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Abstract
Weakly-Supervised Scene Graph Generation (WSSGG)

research has recently emerged as an alternative to the fully-
supervised approach that heavily relies on costly annota-
tions. In this regard, studies on WSSGG have utilized im-
age captions to obtain unlocalized triplets while primarily
focusing on grounding the unlocalized triplets over image
regions. However, they have overlooked the two issues in-
volved in the triplet formation process from the captions:
1) Semantic over-simplification issue arises when extracting
triplets from captions, where fine-grained predicates in cap-
tions are undesirably converted into coarse-grained predi-
cates, resulting in a long-tailed predicate distribution, and
2) Low-density scene graph issue arises when aligning the
triplets in the caption with entity/predicate classes of inter-
est, where many triplets are discarded and not used in train-
ing, leading to insufficient supervision. To tackle the two
issues, we propose a new approach, i.e., Large Language
Model for weakly-supervised SGG (LLM4SGG), where we
mitigate the two issues by leveraging the LLM’s in-depth
understanding of language and reasoning ability during the
extraction of triplets from captions and alignment of en-
tity/predicate classes with target data. To further engage
the LLM in these processes, we adopt the idea of Chain-
of-Thought and the in-context few-shot learning strategy.
To validate the effectiveness of LLM4SGG, we conduct ex-
tensive experiments on Visual Genome and GQA datasets,
showing significant improvements in both Recall@K and
mean Recall@K compared to the state-of-the-art WSSGG
methods. A further appeal is that LLM4SGG is data-
efficient, enabling effective model training with a small
amount of training images. Our code is available on
https://github.com/rlqja1107/torch-LLM4SGG

1. Introduction
Scene Graph Generation (SGG) is a fundamental task in
computer vision, aiming at extracting structured visual
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knowledge from images [21, 32, 36, 39, 45, 56]. Most ex-
isting SGG methods are fully-supervised, i.e., they heav-
ily rely on the ground-truth annotations that involve the
class information of entities and predicates as well as the
bounding box of entities [19, 48, 50]. However, since cre-
ating extensively annotated scene graph datasets is costly,
the heavy reliance on these annotations imposes practi-
cal limitations on the model training [54]. To mitigate
the high cost associated with manual annotations, weakly-
supervised scene graph generation (WSSGG) approaches
have recently emerged, aiming at training an SGG model
without any annotated scene graph dataset. Specifically, the
main idea of recent WSSGG methods is to leverage image
captions along with associated images, as they can be easily
collected from the Web [20, 47, 54, 57].

The training process of WSSGG model using image cap-
tions requires four steps as illustrated in Figure 1(a). Step
1: Preparing an image and its caption. Step 2: Parsing
the image caption, i.e., triplets formed as ⟨subject, predi-
cate, object⟩ are extracted from the image caption through
an off-the-shelf parser [30, 43]. Step 3: Aligning the triplets
in the caption with entity/predicate classes of interest, i.e.,
entity (subject, object) and predicate classes in the extracted
triplets obtained in Step 2 are aligned with the entity and
predicate classes in the target data1, respectively. This
alignment is based on their synonym/hypernym/hyponym
contained in an external knowledge base (KB), e.g., Word-
Net [25]. Step 4: Grounding unlocalized entities in the ex-
tracted triplets, i.e., unlocalized entities (subjects and ob-
jects) are matched with relevant image regions generated by
a pre-trained object detector, e.g., Faster R-CNN [29]. The
localized entities and predicates in the extracted triplets then
serve as pseudo-labels for training an SGG model.

Existing WSSGG approaches mainly focus on Step 4
[20, 33, 47, 57]. For example, in Figure 1(a), their efforts
have been focused on grounding the entity person in an un-
localized triplet with an image region that captures the sit-
ting behavior. More precisely, LSWS [47] exploits the con-

1We use Visual Genome [13] as the target data.
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Figure 1. (a) The pipeline of weakly-supervised SGG. (b) The predicate distribution of unlocalized triplets (Parser+KB vs. Ours). In
Parser+KB, the distribution becomes heavily long-tailed, and 12 out of 50 predicates are non-existent. (c) Semantic over-simplification
caused by a rule-based parser in Step 2. (d) Low-density scene graph caused by the static structure of KB in Step 3.

textual object information to accurately ground the unlocal-
ized entities, leveraging the linguistic structure embedded
within the triplets. Another line of research [20] employs a
pre-trained vision-language model [15] to reflect the seman-
tic interactions among entities within the image caption.

However, we argue that existing WSSGG approaches
overlook the importance of the triplet formation process
conducted in Step 2 and Step 3. We identify the two major
issues described below, i.e., semantic over-simplication and
low-density scene graph, which incur incomplete unlocal-
ized triplets after Step 2 and 3. These incomplete tripletes
are mostly uninformative predicates with a limited number,
and negatively impact the training of an SGG model even
when entities are correctly grounded in Step 4. To demon-
strate the impact of incomplete unlocalized triplets, we fol-
low the conventional process to extract unlocalized triplets
(i.e., Step 1-3), and conduct an examination of triplets ob-
tained from COCO caption dataset, which are generated
through Scene Parser [43] in Step 2 and WordNet [25] in
Step 3. As a result, we identify the following two issues:

• Semantic Over-simplification: We find that the standard
scene graph parser [43] operating on heuristic rule-based
principles commonly used in Step 2 leads to a seman-
tic over-simplification of predicates in extracted triplets.
In other words, fine-grained predicates are undesirably
converted into coarse-grained predicates, which we re-
fer to as semantic over-simplification. For example, in
Figure 1(c), an informative predicate lying on (i.e., fine-
grained predicate) in the image caption is converted into
a less informative predicate on (i.e., coarse-grained pred-
icate), because the rule-based parser fails to capture the
predicate lying on at once, and its heuristic rules fall short
of accommodating the diverse range of caption’s struc-
ture. As a result, the predicate distribution becomes heav-

ily long-tailed, in which coarse-grained predicates (e.g.,
with, on, in) greatly outnumber fine-grained predicates
(e.g., parked on, covered in) (Figure 1(b)). To make the
matter worse, numerous fine-grained predicates eventu-
ally end up in a frequency of 0, even though they are
originally present in the captions. Specifically, 12 out of
50 predicates are non-existent, which means that these 12
predicates can never be predicted, since the model is not
trained on these predicates at all.

• Low-Density Scene Graph: We find that the KB-based
triplet alignment in Step 3 leads to low-density scene
graphs, i.e., the number of remaining triplets after Step
3 is small. We attribute the low-density scene graphs
primarily to the utilization of KB in Step 3. Specif-
ically, a triplet is discarded if any of the three com-
ponents (i.e., subject, predicate, object) or their syn-
onym/hypernym/hyponym within the triplet fail to align
with the entity or predicate classes in the target data.
For example, in Figure 1(d), the triplet ⟨elephant, car-
rying, log⟩ is discarded because log does not exist in
Visual Genome dataset nor its synonym/hypernym, even
if elephant and carrying do exist. In Table 1, we re-
port the number of triplets and images in Visual Genome
dataset, which is a common benchmark dataset used in
fully-supervised SGG approaches, and COCO caption
dataset, which is a common benchmark dataset used in
weakly-supervised SGG approaches. We observe that
on average Visual Genome dataset contains 7.1 triplets
(i.e., 405K/57K) per image (See Table 1(a)), while COCO
dataset contains only 2.4 triplets (i.e., 154K/64K) per im-
age (See Table 1(b)). This indicates that existing WSSGG
approaches suffer from the lack of sufficient supervi-
sion per image, leading to poor generalization and per-
formance degradation [47, 49]. In summary, relying on
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Dataset How to annotate # Triplet # Image

Fully-Supervised approach
(a) Visual Genome Manual 405K 57K

Weakly-Supervised approach
(b) COCO Caption Parser+KB 154K 64K
(c) COCO Caption LLM 344K 64K

Table 1. Comparison of scene graph density.

the static structured knowledge of KB is insufficient to
cover the semantic relationships among a wide a range
of words, which incurs the low-density scene graph after
Step 3.
To alleviate the semantic over-simplification and the

low-density scene graph issues, we propose a new approach,
namely Large Language Model for weakly-supervised
SGG (LLM4SGG) that adopts a pre-trained Large Lan-
guage Model (LLM), which has shown remarkable trans-
ferability to various downstream tasks in NLP such as sym-
bolic reasoning, arithmetic, and common-sense reasoning
[2, 5, 38]. Inspired by the idea of Chain-of-Thought2 (CoT)
[41], which arrives at an answer in a stepwise manner,
we separate the triplet formation process into two chains,
each of which replaces the rule-based parser in Step 2 (i.e.,
Chain-1) and the KB in Step 3 (i.e., Chain-2). More pre-
cisely, we design a prompt for extracting triplets from a cap-
tion, and ask the LLM to extract triplets formed as <subject,
predicate, object> (Chain-1). We expect that the predicates
extracted based on a comprehensive understanding of the
caption’s context via LLM are semantically rich, thereby al-
leviating the semantic over-simplification issue. Besides, to
alleviate the low-density scene graph issue, we additionally
incorporate a paraphrased version of the original caption.
To this end, we further design a prompt for paraphrasing
the original caption and extracting more triplets from the
paraphrased caption. However, entities and predicates in
the triplets obtained after Chain-1 are not yet aligned with
the target data. Hence, we design a another prompt to align
them with entity/predicate classes of interest, and ask the
LLM to align them with semantically relevant lexeme in-
cluded in a predefined lexicon, which is the set of vocabu-
laries that are present in the target data (Chain-2). To fur-
ther engage the LLM in the reasoning process of Chain-1
and Chain-2, we employ the in-context few-shot learning
that incorporates a few input-output examples within the
prompt, enabling the LLM to perform the task without the
need for fine-tuning.

To validate the effectiveness of LLM4SGG, we apply it
to state-of-the-art WSSGG methods [54, 57]. Through ex-
tensive experiments, we show that LLM4SGG significantly
enhances the performance of existing WSSGG methods in
terms of mean Recall@K and Recall@K performance on
Visual Genome and GQA datasets by alleviating the se-
mantic over-simplification and the low-density scene graph

2We use the CoT strategy as a means to arrive at an answer in a stepwise
manner, which differs from the Chain-of-Thought prompting.

(See Table 1(c) where the number of triplets increased to
334K). A further appeal of LLM4SGG is that it is data-
efficient, i.e., it outperforms state-of-the-art baselines even
with a small amount of training images, verifying the effec-
tiveness of LLM4SGG.

In summary, we make the following contributions:
• We identify two major issues overlooked by existing

WSSGG studies, i.e., semantic over-simplification and
low-density scene graph.

• We leverage an LLM along with the CoT strategy and
the in-context few-shot learning technique to extract in-
formative triplets without the need for fine-tuning the
LLM. To the best of our knowledge, we are the first to
leverage an LLM for the SGG task.

• LLM4SGG outperforms the state-of-the-art WSSGG
methods, especially in terms of mR@K, demonstrat-
ing its efficacy in addressing the long-tail problem in
WSSGG for the first time.

2. Related Works
Weakly-Supervised Scene Graph Generation
(WSSGG). The WSSGG task aims to train an SGG
model without relying on an annotated scene graph dataset.
To achieve this, most WSSGG studies [20, 47, 54, 57]
utilize image captions and ground unlocalized triplets
with image regions. Specifically, VSPNet [49] proposes
the iterative graph alignment algorithm to reflect the
high-order relations between unlocalized triplets and image
regions. SGNLS [57] uses a pre-trained object detector
[29] to ground the entities in unlocalized triplets, which
share the same classes with the output of object detectors.
In addition to the information derived from the object
detector, [20] employs a pre-trained vision-language model
[15] to capture the semantic interactions among objects.
VS3 [54] uses a grounding-based object detector [18],
which calculates the similarity between the entity text in
unlocalized triplet and image region, thereby grounding
the unlocalized triplets. However, these methods overlook
the triplet formation process that leads to the semantic
over-simplification (Step 2) and the low-density scene
graph (Step 3). In this regard, existing methods result in
a sub-optimal performance even when unlocalized triplets
are correctly grounded in Step 4.
Large Language Model (LLM). LLMs have demonstrated
remarkable transferability to various downstream tasks such
as symbolic reasoning, arithmetic, and common-sense rea-
soning [2, 5, 38]. Specifically, GPT-3 (175B) [2] stands as
a cornerstone to break the line of numerous language tasks.
Inspired by GPT-3, PaLM (540B) [5], LLaMA (65B) [38],
OPT (175B) [53], and LaMDA (137B) [37] have been sub-
sequently introduced. More recently, advanced GPT mod-
els (e.g., GPT-4 [28], ChatGPT [27]) fine-tuned with human
feedback have gained prominence and widely applied for
diverse applications, e.g., planner of tools [9, 24], mobile

28308



task automation [42]. In this work, we employ the power
of LLM (i.e., ChatGPT) to alleviate the two issues, i.e., se-
mantic over-simplification and low-density scene graph, in
the context of the WSSGG task.

In-Context Few-shot Learning. In-context few-shot learn-
ing incorporates a few input-output examples related to a
target task, conditioning the LLM on the context of exam-
ples. Specifically, GPT-3 [2] pioneered the concept of in-
context learning to facilitate an LLM as a versatile model on
diverse tasks. This breakthrough has proliferated a plethora
of research to leverage the in-context few-shot learning for
various tasks [24, 26, 46, 55]. More precisely, Chameleon
[24] integrates a few examples to enhance its understand-
ing of tool planning task. [26] utilizes positive and negative
examples related to questions for question generation tasks.
ReAct [46] incorporates examples of reasoning with action
for solving decision-making tasks. Inspired by recent in-
context few-shot learning approaches, we provide a few ex-
amples to LLMs to help 1) understand the process of triplet
extraction from a caption (i.e., Step 2), and 2) align the en-
tity/predicate classes with the target data (i.e., Step 3) in the
context of the WSSGG task.

3. Method
In this section, we describe LLM4SGG in detail. We
would like to emphasize that LLM4SGG mainly focuses on
the triplet formation process conducted in Step 2 (parsing)
and Step 3 (aligning), while existing WSSGG approaches
mainly focus on Step 4 (grounding). We start by present-
ing the problem formulation of WSSGG (Section 3.1), fol-
lowed by the prompt configuration (Section 3.2). Next, we
introduce how LLMs are adopted to address the two issues
of conventional WSSGG approaches when parsing the im-
age caption (Section 3.3) and aligning the triplets in cap-
tions with entity/predicate classes of interest (Section 3.4).
Finally, we ground the unlocalized triplets by associating
them with bounding boxes (i.e., image regions) and train
the SGG model using the localized triplets (Section 3.5).
The overall pipeline of LLM4SGG is shown in Figure 2.

3.1. Problem Formulation
In the fully supervised SGG task, we aim to detect a scene
graph Gf = {si,pi,oi}

Nf

i=1 that consists of triplets given an
image I, where Nf is the number of triplets in the image.
si and oi denote the ith subject and the object, respectively,
whose bounding boxes are si,b, oi,b, and entity classes are
si,c,oi,c ∈ Ce, where Ce is the set of predefined entity
classes in the target data. pi denotes the predicate between
si and oi, and its class is pi,c ∈ Cp, where Cp is the set of
predefined predicate classes in the target data. By using the
ground truth scene graphs as supervision, fully supervised
SGG approaches train an SGG model Tθ : I → Gf , which
maps an image to a scene graph.

In the weakly supervised SGG task, we aim to gen-
erate a scene graph when the ground truth scene graph
is not given, i.e., there are no bounding boxes and en-
tity/predicate class information. Instead, existing WSSGG
approaches [20, 33, 47, 54, 57] use image captions along
with associated images to produce scene graphs, i.e., local-
ized triplets. More precisely, they extract a set of triplets
Gw = {si,pi,oi}Nw

i=1 from the image captions, where Nw

is the number of triplets extracted from the captions. How-
ever, while the extracted triplets contain the class informa-
tion (i.e., si,c, oi,c and pi,c), they are unlocalized, since
bounding boxes si,b and oi,b are not included in the cap-
tion. Therefore, it is essential to perform the grounding step
to associate the unlocalized triplets with bounding boxes.
Once we have obtained the localized triplets, we can apply
the conventional SGG training scheme, i.e., Tθ : I → Gf .

In this paper, our focus is to address the semantic over-
simplification and low-density scene graph issues regarding
the unlocalized triplets Gw, which has been overlooked in
existing WSSGG studies. Specifically, we aim to produce
an enhanced Gw by refining the process of scene graph
dataset construction via an LLM. This refinement includes
the triplet extraction step from the caption (Step 2) and the
alignment of entity/predicate classes (Step 3), leveraging
the LLM’s comprehensive understanding of language and
reasoning ability.

3.2. Prompt Configuration
In fact, it is not a trivial task for an LLM to immediately
generate triplets from a caption whose entities and predi-
cates are aligned with entity/predicate classes of interest, as
such a task is a novel task for the LLM. Inspired by the idea
of the Chain-of-thought (CoT) [41], which arrives at an an-
swer in a stepwise manner, we separate the triplet formation
process into the following two chains: Chain-1 – Extract-
ing triplets from captions. Chain-2 – Aligning entities and
predicates with the entity/predicate classes of interest. To
carefully design each chain, we define the LLM function,
i.e., LLM(·), with the following prompt input:
Output = LLM(Task description, In-context examples, Actual question

︸ ︷︷ ︸
Prompt input

),

(1)
where LLM(·) is the decoder of the LLM, generating the
Output given the prompt input. The prompt input consists
of three components in a sequence: 1) task description,
i.e., the delineation of the task that we intend to perform, 2)
in-context examples, i.e., sample questions and answers
related to the task at hand, 3) actual question, i.e., an
inquiry from which we intend to derive the answer. Note
that in-context examples is closely related to the in-context
few-shot learning [2, 40, 41], which is shown to enhance
the LLM’s understanding of the task. Note that the above
configuration of the prompt input is applied to the triplet
extraction (Chain-1) (Section 3.3) and the alignment of en-
tity/predicate classes (Chain-2) (Section 3.4).
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Figure 2. The pipeline of LLM4SGG. Given an image with its caption, we use an LLM to extract triplets from the original caption (Step
2-1) and the paraphrased caption (Step 2-2). Then, we align the entity/predicate classes within the extracted triplets with semantically
similar lexeme in the target data via an LLM (Step 3), obtaining the unlocalized triplets. Lastly, we ground the unlocalized triplets over
image regions (Step 4) followed by the training of an SGG model.

3.3. Chain-1. Triplet Extraction via LLM (Step 2
in Figure 2)

Based on the LLM’s comprehensive understanding of the
context of an image caption, we aim to extract triplets from
the caption. As discussed in Section 1, we use not only the
original caption but also a paraphrased caption generated by
the LLM to address the low-density scene graph issue.
Extracting triplets from a paraphrased caption (Step 2-
2). To extract triplets from a paraphrased caption, we
inform the LLM about the task at hand by presenting the
following prompt: FROM THE GIVEN SENTENCE, THE
TASK IS TO EXTRACT MEANINGFUL TRIPLETS FORMED
AS ⟨SUBJECT, PREDICATE, OBJECT⟩ (i.e., Task descrip-
tion in Equation 1). We then instruct the LLM to follow the
two steps, i.e., paraphrasing step and triplet extraction step.
To help the LLM understand the process of performing the
two steps, we present few examples to the LLM that de-
scribe how to answer the questions (i.e., In-context exam-
ples in Equation 13), which involves a manual construction
of questions and corresponding answers to the paraphrasing
and the triplet extraction steps. That is, for given a caption,
we show the LLM how we expect a paraphrased caption
and the extracted triplets would look like (e.g., Given “Four
clocks sitting on a floor next to a woman’s feet,” we show
the LLM that a paraphrased sentence would be “Four clocks
are placed on the floor beside a woman’s feet,” and extracted
triplets would be ⟨clocks, placed on, floor⟩ and ⟨clocks, be-
side, feet⟩). Lastly, we show the caption of our interest to
the LLM, and let the LLM extract triplets from the caption
(i.e., Actual question in Equation 1). Please refer to Fig-
ure 2 right (bottom) for an example of the prompt input used
in Step 2-2.

3We use captions in COCO caption dataset for examples.

Extracting triplets from the original caption (Step 2-1).
As extracting triplets from the original caption does not in-
volve the caption paraphrasing step, we exclude it from the
prompt used in Step 2-2. Please refer to Figure 2 right (top)
for an example of the prompt input used in Step 2-1.

In summary, we obtain triplets from both the origi-
nal and paraphrased captions after Step 2-1 and Step 2-
2, respectively, which in turn alleviates the semantic over-
simplification issue of predicates and the low-density scene
graph issue.

3.4. Chain-2. Alignment of Classes in Triplets via
LLM (Step 3 in Figure 2)

The entities (i.e., subject and object) and predicates within
the triplets obtained from Step 2 described in Section 3.3 are
not yet aligned with the target data. Based on the semantic
reasoning ability of the LLM, we aim to align them with the
semantically relevant lexeme in the target data.

Aligning entities in the triplets with entity classes of in-
terest. We instruct the LLM with the following prompt:
GIVEN THE LEXEME {ENTITY}, FIND SEMANTICALLY
RELEVANT LEXEME IN THE PREDEFINED ENTITY LEXI-
CON, where the predefined entity lexicon is Ce (i.e., Task
description in Equation 1). Similar to Section 3.3, we
present a few examples to the LLM that describe how to
answer the questions (i.e., In-context examples in Equa-
tion 1). For example, we provide the LLM with a few ex-
amples regarding hierarchical relationships such as pigeon
being semantically relevant to bird, and singular-plural re-
lationships such as surfboards being semantically relevant
to surfboard. Lastly, we show the entity of our interest to
the LLM (i.e., Actual question in Equation 1), which en-
ables the LLM to generate an answer by finding the most
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semantically relevant entity in Ce. Please refer to Table 7 in
Appendix A.1 for an example of the prompt input.
Aligning predicates in the triplets with predicate classes
of interest. Likewise, we instruct the LLM with the fol-
lowing prompt: GIVEN THE LEXEME {PREDICATE}, FIND
SEMANTICALLY RELEVANT LEXEME IN THE PREDEFINED
PREDICATE LEXICON, where the predefined predicate lex-
icon is Cp (i.e., Task description in Equation 1). We also
present a few examples to the LLM that describe how to
answer the questions (i.e., In-context examples in Equa-
tion 1). For example, we provide the LLM with a few exam-
ples regarding tense relationships such as the lies on being
semantically relevant to lying on, and positional relation-
ship such as next to being semantically relevant to near.
Lastly, we show the predicate of our interest to the LLM
(i.e., Actual question in Equation 1). Please refer to Ta-
ble 8 in Appendix A.1 for an example of the prompt in-
put. Furthermore, regarding the alignment of classes within
a large predefined lexicon, please refer to Appendix A.2.
Note that as our main focus in this work is on developing
a framework for utilizing LLMs in weakly-supervised SGG
rather than finding a specific prompt design that works the
best, we tested with a single prompt design. However, since
prompt designs are crucial in leveraging LLMs, we plan to
explore various designs in our future work.

After performing Chain-1 (Section 3.3) and Chain-2
(Section 3.4), we obtain intermediate unlocalized triplets
Ĝw = {si,pi,oi}N̂w

i=1, where si,c,oi,c ∈ {Ce ∪ None} and
pi,c ∈ {Cp∪None}. It is worth noting that if there is no se-
mantically relevant lexeme, we request the LLM to generate
None as the answer, due to the fact that the entity/predicate
classes in the target data may not cover a wide range of en-
tities/predicates. Similar to the conventional approach, we
discard a triplet if any of its three components (i.e., sub-
ject, predicate and object) is None. Lastly, we obtain the
final unlocalized triplets Gw = {si,pi,oi}Nw

i=1 (Nw≤N̂w),
where si,c,oi,c ∈ Ce and pi,c ∈ Cp.

3.5. Model Training
Given the final unlocalized triplets Gw, we ground them
over relevant image regions to get localized triplets, mean-
ing that we obtain si,b and oi,b. To this end, we employ
two state-of-the-art grounding methods, i.e., SGNLS [57]
and VS3 [54]. Please refer to Appendix A.3 for more de-
tail about how each method performs grounding. After
grounding Gw, we obtain localized triplets and use them as
pseudo-labels for training a supervised SGG model. Please
refer to Appendix A.4 for more detail about the model train-
ing.

4. Experiment
Datasets. To train an SGG model without an annotated
scene graph dataset, we use three caption datasets: COCO
caption [3], Conceptual (CC) caption [31], and Visual

Genome (VG) caption [44]. For fair comparisons, we use
the same set of images that have been utilized in previous
WSSGG studies [20, 47, 54, 57], leading to the utilization
of 64K images on COCO caption dataset, 145K images on
CC caption dataset, and 57K images on VG caption dataset.
To evaluate the trained SGG model, we employ the widely
used Visual Genome (VG) dataset [13] and GQA dataset
[11]. The VG dataset contains the ground-truth localized
triplet information annotated by humans. We follow the
standard split of VG [44], which consist of 150 entity
classes and 50 predicate classes. For the GQA dataset used
in the SGG task, we follow the same pre-processing step of
a previous SGG study [8], which involves selecting top-200
frequent entity classes and top-100 frequent predicate
classes. In both datasets, 30% of the total images are used
for evaluation. Please refer to Appendix C.1 for more
details regarding the datasets. Note that we mainly use
the COCO caption dataset for analysis of LLM4SGG
throughout this paper, i.e., CC and VG caption datasets are
exclusively used in quantitative result on VG (Section 4.1).
Evaluation metrics. Recent fully-supervised SGG stud-
ies [1, 48, 51] have emphasized improving the accuracy of
predictions for fine-grained predicates rather than coarse-
grained predicates, since the former construct richer scene
graphs. As a result, they commonly use mean Recall@K
(mR@K) that computes the average of Recall@K (R@K)
across all predicates. In line with the recent emphasis on
fine-grained predicates, we incorporate both mR@K and
R@K in our evaluation, whereas previous WSSGG studies
[20, 47, 54] mainly rely on the R@K metric alone. More-
over, we report F@K, which is the harmonic average of
R@K and mR@K to jointly consider R@K and mR@K,
following previous SGG studies [12, 51]. Regarding the
evaluation task, we follow previous WSSGG studies and
adopt the Scene Graph Detection (SGDet) task, where both
the ground-truth bounding box and the entity class infor-
mation are not provided. Please refer to Appendix C.2 for
more detail regarding the task.
Baselines. Please refer to Appendix C.3 for details regard-
ing the baselines.
Implementation details. Please refer to Appendix C.4 re-
garding the implementation details.

4.1. Quantitative Result on VG
Table 2 shows the performance of baseline models and
those when LLM4SGG is applied. We have the follow-
ing observations based on COCO caption dataset: 1) Ap-
plying LLM4SGG to SGNLS and VS3 improves the per-
formance in terms of R@K and mR@K, which demon-
strates the effectiveness of the triplet formation through
LLM4SGG. Notably, LLM4SGG significantly improves
mR@K, implying that LLM4SGG effectively alleviates the
long-tailed problem in WSSGG. This can be clearly seen
in Figure 3, which shows the performance gain on fine-
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Method Dataset R@50 R@100 mR@50 mR@100 F@50 F@100
Motif (CVPR’18) - Fully-supervised VG 31.89 36.36 6.38 7.57 10.63 / 12.53 12.53
LSWS (CVPR’21) 3.29 3.69 3.27 3.66 3.28 3.67
SGNLS (ICCV’21) 3.80 4.46 2.51 2.78 3.02 3.43
SGNLS (ICCV’21)+LLM4SGG 5.09+ 1.29 5.97+ 1.51 4.08+ 1.57 4.49+ 1.71 4.53+ 1.51 5.13+ 1.70
Li et al (MM’22) 6.40 7.33 1.73 1.98 2.72 3.12
VS3 (CVPR’23) 6.60 8.01 2.88 3.25 4.01 4.62
VS3 (CVPR’23)+LLM4SGG 8.91+ 2.31 10.43+ 2.42 7.11+ 4.23 8.18+ 4.93 7.91+ 3.90 9.17+ 4.55
VS3 (CVPR’23)+Rwt 4.25 5.04 5.17 5.99 4.67 5.47
VS3 (CVPR’23)+Rwt+LLM4SGG

COCO
Caption

5.10+ 0.85 6.34+ 1.30 8.42+ 3.25 9.90+ 3.91 6.35+ 1.69 7.73+ 2.26

VS3 (CVPR’23) 6.69 8.20 1.73 2.04 2.75 3.27
VS3 (CVPR’23)+LLM4SGG

CC
Caption 9.47+ 2.78 10.69+ 2.49 5.40+ 3.67 6.09+ 4.05 6.88+ 4.13 7.76+ 4.49

VS3 (CVPR’23) 14.54 18.48 2.80 3.79 4.70 6.29
VS3 (CVPR’23)+LLM4SGG

VG
Caption 18.40+ 3.86 22.28+ 3.80 6.26+ 3.46 7.60+ 3.81 9.34+ 4.64 11.33+ 5.04

Table 2. Performance comparisons on the SGDet task. The best performance among WSSGG models within each dataset is in bold. The
red numbers indicate the absolute performance improvement after applying LLM4SGG. Rwt denotes using the reweighting strategy [51].
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Figure 3. Per class performance (Bar: number of predicate in-
stances, Line: Recall@100).

grained predicates. 2) VS3+Rwt+LLM4SGG further im-
proves mR@K of VS3+Rwt. We attribute this to the fact
that the conventional approach generates a limited num-
ber of fine-grained predicates, which makes the reweighting
strategy less effective within VS3. Especially, non-existent
predicates can never be predicted even when the reweight-
ing strategy is applied. On the other hand, LLM4SGG in-
creases the number of instances that belong to fine-grained
predicates, which is advantageous for the reweighting strat-
egy. For the per class performance comparison over the
reweighting stregty, please refer to Appendix D.1. 3) The
performance gain obtained from applying LLM4SGG is
greater on VS3 (i.e., VS3+LLM4SGG) than on SGNLS
(i.e., SGNLS+LLM4SGG). The major reason lies in the
difference in how SGNLS and VS3 make use of the pool
of 344K unlocalized triplets obtained through LLM4SGG.
Specifically, in the grounding process of SGNLS, we ob-
serve that 100K out of 344K unlocalized triplets (i.e., 29%)
fail to be grounded, and thus not used for training. On the
other hand, VS3 successfully grounds all 344K unlocalized
triplets and fully utilize them for training, allowing it to
fully enjoy the effectiveness of LLM4SGG. This indicates
that LLM4SGG makes synergy when paired with a ground-
ing method that is capable of fully utilizing the unlocalized
triplets. For more details regarding the impact of ground-
ing methods, please refer to Appendix B. 4) Regarding the
performance comparison with a fully-supervised approach
(i.e., Motif), please refer to Appendix D.2.

Furthermore, we observe that applying LLM4SGG to
CC and VG caption datasets also significantly improves per-
formance, demonstrating the effectiveness of LLM4SGG.

Row PC LP LA # Triplet R@50 / 100 mR@50 / 100 F@50 / 100

(a) 154K 6.60 / 8.01 2.88 / 3.25 4.01 / 4.62
(b) ! 243K 9.46 / 11.22 3.43 / 3.92 5.03 / 5.81
(c) ! ! 256K 8.42 / 9.85 5.99 / 6.95 7.00 / 8.15
(d) ! ! 327K 11.76 / 13.38 3.50 / 4.05 5.39 / 6.22
(e) ! ! ! 344K 8.91 / 10.43 7.11 / 8.18 7.91 / 9.17

Table 3. Ablation studies. (PC: Using Paraphrased Caption in
addition to the original caption / LP: LLM-based Parsing / LA:
LLM-based Alignment)

4.2. Ablation Studies
In Table 3, we conduct ablation studies on VG dataset
to understand the effectiveness of each component
of LLM4SGG, where VS3 is used as the grounding method.
Note that row (a) is equivalent to vanilla VS3. We have
the following observations. 1) Effect of using the para-
phrased caption: Including the paraphrased caption in ad-
dition to the original caption (row (b)) increases the number
of triplets (154K→243K), resulting in an improved overall
performance. This demonstrates that the paraphrased cap-
tion alleviates the low-density scene graph issue. 2) Effect
of LLM-based parsing: The LLM-based parsing (row (c))
for extracting triplets improves mR@K of row (b). This in-
dicates that the LLM-based parsing increases the number
of instances that belong to fine-grained predicates, which
in turn alleviates the semantic over-simplification issue. 3)
Effect of LLM-based alignment: The LLM-based align-
ment (row (d)) of entities/predicates in the extracted triplets
increases the number of triplets from 243K to 327K (row
(b) vs (d)), which indicates that the low-density scene graph
issue is alleviated. Consequently, R@K and mR@K of row
(d) are greater than those of row (b). 4) The fully-fledged
approach (row (e)) generally improves R@K and mR@K,
showing the best performance in terms of F@K. It is im-
portant to highlight that when using the LLM-based pars-
ing, the performance of mR@K significantly increases with
a moderate decrease in R@K. This trade-off is attributed
to the fact that R@K generally improves when the coarse-
grained predicates are dominant [51]. In contrast, our ap-
proach, which addresses the semantic over-simplification
issue, decreases the number instances that belong to coarse-
grained predicates while simultaneously increasing those
that belong to fine-grained predicates (Figure 1(b)), which
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Figure 4. Performance over various numbers of images used for
training VS3+LLM4SGG.

in turn results in a substantial improvement in mR@K. We
would like to emphasize that the performance in terms of
mR@K is crucial in the context of SGG research [1, 8, 48],
as fine-grained predicates offer richer information.

4.3. Analysis of Data-Efficiency
To assess the effectiveness of LLM4SGG under the lack
of available training data, we conduct experiments given
a limited number of images. Specifically, among 64K
images used for training VS3 and VS3+LLM4SGG in
Table 2, we randomly sample 1K (1.5%), 5K (7.8%),
and 10K (15.6%) images with replacement, and train
VS3+LLM4SGG for five times. Figure 4 shows the aver-
age performance over various numbers of images used for
training VS3+LLM4SGG along with the variance (in blue
area). We observe that when using only 1K images, the per-
formance is slightly inferior to the baseline that used 64K
for training (i.e., VS3). However, as we increase the number
of images used for training to 5K images, we observe a sig-
nificant improvement in both R@K and mR@K compared
with the baseline. This demonstrates that LLM4SGG is
data-efficient, as it outperforms the baseline even with only
7.8% of the total images used for training the baseline.
Moreover, when further increasing the number of images
to 10K, we observe further performance improvements,
and when it reaches 64K, which is the same as the number
of images used for training the baseline, the performance
is the best. In summary, LLM4SGG enables data-efficient
model training even with a limited amount of available
images for training, thanks to alleviating the semantic
over-simplification and low-density scene graph issues.

4.4. Quantitative Result on GQA
In Table 4, we additionally conducted experiments on GQA
dataset [11]. Please refer to Appendix E.1 for more de-
tailed descriptions on the training and evaluation processes
on GQA dataset. The GQA dataset contains twice as many
predicates as the Visual Genome dataset and includes com-
plicated predicates (e.g., sitting next to, standing in front
of). As a result, when obtaining unlocalized triplets us-
ing the conventional WSSGG approach, we observe that 44
out of 100 predicates have a frequency of 0, and the pred-
icate distribution is extremely long-tailed. Consequently,
the baseline (i.e., VS3) exhibits significantly lower perfor-
mance, especially in terms of mR@K. On the other hand,

Method R@50 / 100 mR@50 / 100 F@50 / 100

Motif (Fully-supervised) 28.90 / 33.10 6.40 / 7.70 10.48 / 12.49

VS3 5.90 / 6.97 1.60 / 1.81 2.52 / 2.87
VS3+LLM4SGG 8.88 / 10.38 5.33 / 6.51 6.66 / 8.00

Table 4. Performance comparison on GQA.

our approach shows substantial performance improvements
not only in R@K but also in mR@K, thanks to the mitiga-
tion of semantic over-simplification and low-density scene
graph issues. Please refer to Appendix E.2 for the predicate
distribution and performance comparison for each class in
GQA dataset. Additionally, please refer to Appendix E.3
for qualitative analyses on GQA dataset.

5. Conclusion & Future work
In this work, we focus on the triplet formation process in
WSSGG, whose importance is overlooked by previous stud-
ies. To alleviate the semantic over-simplification and low-
density scene graph issues inherent in the triplet forma-
tion process, we propose a new approach, i.e., LLM4SGG,
which leverages a pre-trained LLM during the extraction of
triplets from the captions, and alignment of entity/predicate
classes with those in the target data. It is important to
note that construction of these triplets is not required ev-
ery time to train the SGG model; instead, it is a one-time
pre-processing step. In this regard, we contribute to gen-
erating enhanced triplets compared to the conventional ap-
proach. Moreover, we publish an enhanced SGG dataset
constructed by LLM for future studies of SGG. As a re-
sult, we outperform baselines in terms of R@K, mR@K
and F@K on Visual Genome and GQA datasets. A poten-
tial limitation of our work is the reliance on a proprietary
blackbox LLM, which can also be costly to use. Hence, in
Appendix F, we provide discussions on replacing the LLM
with smaller language models.

For future work, an LLM can be used to ground the un-
localized triplets in Step 4. Recently, vision-language rep-
resentation learning has been developed for transforming
visual features into textual features to facilitate the use of
visual features as input to an LLM [16, 58]. In this re-
gard, given the visual features of bounding boxes as input,
we could ask the LLM to identify relevant bounding boxes
based on the textual information of entities within unlocal-
ized triplets using the comprehensive understanding of the
context of triplets.
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