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Abstract

We introduce a new attention mechanism, dubbed struc-
tural self-attention (StructSA), that leverages rich correla-
tion patterns naturally emerging in key-query interactions
of attention. StructSA generates attention maps by recog-
nizing space-time structures of key-query correlations via
convolution and uses them to dynamically aggregate lo-
cal contexts of value features. This effectively leverages
rich structural patterns in images and videos such as scene
layouts, object motion, and inter-object relations. Using
StructSA as a main building block, we develop the structural
vision transformer (StructViT) and evaluate its effective-
ness on both image and video classification tasks, achiev-
ing state-of-the-art results on ImageNet-1K, Kinetics-400,
Something-Something V1 & V2, Diving-48, and FineGym.

1. Introduction

How visual elements interact with each other in space and
time is a crucial cue for visual understanding, e.g., recog-
nizing actions in a video or analyzing scene layout patterns
in an image. In computer vision, such relational patterns are
effectively captured by the structure of correlations or simi-
larities across visual elements in different positions [3, 57];
a correlation structure of an image reveals spatial layouts
of similar patterns [30, 33] and that of a video provides bi-
directional motion likelihoods [32, 36]. The ability to rec-
ognize those structural patterns may allow to better perform
visual reasoning and generalize against challenging appear-
ance variations and domain shifts [21, 65].

In this work, we introduce a novel self-attention mecha-
nism, named structural self-attention (StructSA), that effec-
tively leverages diverse structural patterns for visual repre-
sentation learning. While the standard self-attention mech-
anism uses raw query-key correlations individually and ig-
nores their geometric structures, the proposed StructSA rec-
ognizes diverse structural patterns from the correlations be-
tween the query and local chunks of keys via convolu-
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Figure 1. Structural Self-Attention. Given an input video and
a query indicated by the red box in (a), the query-key correlation
maps in (b) clearly reveal the structures of spatial layout and mo-
tion with respect to the query. The proposed attention mechanism
in (c) is designed to leverage these rich structural patterns for com-
puting attention scores in the self-attention process.

tion and uses them to dynamically aggregate local con-
texts of value features, effectively capturing rich structural
patterns such as scene layouts, object motion, and inter-
object relations in images and video. As illustrated in
Fig. 1 and detailed in Sec. 3, this is mainly achieved by em-
powering the standard self-attention mechanism with long-
range convolutional interactions and dynamic contextual
feature aggregation. To investigate the effect of StructSA,
we also provide an in-depth analysis on the relationship
to recent self-attention variants with convolutional projec-
tion [18, 41, 42, 70, 72], showing their potential and limita-
tion in leveraging structural patterns.

To validate the effect of StructSA, we develop the struc-
tural vision transformer that adopts it as a main building
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block, and perform an extensive set of experiments on both

image and video classification tasks, showing the effective-

ness of learning structural patterns for visual representa-
tions. Our main contributions are as follows:

e We introduce structural self-attention (StructSA) that
learns correlation structures for visual representations
with the vision transformer.

* We provide an in-depth analysis on the relationship be-
tween StructSA and self-attention variants with convolu-
tional projections.

e Our new transformer network achieves state-of-the-
art results on ImageNet-1K, Kinetics-400, Something-
Something V1&V2, Diving-48, and FineGym.

2. Related Work

Transformer Networks in Vision. Since transformer net-
works [66] showed remarkable success in natural language
processing [5, 14], they have widely been adopted in var-
ious computer vision tasks as an alternative to CNNs [I,
7, 17, 58, 59]. Despite of their success, the pure trans-
former networks require a large amount of training data
compared to CNNs where convolution operations introduce
desirable inductive biases such as locality and translation
invariance allowing more efficient training [17, 53]. This
incentivized several methods to inherit the convolutional
inductive biases via knowledge distillation [63], local self-
attention [27, 45, 54], and architectural fusion [9, 12, 23, 38,
70, 72]. While recent methods using a convolutional projec-
tion [18, 41, 70, 72] achieve remarkable improvements, we
show that self-attention with a convolutional projection can
be derived as a special form of our proposed method.

Correlation Structure Modeling. Geometric structure
of correlations between visual features, i.e., patterns of
how they are similar to each other, allows us to under-
stand relational patterns in visual data for various com-
puter vision tasks. Spatial self-correlation in images is
used for suppressing photometric variations and reveal-
ing geometric layout of objects in the image [30, 33, 57].
Spatial cross-correlation between different images is of-
ten used for establishing semantic correspondences captur-
ing structural similarities [24, 50, 55]. In the video do-
main, several methods exploit the structure of spatial cross-
correlations between consecutive frames to estimate optical
flow [16, 74] or to learn motion features for action recog-
nition [35, 67]. Kwon et al. [36] propose spatio-temporal
self-correlations for learning bi-directional motion features
and Kim et al. [32] introduce relational self-attention that
generates attention weights dynamically from the structure
of the spatio-temporal self-correlations. However, these
two methods use self-correlations between the query and
its local spatio-temporal neighborhoods only, thus, are lim-
ited in learning global relational patterns between distant
features. Inspired by this, we introduce structural self-

attention that capturing not only the spatio-temporal local
self-correlation but also cross-correlations between features
in the distance, utilizing both motion and global spatio-
temporal inter-feature relations for learning motion-centric
video representations.

3. Our Approach

We propose a novel self-attention mechanism, named
structural self-attention (StructSA), that is designed to
leverage rich correlation structures naturally emerging in
key-query interactions of attention. We start by revisiting
the vanilla self-attention and its limitation and then describe
the details of StructSA. We also provide an in-depth analy-
sis of recent self-attention variants with convolutional pro-
jections from the perspective of learning structural patterns.

3.1. Background: Self-Attention

Self-attention (SA) [66] is a primitive operation for modern
transformer networks [1, 17, 63]. Given N input features
X =[xy, -, zn] € RVXC SA first projects the input X
linearly into queries, keys, and values, and transforms each
C-dimensional input feature x; into a contextualized output
feature y; by

N
yi=o (K" V =3 0; (ak;T) v; e R*C, (1)
J

g =x,W K=XWK Vv=xwV

where o is a softmax function and W< WX &WV €
RE*C are projection matrices for query ¢; € R keys

K c RY*C and values V€ RV X respectively. Here
we use a 1-dimensional sequence of input features for no-
tational simplicity, and the operation can be extended to a
larger dimensionality. After computing a correlation map
q; KT, the vanilla SA uses individual correlation values in-
dependently, i.e., g; k:jT, for value aggregation while ignor-
ing the structure of the map, which leads to the same output
regardless of the order of features. This permutation invari-
ance prevents SA from capturing spatial layouts [27, 57] or
motions [32, 36, 44] of objects in images or videos. Po-
sitional encoding for SA helps spatial awareness, but the
structures of correlations are still not recognized in value
aggregation [10, 11, 32].

3.2. Structural Self-Attention

We introduce a novel self-attention mechanism, named
structural self-attention (StructSA), that effectively incor-
porates rich structural patterns of query-key correlation into
contextual feature aggregation. The StructSA mechanism
consists of two steps: (i) structural query-key attention and
(i) contextual value aggregation. Unlike the vanilla query-
key attention where individual correlation values them-
selves are used as attention scores, the structural query-key
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attention takes the correlation map as a whole and detect
structural patterns from it in attention scoring. The subse-
quent contextual value aggregation then combines the at-
tention scores together to compute diverse sets of kernel
weights that are used for dynamically collecting local con-
texts of value features.

Structural Query-Key Attention. To transform the vanilla
query-key attention into structure-aware one, the structural
query-key attention (SQKA) deploy convolutions on top of
query-key correlation ¢; K ':

A, =0 (conv (qu, UK)) e RVXP, )

where UX € RM*P is D convolutional kernels with size
M. Note that ¢ is a softmax function taken over all ND
entries in the input matrix; we observe that it is empirically
more stable compared to D individual softmax operations
over N entries. Each element of A; is computed as

a;j =0, (KjUX) e R™P, 3)
K; = X WK e RM*C,

where o; returns a D-dimensional softmax-ed output for
Jjth location and X ;) € RMXC is local context features
whose context window is centered at j.

Unlike the vanilla query-key attention, which is agnos-
tic to its neighborhood structure, SQKA is empowered by
convolution to recognize a local correlation structure of
q; KJT € R'YM and transform it into a D-dimensional vec-
tor; the convolution kernels U¥ act as correlation pattern
detectors. In particular, when ¢« = j, the correlation map
reduces to local self-similarity [57] that is known to be ef-
fective for capturing spatial layout patterns [57] or spatio-
temporal motion [32, 36], meaning that SQKA recognizes
diverse correlation patterns including self-similarity [57]
via long-range interaction between query ¢ and context j.

Contextual Value Aggregation. Given SQKA recogniz-
ing structural patterns of correlation, StructSA combines
SQKA entries into a weight «£'/"" to aggregate value v;:

N N

Y; = Zaj (qujTUK) uVT'vj = Z mff;“CtUj, 4
j=1 j=1
\%

where uV € R'™P is a vector that linearly combines D
pattern scores to the final attention weight.

We further extend Eq. (4) to generate a spatial kernel
not a single scalar for each position j. We call this method
contextual aggregation and it has a following form:

N N
yi=Y o) (@KU UV, =Y w1, (5)

Jj=1 Jj=1

V; = X WY € RM*C.

Compared to u" that produces a scalar weighting a single
element v;, UV € RM*D generates spatial kernel dynam-
ically aggregating a local context of value V; for every po-
sition 7; each column of UV, i.e., U:,Vd e RMx1, plays a
role as a context aggregator that performs a weighted pool-
ing of local context V;; and thus different combinations of
these context aggregators result in diverse dynamic kernels
w3t for different locations j.

3.3. Relationship to Convolutional Self-Attention

Recent vision transformers [18, 23, 41, 70, 72] often adopt
convolutional inductive biases in the form of self-attention
with convolutional projections (ConvSA). In this section,
we analyze ConvSA with a lens of StructSA and show its
potential and limitation for learning structures from query-
key correlations. Different from SA, ConvSA computes
project keys and values K"V, Vv ¢ RNXC ysing a
convolution operation over the input feature map X:

K™ = [k, -+ k@™ = conv(X,W¥),  (6)

VCODV — [,vtlzonv’ - ’v?\?nv] — COnV(X,WV)’ (7)

where conv is a convolution operation, and WX, WV ¢
RM*CXC are kernel weights with a kernel size M for key
and value projections, respectively.

In most previous methods, ConvSA is implemented with
a channel-wise separable convolution [26], which consists
of two factorized convolution operations, i.e., point-wise
and channel-wise convolutions [18, 23, 41, 70, 72]. In this
case, each key k$°"" and value v{°"" is computed from a
local context X; by

klgonv — uKTX,L-WK = ’U,KTKfL' S RIXC’ (8)

,Ulgonv _ ’U,VTXZ‘WV _ ’U,VT‘/Z‘ c R1X07 (9)
where WK, WV € RE*C are weights for the linear pro-
jection that are equivalent to point-wise convolution, and
u¥ uV € RM*! are channel-wise convolution weights
that are used to spatially aggregate linearly projected con-
text K; and V;, respectively. Note that here we assume the
channel-wise convolution weights are shared across chan-
nels for simplicity without loss of generality and the full
derivation is available in our supplementary materal A.

From Eq. (1) combined with Eq. (8) and (9), a trans-
formed output y; in ConvSA is obtained by

] =

_ conv T conv
Yi= ) 0j (qikj ) vj

1

<.
Il

N
o; (@K]u)u¥ V; = Y KV, (10)
j=1

M=

<.
Il
—

18943



input image

(2) 0; (q:KTUX")

(b) UY (©) oj (@:KJUKT) UV

D=1

ConvSA -

StructSA

(D=8

Figure 2. Visualization of ConvSA and StructSA on ImageNet-1K. The query location ¢ is set to the center of the image and the kernel
size M = 3 x 3. Given the left input image, we compare ConvSA (D = 1) and StructSA (D = 8) in terms of (a) D attention maps

o D(qujTUKT), (b) local feature aggregation patterns learned in U V' and (c) the combinations of (a) and (b). Note that in (c), each
location j has an aggregation map of the kernel size M = 3 x 3 and thus we also show enlarged images for four different sample locations j.

where o is jth entry of the softmax over N tokens. This
reveals that an attention score 0;(g; k;on"T) is computed by
projecting a local correlation map ¢; K] € R"*M by uX,
and a dynamic kernel k" for the final feature aggregation
of Vj is obtained by weighting the aggregation pattern pre-
sented in " using the computed attention map. Given that
correlation map qujT represents a structural pattern, we
can interpret that u* acts as a pattern detector that extracts
a specific correlation pattern from qujT, whereas u" plays
a role as a context aggregator that performs a weighted
pooling of local context V;. Due to the presence of this
pattern detector «X and its corresponding context aggrega-
tor uV, ConvSA can leverage a structural pattern of input
for context aggregation.

Limitation. Although ConvSA can learn, unlike SA, a
structural pattern over correlation maps by uX, it only
learns a single pattern and encodes various shapes in cor-
relation maps into a scalar value representing the similarity
against the learned pattern; as the result, the final dynamic
kernel k5™ for every j reduces to the identical pattern of
u" with different weighting only. This lack of expressive-
ness in uX and u" prevents ConvSA from capturing diverse
structural patterns and generating diverse dynamic kernels.
In constrast, StructSA learns D different pattern extractors
in UK and represents various local correlation shapes by a
set of D similarity scores. These scores are then combined
with the D context aggregators in UV ; different combina-
tions of these context aggregators result in diverse dynamic
kernels x;';"" for different locations j.

Visualization. The aforementioned difference between
ConvSA and StructSA, as well as their effects, can be better
understood by visualizing the kernel computation process.
Figure 2 provides such a visual comparison of how struc-
tural patterns are used in ConvSA and StructSA given an
example image from ImageNet-1K [13]. From a query-key
correlation map, ConvSA generates a single attention map
(Fig. 2a, top). These scores are then combined with the

context aggregator u" (Fig. 2b, top), which conveys only a
single aggregation pattern. This causes local features to be
aggregated with the identical pattern in «" for all locations,
and the only difference remains in their scales (Fig. 2c, top).
In contrast, StructSA generates diverse attention maps us-
ing D pattern detectors, each capturing different structures
in the query-key correlation maps (Fig. 2a, bottom), and
combines them with different context aggregators (Fig. 2b,
bottom) resulting in rich aggregation patterns for different
locations j (Fig. 2c¢, bottom). For more in-depth compari-
son, please refer to our supplementary material D.

4. Experiments

To validate the effectiveness of the proposed method on vi-
sual representation learning, we conduct extensive experi-
ments on image and video classification benchmarks.

4.1. Experimental Setup

Datasets. ImageNet-1K [13] is a large-scale dataset with
1.2M images labeled by 1000 object classes. Kinetics-
400 [31] is one of the most popular large-scale video
datasets with 400 action classes. We use 241k action clips
available online. Something-Something-V1 & V2 [22, 49]
are both large-scale action recognition benchmarks, includ-
ing 108k and 220k action clips, respectively. Both datasets
share the same motion-centric action classes, e.g., ‘push-
ing something from left to right,” so thus capturing fine-
grained motion is crucial to achieving the better perfor-
mance. Diving-48 [39] is a fine-grained action benchmark
that is heavily dependent on temporal modeling [3], con-
taining 18k videos with 48 diving classes. FineGym [56]
is a motion-centric benchmark that includes gymnastics ac-
tion classes with severe deformations.

Training & Testing Protocols. For image classification,
we follow the training strategy of DeiT [63] adopting ran-
dom clipping, random horizontal flipping, mixup [80], cut-
mix [78], random erasing [81] and label-smoothing [51] to

18944



augment the input images for training. We train all models
from scratch for 300 epochs using AdamW optimizer [48]
with a cosine learning rate schedule including 5 warm-up
epochs. The batch size, learning rate, and weight decay are
set to 1024, le-3, and 0.05, respectively. For comparison
on stronger experiment setup [29, 38, 41, 77], we also train
our models using Token Labeling [29] and larger resolution
images, i.e., 384 x 384, following the protocols in [38].
For video classification, we follow training protocols and
data augmentation recipes in MViT [18]. For Kinetics-400,
we sample 16 or 32 frames using the dense sampling strat-
egy [71]. We temporally inflate the model weights pre-
trained on ImageNet-1K and finetune it for 110 epochs in-
cluding 10 warm-up epochs. We use AdamW [48] op-
timizer with the cosine learning rate schedule. We set
the batch size, learning rate, weight decay, and stochas-
tic depth rate to 64, 2e-4, 0.05, and 0.1, respectively. For
Something-Something, Diving-48, and FineGym, we utilize
the segment-based sampling strategy [68] and do not use the
random horizontal flip for data augmentation. We initial-
ize the model with the weights pretrained on Kinetics-400
and finetune the model for 60 epochs including 5 warm-
up epochs. Other training hyperparameters are the same
as those for Kinetics-400. For testing, we sample multiple
clips at different temporal indices for each clip or cropping
different spatial regions and then obtain the final score by
computing an average over the scores for each clip. We
train all models once using 8 to 16 NVIDIA A100 GPUs.

Metrics. We measure top-1 and top-5 accuracy as perfor-
mance metrics, except for FineGym, we compute averaged
per-class top-1 accuracy. As efficiency metrics, we measure
the number of parameters and FLOPs.

4.2. Analysis of StructSA

StructSA can be readily integrated into any existing ViTs
to enhance visual representations by capturing correlation
structures. In this subsection, we experimentally validate
and analyze the impact of StructSA. Here, for a direct com-
parison with SA, we choose to use DeiT-S [63] as the base-
line backbone; DeiT is a pure SA-based vision transformer
and thus adequate for validating the effect of StructSA,
avoiding any intervention of additional components. In this
analysis, we replace all the SA layers in DeiT with StructSA
layers. The evaluations are done on ImageNet-1K [13] and
Something-Something-V1 [22] benchmarks while varying
the structure dimension D, the kernel size M, and context
aggregation methods. We follow the training and testing
protocols in Sec. 4.1, except that we directly finetune the
ImageNet-1K-pretrained model on Something-Something-
V1 using random cropping only for data augmentation.

Structure Dimension D. Table 1a shows the effect of the

structure dimension D. Compared to the baseline with the
vanilla SA (D = 0), applying ConvSA (D = 1) improves

D ImageNet-1K Something V1
top-1 top-5 top-1 top-5
0 80.5 95.0 48.3 76.6
1 80.8 95.2 49.7 71.6
2 80.9 95.2 50.1 78.0
4 81.1 95.4 50.4 78.2
8 81.3 95.5 50.6 78.5
(a) Structure dimension D.
ImageNet-1K Something V1
M
top-1 top-5 top-1 top-5
- 80.5 95.0 48.3 76.6
1x1(x1) 80.6 95.0 48.5 76.9
3 x3(x3) 81.1 954 50.4 78.2
5% 5(x5) 81.1 954 50.5 78.2
T X T(X7) 81.0 95.2 50.5 78.1
(b) Kernel size M.
aggregation ImageNet-1K Something V1
top-1 top-5 top-1 top-5
- 80.5 95.0 48.3 76.6
element 80.9 95.2 49.6 71.5
context 81.1 95.4 50.4 78.2

(c) Context aggregation method.

Table 1. Ablation studies on ImageNet-1K and Something-
Something V1. Top-1 and top-5 accuracies (%) are shown. Oth-
erwise specified, we use 16 frames as input and set D = 4,
M = 3 x 3 x 3, and patch-wise context aggregation as default.

the performance as shown in [9, 72]. As we increase D from
1 to 8, we obtain gradual improvements up to 0.5%p and
0.9%p at top-1 accuracy on ImageNet-1K and Something-
Something-V1. This confirms the limitation of ConvSA and
the effectiveness of StructSA.

Kernel Size M. In Table 1b, we also investigate different
kernel sizes M. Compared to the baseline, the model with
the kernel size M = 1 x 1 x 1 performs similar accuracies
on both datasets whereas that with M = 3 x 3 X 3 improves
the performance dramatically; it validates the effectiveness
of learning geometric structures. The performance saturates
as the kernel size gets larger than 5 x 5 x 5.

Context Aggregation Method. In Table Ic, we also com-
pare different context aggregation method. As a result,
patch-wise aggregation performs 0.2%p and 0.7%p at top-1
accuracy on ImageNet-1K and Something-Something-V1.
For more ablation experiments, please refer to our supple-
mentary material B.

4.3. Comparison to State of the Art
4.3.1 Structural Vision Transformer (StructViT)

To build an advanced vision transformer considering the re-
cent development of multiscale representation learning [18,
38,41, 70, 76], we integrate StructSA into UniFormer [38].
The transformer network, dubbed the Structural Vision
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model type # blocks # channels (# heads)

StructViT-S [C,C,S,S] [3,4,8,3] [64, 128,320 (5), 512 (8)]
StructViT-B [C,C,S,S] [5, 8,20, 7] [64, 128, 320 (5), 512 (8)]
StructViT-L [C,C,S,S] [5, 10, 24, 7] [128, 192, 448 (7), 640 (10)]

Table 2. Configurations of StructViT variants. ”C” and ”S”
denote a convolution and StructSA block, respectively.

Transformer (StructViT) is constructed by replacing all
vanilla self-attention in UniFormer with StructSA as a main
building block. It takes as input either a video clip or an
image X e RT*HXWX3 where T, H, and W denotes the
temporal length, height, and width of the input, respectively.
For images as input, we set the temporal length 7' = 1.
Before being fed into our networks, the input video is to-
kenized into overlapping 3D tublets of size 3 x 4 x 4 X 3
with a stride of 2 x 4 x 4 while the input image is into non-
overlapping 2D patches of size 4 x 4 x 3.

Our networks comprise four stages, each of which has
multiple neural blocks, and leverage a hierarchical design
with decreasing resolutions and increasing number of chan-
nels from early to late stages following [38]. For the first
two stages, each block consists of a conditional positional
encoding layer [9], a convolutional layer, and an MLP,
whereas the convolutional layer is replaced by a StructSA
layer in the blocks in the last two stages. Note that when we
employ StructSA, we use multi-head configurations and do
not share weights across channels for channel-wise convo-
lutions. We build three different StructViT architectures as
shown in Table 2. Our models are comparable to UniForm-
ers [38] in the same sizes as our model configurations are
based on UniFormer’s; adding the structure dimension D in
StructSA introduces only few additional parameters.

In practice, StructSA introduces additional FLOPs for
processing instances compared to the vanilla SA. One way
of building an efficient StructSA is to adopt a larger stride
in the key/value projections, which effectively reduces the
number of keys and values [18, 41]. We test a few variants
with a larger stride to see the performances of StructViT
with matching FLOPs with their corresponding UniFormer
architectures. We denote each model with StructViT-X-
D-S where X, D, and S represent the architecture size,
the structure dimension, and the stride, respectively. For
training, we use stochastic depth [28] with the probabil-
ity of 0.1/0.3/0.4 for StructViT-S/B/L, respectively. We
use random cropping only for StructViT-B on Something-
Something, Diving-48, and FineGym. We use 8 NVIDIA
A100 GPUs for training StructViT-S/B and 16 GPUs for
StructViT-L. We follow the protocols in Sec. 4.1 for the rest.

4.3.2 Image Classification

In Table 3, we compare StructViT with other state-of-the-
art CNNs, ViTs, and their hybrid models. The results show
that StructViT outperforms other methods in all sizes. Com-
pared to EfficientNets [61, 62] that are obtained by exten-

method #params | FLOPs INIK

M) G) top-1
EffcientNet-B5 [61] 30 9.9 83.6
ConvNext-T [46] 29 4.5 83.1
DeiT-S [63] 22 4.6 79.9
PVT-S [70] 25 3.8 79.8
Swin-T [45] 29 4.5 81.3
Focal-T [75] 29 4.9 82.2
CSwin-T [15] 23 4.3 82.7
CvT-13 [72] 20 4.5 81.6
CoAtNet-0 [12] 25 4.2 81.6
LV-ViT-S [29] 26 6.6 83.3
UniFormer-S [38] 22 3.6 82.9
UniFormer-S* 1384 [38] 22 11.9 84.6
MViTv2-S [41] 24 4.7 82.3
StructViT-S-4-2 23 3.6 82.9
StructViT-S-4-1 23 4.3 83.2
StructViT-S-8-1 24 54 83.3
StructViT-S-4-1* 23 4.3 84.0
StructViT-S-4-1* 1384 23 17.3 85.2
EffcientNet-B7 [61] 66 39.2 84.3
ConvNext-B [46] 89 154 83.8
ConvNext-B 1384 [46] 89 45.0 85.1
PVT-L [70] 61 9.8 81.7
Swin-S [45] 50 8.7 83.0
Focal-S [75] 51 9.1 83.5
CSwin-S [15] 35 6.9 83.6
CvT-21[72] 32 7.1 82.5
CoAtNet-1 [12] 42 8.4 83.3
LV-ViT-M [29] 56 16.0 84.1
UniFormer-B [38] 50 8.3 83.8
UniFormer-B* 1384 [38] 50 27.2 86.0
MViTv2-S [41] 35 7.0 83.6
MViTv2-B [41] 52 10.2 84.4
MViTv2-B 1384 [41] 52 36.7 85.2
StructViT-B-4-2 51 8.3 84.0
StructViT-B-4-1 51 9.9 84.2
StructViT-B-8-1 52 12.0 84.3
StructViT-B-4-1* 51 9.9 85.4
StructViT-B-4-1* 1384 51 40.7 86.5
EfficientNetV2-L [62] 121 52 85.7
ConvNext-L [46] 198 344 84.3
ConvNext-L 1384 [46] 198 101.0 85.5
Swin-B [45] 88 15.4 83.3
Focal-B [75] 90 16.0 83.8
CSwin-B [15] 78 15.0 84.2
CoAtNet-3 [12] 168 34.7 84.5
LV-ViT-L 1288 [29] 150 59.0 85.3
UniFormer-L* [38] 100 12.6 85.6
UniFormer-L* 1384 [38] 100 39.2 86.0
MViTv2-L [41] 218 42.1 85.3
MViTv2-L 1384 [41] 218 140.2 86.0
StructViT-L-4-1* 103 15.4 86.0
StructViT-L-4-1* 1384 103 85.2 86.7

Table 3. Comparisons to the state-of-the-art methods on

ImageNet-1K. *Trained with Token Labeling [29].

sive architecture search, our models show comparable or
even better performances in both base and large configura-
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tions, requiring much less amount of computational cost.
Compared to our baseline, UniFormers, StructViTs con-
sistently improve top-1 accuracy regardless of their sizes,
demonstrating the benefits of learning geometric structures
in image understanding. We further evaluate our models on
stronger setup using Token Labeling [29] and 384 x 384 im-
ages, and observe consistent improvements over the base-
lines. While StructSA introduces some additional FLOPs,
we also test variants whose stride for key/value convolu-
tions is set to 2 (S-4-2 and B-4-2) matching its FLOPs to
that of the baseline; we still observe some gain with the base
model (B-4-2) without additional FLOPs while the small
model (S-4-2) shows comparable results. For more compre-
hensive analysis, we provide experimental results on dense
prediction tasks, i.e., object detection, semantic segmenta-
tion, and instance segmentation. Please refer to our supple-
mentary material C for the detail.

4.3.3 Video Classification

Kinetics-400. Table 4 compares our method with previ-
ous state-of-the-art methods on Kinetics-400. Each block in
the table groups methods based on their network structures:
CNN:gs, ViTs, and hybrid methods. We first observe that our
best model (B-4-1) achieves state-of-the-art performance.
Our method outperforms CNN-based approaches even with
less computational cost (S-4-2) in most cases. Compared
to MoViNets [34] which are the most advanced CNNs ob-
tained by an extensive NAS, our method shows comparable
scores with fewer FLOPs (S-4-1).

When we compare our model to the ViT-based ones, our
model outperforms them by large margins while using sig-
nificantly fewer compute. For instance, StructViT-B-4-1
with single crop (second last row in Table 4) shows top-
1 accuracy gain by 1.6%p while using only 55% of com-
putes compared to MTV-B, the best performing ViT-based
model. Note also that our model is pretrained on ImageNet-
1K, which is much smaller than ImageNet-21K on which
the ViT-based models are pretrained.

Finally, our best models (S-8-1 & B-4-1) show 0.5%p to
0.8%p accuracy gains over the baseline UniFormer models
in different size configurations. When we use larger strides
(S-4-2 and B-4-2) to match the FLOPs of the baselines, we
still observe accuracy gains ranging from 0.2%p to 0.3%p.
Something-Something, Diving-48 and FineGym. Ta-
ble 5a summarizes the results on Something-Something-
V1&V2. We observe the same trends as on Kinetics-400.
StructViT-S-4-2 outperforms UniFormer-S on Something-
Something-V2 by 0.6%p in top-1 accuracy, and StructViT-
S-8-1 enlarges the gap to 1.3%p, leveraging correlation
structures more effectively. StructViT-B-4-1 achieves new
state-of-the-art performances on both V1 and V2 without
the strong data augmentation methods used in [38, 41].

framex |FLOPs| K400

cropxclip| (G) [top-1 top-5
SlowFast+NL [20] - 16x3x10|7020 |79.8 93.9
ip-CSN [64] Sports1M|32x3x10{3270 |79.2 93.8
X3D-XL [19] - 16x3x10(1452 |79.1 93.9
MoViNet-A5 [34] 120x1x 1281 80.9 94.9
MoViNet-A6 [34] - 120x1x1|386 81.5 953
TimeSformer-HR [4] |[IN-21K [16x3x1 |5109 |79.7 94.4
TimeSformer-L [4] |IN-21K [96x3x1 [7140 |80.7 94.7

method pretrain

X-ViT [6] IN-21K |16x3x1 |850 80.2 94.7
Mformer-HR [52] IN-21K |16x3x10{28764 | 81.1 95.2
ViViT-L [1] IN-21K |16x3x4 |17352 | 80.6 94.7
Swin-B [47] IN-1K  |32x3x4 (3384 |80.6 94.6
Swin-B [47] IN-21K |32x3x4 |3384 |82.7 95.5
MTV-B [73] IN-21K |32x3x4 |4790 |81.8 95.0

MVIiT-B,16x4 [18]
MVIiT-B,32x3 [18] |-

16x1x5 |353 784 93.5
32x1x5 |850 80.2 944

Dualformer-S [42] IN-1IK  |32x1x4 [636 80.6 94.9
Dualformer-B [42] IN-1K  |32x1x4 [1072 |81.1 95.0
UniFormer-S [38] IN-1K 16x1x4 167 80.8 94.7
UniFormer-B [38] IN-1K 32x1x4 1036 |82.9 954

MViTv2-B,32x3 [41]|- 32x1x5 |1125 |82.9 95.7

StructViT-S-4-2 IN-1K  |16x1x4 |169 81.1 95.5
StructViT-S-4-1 IN-1IK  |16x1x4 |327 81.4 95.7
StructViT-S-8-1 IN-1K  |16x1x4 |541 81.6 95.8
StructViT-B-4-2 IN-1K  [32x1x4 [1045 |83.1 95.5
StructViT-B-4-1 IN-1K  |32x1x4 |2658 |83.3 95.6
StructViT-B-4-1 IN-1K  |32x3x4 |7974 |83.4 95.8

Table 4. Comparisons to the state-of-the-art methods on
Kinetics-400.

Table 5b and Table 5c show the results on Diving-48 [39]
and FineGym [56]. Our models outperform the base-
line, UniFormer-B, obtaining significant accuracy gains by
0.9%p and 0.7%p on Diving-48 and FineGym, respec-
tively. This indicates that learning spatio-temporal correla-
tion structures play a crucial role in capturing fine-grained
motion patterns. Our model sets new state-of-the-art per-
formances with large margins (4.1%p on Diving-48; 3.3%p
and 3.1%p on FineGym) over the previous methods with-
out additional box annotations on both datasets. Note that
ORVIT [25] uses additional object bounding box annota-
tions to train an object detector.

4.4. Visualizations of StructSA

Figure 3 visualizes example dynamic kernels &ff;“t com-
puted from self-similarity map (¢ = j) on Something-
Something-V1 to illustrate how StructSA encodes motion
features from the spatiotemporal correlation structure. We
observe that StructSA builds kernels for spatiotemporal gra-
dient filters similar to those that are already known to be
effective for capturing different types of motions [60], e.g.,
Sobel filters (first) or Laplacian filters (second and third),

over local contexts similarly to [32].
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method pretrain frame X FLOPs | Something V1 Something V2 model top-1
cropxclip | (G) top-1 top-5 |top-1 top-5 SlowFast-R101 [20] 77.6
TEA [40] IN-1K | 16x1x1 |70 519 803 - - TimeSformer [4] 75.0
MSNet [35] IN-1IK | 16x1x1 | 101 521 823 | 647 894 TimeSformer-HR [4] 78.0
CT-Net [37] IN-1K | 16x1x1 |75 525 809 | 645 893 SVIiT-DD [2] 79.8
TDN [69] IN-1IK | 16x1x1 |72 539 821 | 653 895 TimeSformer-L [4] 81.0
SELFYNet [36] IN-1K | 16x1x1 |77 543 829 | 657 8938 TQN [79] 81.8
RSANet [32] IN-1K | 16x1x1 |72 540 81.1 | 66.0 89.9 RSANet-R50 [32] 84.2
TimeSformer-HR [4] | IN-21K | 16x3x1 | 5109 - - 62.5 - UniFormer-B* [38] 87.4
TimeSformer-L [4] IN-21K | 96x3x1 | 7140 - - 62.3 - ORViT' [25] 88.0
ViViT-L [1] K400 16x3x4 | 11892 - - 654 89.8 StructViT-B-4-2 87.8
X-ViT [6] IN-21K | 32x3x1 | 1270 - - 65.4  90.7 StructViT-B-4-1 88.3
Mformer-HR [52] K400 16x3x1 2876 - - 67.1 90.6 (b) Diving-48
Mformer-L [52] K400 |32x3x1 |3555 - - 68.1 912
Swin-B [47] K400 |32x3x1 |963 - - 69.6 927
MVIT-B,64 x3 [18] K400 | 64x1x3 | 1365 - - 67.7 909
MViT-B-24,32x3 [18] | K600 | 32x1x3 |708 - - 68.7 915 model Gym288 Gym99
UniFormer-S [38] K400 16x3x1 |125 572 849 | 677 914 TRN [82] 33.1 68.7
UniFormer-B [38] K400 | 32x3x1 |777 609 873 | 712 928 13D [8] 27.9 63.2
MViTv2-B [41] K400 |32x3x1 |675 - - 705 927 TSM [43] 34.8 70.6
StructViT-S-4-2 K400 16x3x1 | 126 576 853 | 683 913 TSMyo-stream [43] 46.5 81.2
StructViT-S-4-1 K400 16x3x1 | 246 58.0 855 | 68.8 91.9 RSANet-R50 [32] 50.9 86.4
StructViT-S-8-1 K400 16x3x1 | 405 58.0 857 | 69.0 921 UniFormer-B* [38] 53.5 88.9
StructViT-B-4-2 K400 |32x3x1 |784 61.1 87.7 | 71.1 92.7 StructViT-B-4-2 53.8 89.3
StructViT-B-4-1 K400 | 32x3x1 | 1963 61.3 878 | 715 931 StructViT-B-4-1 54.2 89.5
(a) Something-Something V1 & V2 (c) FineGym

Table 5. Comparisons to the state-of-the-art methods on three motion-centric video classification benchmarks. Our StructViT
achieves new state-of-the-art on all the benchmarks. For FineGym, we measure averaged per-class accuracy while top-k accuracy is
measured for Something-Something and Diving-48. *Reproduced by our experimental setup. tTrained with additional bbox annotations.
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Figure 3. Visualization of dynamic kernels «

struct
4,3
that contain the input spatiotemporal local context (indicated by green boxes) used in the dynamic kernel computation. The bottom row

struct

presents the resulting dynamic kernels k3 ;

in StructSA on Something-Something-V1. The top row shows the input frames

for a StructSA head when ¢ = j. Note that the computed dynamic kernels are computed

with self-similarity map (2 = j) to illustrate its effectiveness in capturing motions in videos. We use StructViT-S-4-1 with M = 5 x 5 x 5.

5. Conclusion

We have introduced a novel self-attention mechanism,
StructSA, that exploits rich structural patterns of query-
key correlation for visual representation learning. StructSA
leverages spatial (and temporal) structures of local cor-
relations and aggregates chunks of local features glob-
ally across entire locations. Structural Vision Transformer
(StructViT) using StructSA as the main attention module
achieves state-of-the-art results on both image and video
classification benchmarks. We believe leveraging structural

patterns of correlation in attention will also benefit other
tasks in computer vision and natural language processing.
We leave this for future work.
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