to fine-tuning only the first layer,
our method offers fine-grained noise adaptation on a per-
pixel basis, rather than relying solely on convolution, which
carries a significant inductive bias.

On the other hand, the ‘full-trainable’ adaptation can
sometimes bring improvements even after 20 iterations, as
it can be seen with Uformer network backbone adapted with
ZS-N2N loss function on Nam dataset. Then, one may be
curious as to whether ‘full-trainable’ adaptation can outper-
form LAN if adaptation is performed for longer iterations.
As such, we plot the performance curve of ‘full-trainable’
and our LAN method as the number of iterations increases
with Uformer network backbone adapted with ZS-N2N loss
function on Nam dataset, as visualized in Figure 5. As
shown in the figure, even after performing adaptation for
longer iterations, ‘full-trainable’ method fails to achieve
performance on par with our method and starts to worsen
the performance after near 20 iterations.
Qualitative results. We display the qualitative results of
a pretrained network, ‘full-trainable’ adaptation, and our
LAN framework in Figure 3. The images are obtained with
Uformer finetuned via ZS-N2N for 20 iterations on Nam
dataset. We also visualize the adapted noisy image by our
method. Interestingly, noise adaptation sometimes has bet-
ter PSNR/SSIM than an original noisy image. Then, one
may think that the performance of LAN may be because
noise adaptation is introducing additional denoising pro-
cess. However, the denoising performance improvement
by noise adaptation is small, compared to pretrained net-
work and our whole LAN framework. Furthermore, we ob-
serve that noise adaptation itself does not always give better
PSNR than an original image, as noted in last two rows of
the figure. Notable performance improvement brought by
LAN just with noise adaptation at input image suggests that
noise adaptation is not just additional denoising process.

4.3. Zero-shot denoising

One may argue that the performance degradation is ex-
pected with the full adaptation of a network when train
noise distribution and new test noise distribution greatly
differ. Another alternative to finetuning of an network
would be to train a randomly initialized network on a new
noisy image from scratch via self-supervision loss func-
tions for blind denoising. In fact, ZS-N2N [35] is specif-
ically designed for training a denoising network on a sin-
gle noisy image with unknown noise. Thus, we demon-
strate such zero-shot denoising performance with DnCNN,
trained via ZS-N2N and Nbr2Nbr on each image in PolyU
and Nam dataset, the results of which are displayed in Ta-
ble 3. After training a network for more than 1K iterations
as suggested in [35], the zero-shot training yields signif-
icantly poor performance, compared to not just LAN but
also SIDD-pretrained model and other alternative adapta-
tion methods. Despite the deviations and misalignment
in noise, the results suggest the benefits of exploiting the
knowledge of denoising tasks from a large training set. This
is similar to domain adaptation, supporting our formulation.
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Model Method Iter.
SIDD → PolyU SIDD → Nam

PSNR↑ (dB) / SSIM↑ PSNR↑ (dB) / SSIM↑

ZS-N2N Nbr2Nbr ZS-N2N Nbr2Nbr

DnCNN

pretrained - 38.10 / 0.952 36.60 / 0.930

full-trainable
5 38.07 / 0.951 38.08 / 0.951 36.60 / 0.929 36.60 / 0.929

10 38.04 / 0.950 38.06 / 0.951 36.59 / 0.928 36.60 / 0.928
20 37.99 / 0.949 38.02 / 0.949 36.56 / 0.925 36.56 / 0.925

first-layer
5 37.93 / 0.948 37.95 / 0.948 36.48 / 0.923 36.46 / 0.923

10 37.76 / 0.943 37.83 / 0.945 36.29 / 0.915 36.28 / 0.915
20 37.47 / 0.935 37.67 / 0.941 35.95 / 0.902 36.02 / 0.904

last-layer
5 38.12 / 0.952 38.13 / 0.952 36.69 / 0.931 36.70 / 0.931

10 38.13 / 0.952 38.14 / 0.952 36.75 / 0.931 36.77 / 0.931
20 38.13 / 0.952 38.14 / 0.952 36.78 / 0.930 36.81 / 0.930

meta-learning
5 38.23 / 0.955 38.23 / 0.956 36.56 / 0.936 36.54 / 0.935

10 38.23 / 0.955 38.25 / 0.955 36.66 / 0.934 36.65 / 0.934
20 38.17 / 0.953 38.20 / 0.954 35.69 / 0.931 36.68 / 0.930

LAN (Ours)
5 38.22 / 0.954 38.16 / 0.953 36.73 / 0.934 36.66 / 0.932

10 38.29 / 0.955 38.22 / 0.954 36.79 / 0.936 36.71 / 0.933
20 38.29 / 0.955 38.31 / 0.956 36.78 / 0.938 36.80 / 0.935

Restormer

pretrained - 39.03 / 0.966 38.03 / 0.951

full-trainable
5 39.09 / 0.966 39.04 / 0.965 38.14 / 0.952 38.07 / 0.951

10 39.12 / 0.965 39.04 / 0.965 38.23 / 0.952 38.08 / 0.950
20 39.14 / 0.965 38.98 / 0.964 38.35 / 0.953 38.05 / 0.948

first-layer
5 39.04 / 0.965 39.00 / 0.965 38.12 / 0.951 38.07 / 0.950

10 38.96 / 0.964 38.89 / 0.964 38.05 / 0.950 37.95 / 0.948
20 38.74 / 0.961 38.66 / 0.961 37.65 / 0.943 37.52 / 0.941

last-layer
5 39.07 / 0.965 39.08 / 0.965 38.09 / 0.951 38.10 / 0.951

10 39.06 / 0.965 39.07 / 0.965 38.12 / 0.950 38.14 / 0.950
20 39.02 / 0.964 39.03 / 0.964 38.12 / 0.948 38.14 / 0.948

meta-learning
5 39.12 / 0.966 39.12 / 0.966 38.15 / 0.954 38.15 / 0.953

10 39.18 / 0.966 39.13 / 0.966 38.34 / 0.954 38.21 / 0.952
20 39.19 / 0.965 39.06 / 0.964 38.49 / 0.954 38.17 / 0.949

LAN (Ours)
5 39.23 / 0.968 39.09 / 0.967 38.31 / 0.957 38.14 / 0.953

10 39.30 / 0.969 39.14 / 0.967 38.58 / 0.961 38.25 / 0.955
20 39.28 / 0.969 39.17 / 0.968 38.86 / 0.965 38.38 / 0.958

Uformer

pretrained - 38.93 / 0.965 37.55 / 0.950

full-trainable
5 39.01 / 0.964 38.96 / 0.964 37.80 / 0.950 37.72 / 0.948

10 39.01 / 0.963 38.92 / 0.963 37.97 / 0.950 37.77 / 0.946
20 38.91 / 0.961 38.77 / 0.961 38.07 / 0.948 37.67 / 0.942

first-layer
5 38.89 / 0.965 38.85 / 0.965 37.75 / 0.952 37.69 / 0.950

10 38.82 / 0.964 38.78 / 0.964 37.76 / 0.951 37.65 / 0.948
20 38.71 / 0.962 38.69 / 0.963 37.71 / 0.946 37.54 / 0.943

last-layer
5 38.98 / 0.965 38.99 / 0.965 37.68 / 0.949 37.69 / 0.950

10 39.00 / 0.965 39.01 / 0.965 37.79 / 0.949 37.81 / 0.949
20 39.01 / 0.965 39.01 / 0.965 37.90 / 0.949 37.92 / 0.949

meta-learning
5 39.10 / 0.967 39.09 / 0.967 37.77 / 0.957 37.87 / 0.955

10 39.20 / 0.966 39.11 / 0.966 38.26 / 0.957 38.07 / 0.952
20 39.11 / 0.964 38.97 / 0.963 38.52 / 0.956 38.00 / 0.947

LAN (Ours)
5 39.12 / 0.967 39.00 / 0.966 37.82 / 0.955 37.69 / 0.951

10 39.21 / 0.968 39.05 / 0.966 38.09 / 0.960 37.83 / 0.953
20 39.20 / 0.968 39.10 / 0.967 38.36 / 0.964 38.02 / 0.956

Table 1. Quantitative comparison on denoising performance for each combination of a denoising network backbone, an adaptation
method, and a self-supervision loss on the real-world noise datasets (PolyU and Nam) after pretraining on another real-world noise dataset,
SIDD.

25198



Noisy image Pretrain Full-trainable LAN (Ours) Adapted noisy image
by LAN

Clean image

Figure 3. Qualitative comparisons among different adaptation methods. Images are obtained with SIDD-pretrained Uformer. Full-trainable
and LAN (Ours) finetuned the pretrained network via ZS-N2N for 20 iterations on Nam (first three rows) and PolyU (last two rows).

Noisy image w/ train noise Noisy image w/ new noise Adapted noisy image by LAN Pretrained LAN Clean image

Figure 4. Visualization of synthetic noisy images. Noisy image with train noise is a noisy image that is used for pretraining a denoising
network (DnCNN). Noisy image with new noise contain a new noise that is different from pretraining. Adapted noisy image by LAN is a
result of noise adaptation of noisy image with new noise. We observe that noise in the adapted noisy image becomes more similar to noisy
image with train noise. Particularly, we observe that noise has been added to the top of the image, where there was previously no noise. As
a result, LAN helps achieve better denoising performance.
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Figure 5. Plot of performance in PSNR over the number of adap-
tation iterations. Results are obtained with Uformer finetuned via
ZS-N2N on Nam Dataset.

Model Self-loss LAN / Full-trainable
Time Memory

Restormer ZS-N2N 79.88 % 93.27%
Nbr2Nbr 93.04 % 92.22%

Uformer ZS-N2N 74.10 % 73.75%
Nbr2Nbr 85.24% 74.21%

Table 2. The runtime and memory efficiency ratio of LAN (ours)
to full-trainable based on an image size of 256× 256.

4.4. Computational efficiency

One may be concerned with the computational cost of our
proposed LAN framework due to the introduction of a
learnable parameter for each image pixel. However, our
evaluations show that LAN is more efficient in memory
and runtime including both adaptation and inference, es-
pecially for large networks like Restormer and Uformer,
as displayed in Table 2. This is because fewer parame-
ters need updating compared to a ’full-trainable’ adaptation
method. A limitation is that the number of trainable param-
eters depends on the input image size, which could reduce
efficiency for large images. We plan to improve this in the
future. Despite this, the notable performance improvement
from our framework offers a promising research direction
to explore for image denoising.

4.5. Effects of noise adaptation.

To better illustrate the effects of noise adaptation by LAN
(Equation 11), we perform experiments with synthetic
noises for clear visualization. Specifically, Gaussian σ =
50 or Gamma distribution θ = 0.5, k = 9 noise is added
to the single training data from BSDS500 [36] dataset to
create synthetic-noisy-clean image pairs for pretraining the
DnCNN. Figure 6 shows a histogram of noise from a syn-
thetic training set (denoted as ‘Pretrained’), a new noisy im-
age (denoted as ‘Input’), and an adapted noisy image (de-
noted as ‘Adapted’). The figure demonstrates that our algo-
rithm brings a new noise closer towards a noise expected by
a denoising network. We also visualize such noisy images
in Figure 4, where a plain image is used for better visual-
ization. LAN is shown to try to adapt a new noisy image
to contain similar noise used during pretraining. In particu-
lar, we observe newly added noise on top of adapted noisy
image. The results illustrate that our noise adaptation is not
just additional denoising.

Dataset Self-loss PSNR (dB) SSIM

PolyU ZS-N2N 31.47 0.875
Nbr2Nbr 32.93 0.911

Nam ZS-N2N 34.47 0.902
Nbr2Nbr 35.39 0.923

Table 3. Zero-shot denoising performance with randomly initial-
ized DnCNN, trained via ZS-N2N on each image in PolyU and
Nam dataset.

(a) Adapted Gaussian noise (b) Adapted gamma noise

Figure 6. Histogram of synthetic noise distributions. Adapted
noise distribution (green) by LAN is shown to shift the new noise
distribution (orange) to already seen noise distribution (blue).

5. Conclusion
In this work, we propose a new adaptation approach to
handle unseen noise for image denoising. We focus on
the fine-grained pixel-level misalignment issues between
unseen noise in new noisy images and seen noise dur-
ing the pretraining of a denoising network. In contrast to
standard approaches of finetuning a model, we focus on
adapting an input noisy image itself. To this end, we in-
troduce a new denoising framework, named Learning-to-
Adapt-Noise (LAN), that adds a new noisy image with a
learnable offset that is trained to bring noise in a new noisy
image closer to noise seen during the pretraining stage. The
experimental results solidifies the motivation and effective-
ness of noise adaptation by our proposed method. One limi-
tation would be that the computation and resource complex-
ities may grow with the size of input images, although LAN
is more efficient in comparison to model adaptation for im-
ages of typical size 256×256. Nevertheless, we believe that
our work brings interesting results and research discussions,
and suggests a new research direction.
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