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Abstract

Deep Neural Networks (DNNs) have demonstrated re-
markable performance across diverse domains and tasks
with large-scale datasets. To reduce labeling costs for
large-scale datasets, semi-automated and crowdsourcing
labeling methods are developed, but their labels are in-
evitably noisy. Learning with Noisy Labels (LNL) ap-
proaches aim to train DNNs despite the presence of noisy
labels. These approaches utilize the memorization effect to
select correct labels and refine noisy ones, which are then
used for subsequent training. However, these methods en-
counter a significant decrease in the model’s generalization
performance due to the inevitably existing noise labels. To
overcome this limitation, we propose a new approach to
enhance learning with noisy labels by incorporating addi-
tional distribution information—structural labels. In order
to leverage additional distribution information for general-
ization, we employ a reverse k-NN, which helps the model
in achieving a better feature manifold and mitigating over-
fitting to noisy labels. The proposed method shows outper-
formed performance in multiple benchmark datasets with
IDN and real-world noisy datasets.

1. Introduction
Deep neural networks (DNNs) have achieved high perfor-
mance in various domains such as computer vision [13, 14,
20, 25, 29, 52], natural language processing [3, 7, 12, 40],
and signal processing [18, 48, 50] across diverse tasks. To
achieve the high performance of DNNs, well-curated large-
scale datasets are necessary. However, labeling large-scale
data requires a significant cost. In order to reduce these
labeling costs, semi-automated [35, 42] and crowdsourc-
ing methods [28] are used, but their labels are inevitably
noisy. When trained on data with noisy labels, DNNs suf-
fer degraded performance because they tend to easily overfit
noisy labeled samples [72]. To address these issues, meth-
ods for learning with noisy labels (LNL), which aim to ef-
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Figure 1. Comparison of t-SNE visualization on CIFAR10 IDN at
noise rate 0.50. (a) DivdeMix on training samples with golden la-
bels. (b) DivdieMix on training samples with predicted labels. (c)
SSR on training samples with golden labels. (d) SSR on training
samples with predicted labels. The black-outlined box represents
areas where samples overlap, similar samples are learned as dif-
ferent classes, or clusters are not separable.

fectively train DNN models in environments with noisy la-
beled samples, have been proposed [1, 15, 17, 23, 31, 41,
45, 75].

Most methods for learning with noisy labels (LNL) are
based on the fact that DNNs tend to learn from clean sam-
ples with simple patterns earlier than from wrong-labeled
samples [1, 69]. Based on the observation, most approaches
adopted an iterative process. Initially, they trained the
model with the entire dataset. The model would learned
some patterns from clean samples rather than noisy sam-
ples. Then, they selected confident samples based on the
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output of the trained model, most of which would be clean
samples. Subsequently, they retrained the model with the
selected samples. They repeat the selection and training.
Consequently, the model can avoid noisy samples and fo-
cus on clean samples. Previous approaches proposed vari-
ous clean sample selection methods based on the model pre-
diction, such as the small-loss trick [23] and the k-Nearest
Neighbor (k-NN) method [9, 16]. Additionally, relabeling
methods are utilized to leverage a larger number of clean
samples by modifying model outputs deemed unreliable.
These learning strategies performed quite well in a noisy
environment, but they still have a critical limitation—they
heavily depend on the model’s predictions for relabeling
and selection.

Essentially, the models guide themselves based on their
own predictions in a noisy environment. If an incorrectly
predicted sample is chosen, the model may learn from it in
the subsequent training step. Therefore, in this self-guided
process, inevitable inaccurate predictions arise from learn-
ing based on previous inaccuracies. By learning from these
inevitable noisy labels, the model not only degrades its gen-
eralization performance but also declines in its ability to ex-
tract features, making the feature manifold more complex.

Figure 1 shows that the learned feature manifolds are
complex due to a degradation of generalization perfor-
mance. It presents t-SNE [60] visualization for Di-
videMix [31], SSR [15]. Figures 1a and 1b display features
of training samples extracted by DivideMix with golden la-
bels and predictions, respectively. In DivideMix, a con-
siderable number of samples from different classes exist
in a single cluster, and the model tends to predict them
with the same label, incorrectly. In Fig. 1c and 1d, SSR
shows better results compared to DivideMix, but clusters
have more complex forms. Furthermore, SSR incorrectly
predicts some samples, and it seems that classes are not sep-
arable. They made efforts to improve generalization by in-
corporating additional objectives, such as consistency regu-
larization [15] and unsupervised loss [17, 31, 75], but still
demonstrate poor generalization performance.

It is a fact that deep learning models trained with
all cleanly labeled samples exhibit good generalization
behavior [44], and their feature distributions are well-
discriminated by class. These well-generalized models have
preserved the following structural characteristics: 1) When
two samples are similar, it is highly probable that they share
the same label. 2) If certain samples form a cluster, they
are likely to have the same label. These are also consistent
with the smoothness/cluster assumptions [4, 61, 76] in the
context of semi-supervised learning. We aim to develop a
method for training a LNL model by consider the charac-
teristics of well-generalized models. In order to incorporate
the characteristics, we aim to extract structural information
based on the distribution of the data and directly integrate it

into the training process.
In this paper, we present a simple approach to enhance

learning with noisy labels by incorporating additional distri-
bution information, structural labels. If a model preserves
the structural assumption, it can avoid overfitting to noisy
labels and achieve better generalized. By extracting the
structural information of data and integrating it into model
training, we can efficiently train models with minimized
bias towards noisy samples. To extract structural labels, we
estimate the data distribution based on Reverse k-Nearest
Neighbor (Reverse k-NN) [57]. And then, the structural la-
bels are learned with cross-entropy based on strong aug-
mentation [10] and mixup [73] methods, which help to
avoid overfitting noisy samples.

To verify our proposed method, we conduct experi-
ments on IDN and real-world noisy datasets including CI-
FAR10 and CIFAR100 with IDN [66], CIFAR-N [63],
Animal-10N [53], Red Mini-Imagenet from CNWL [24],
Mini-WebVision [35], and Imagenet ILSVRC12 [11]. Our
method shows the state-of-the-art performance on various
datasets.

2. Related Work
Deep neural networks (DNNs) tend to overfit to label
datasets so that they also overfit to noisy label samples and
it leads to degraded performance. Many studies have been
conducted to learn datasets with noisy labels. To prevent
overfitting to noisy labels and learn effectively from datasets
with noisy labels, early studies utilized a given small set of
clean samples and relabeled noisy samples based on their
modeling [5, 30, 36, 59, 62, 67]. Subsequently, instead
of using a given small set of clean samples, several stud-
ies focus to distinguish clean samples from the given noisy
datasets [1, 15, 17, 26, 31, 51, 58, 75].

These methods rely on DNNs initially learn from cleanly
labeled samples with simple patterns before overfitting
to noisy label samples [72], and use the small-loss trick
to select clean-label samples [17, 23, 31, 51, 75]. Di-
videMix [31] treats samples with small losses as labeled
samples and the others as unlabeled then trains the model
using MixMatch [2], a semi-supervised learning technique.
C2D [75] leverages self-supervised models to tackle the in-
stability during the warm-up phase of DivideMix, and In-
stanceGM [17] proposes a graphical modeling approach to
address the more realistic noise, Instance-Dependent Noise
(IDN).

Contrary to the loss-based approaches, some methods
utilize the model’s feature representation [15, 34, 64, 71].
TopoFilter [64] proposes a label noise filtering strategy
based on spatial topological patterns, and SSR [15] lever-
ages the model’s high-confident predictions for relabeling
samples and employs a k-NN classifier [9] within the fea-
ture representation space for selecting clean samples.
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In conclusion, recent LNL methods mainly focus on re-
labeling and selecting based on their own predictions. How-
ever, it is challenging to expect good generalization perfor-
mance due to the excessive reliance on the predictions of a
model that may have errors.

3. Proposed Method
Since existing methods heavily depend on uncertain mod-
els’ predictions, they struggle to form good representa-
tions and do not preserve structural information. Well-
generalized models should preserve the assumption that
closer features are likely to be located on the same mani-
fold and have the same label. Therefore, it is necessary not
only to get accurate predictions from the model but also to
consider the distribution of features.

In this section, we propose Learning with Structural La-
bel (LSL), a new approach for learning structural infor-
mation in LNLs. To learn structural information, we esti-
mate the data distribution based on the Reverse k-NN al-
gorithm, which is less influenced by outlier samples com-
pared to k-NN [21, 49], and calculate the probability of
belonging to a class distribution. Then, we extract struc-
tural labels lst from the estimated distribution for all sam-
ples and train the model using a strong augmentation [10]
and mixup [73] strategy. In contrast to traditional relabeling
methods, which depend on uncertain models’ predictions
learned from selected samples with simple patterns, our ap-
proach considers the feature distribution for learning on all
samples, not only selected samples.

3.1. Structural Labels based on Reverse k-NN

In order to obtain more reliable information from noisy pre-
dictions of the model, we define the structural labels, lst,
which are the soft labels of each sample based on sample
distributions. We first obtain class prediction for each sam-
ple from the model, and estimate the distribution of samples
predicted as class c. We estimate the probability of x given
c, P (x|c), based on the similarity of feature representations
and reverse k-NN. We emit k arrows from each sample pre-
dicted as class c to its k nearest neighbors including itself.
For a sample x, P (x|c) can be approximated as follows:

P (x|c) =
#of Arrowsx,c

k · |Xc|
(1)

where #of Arrowsx,c is the total number of arrows re-
ceived by x from samples predicted as c, and |Xc| is the
total number of samples predicted as c. If x exists in the
region where c class samples densely exist, it may receive
more arrows, and vice versa. Consequently, when divided
by the total number of arrows from c class samples, it is an
approximation for P (x|c).

Figure 2 shows estimation examples of 2-d Guassian and
Moon data [47]. Figures 2a and 2c show distributions by
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Figure 2. Comparison of distributions between Gaussian model-
ing and reverse k-NN modeling in 2-D Gaussian dataset and Moon
dataset. Figure 2a shows the Gaussian modeling effectively esti-
mates distribution for Gaussian samples. However, the Gaussian
modeling fails to fit the distribution of the Moon dataset in Fig. 2c.
Figure 2b and Fig. 2d show Reverse k-NN effectively approxi-
mates the data distribution for both Gaussian and Moon datasets.

Gaussian modeling, and 2b and 2d show distributions by our
modeling based on reverse k-NN. The Gaussian modeling
can efficiently estimates the distributions, but it is hard to
accurately model complex data distributions like the Moon
dataset. In contrast, the distribution estimation based on
reverse k-NN effectively approximates not only the simple
distribution, Gaussian, but also the complex data distribu-
tion, Moon dataset.

Based on the feature distribution, we define the structural
label of x, which is the soft label representing the probabil-
ity of c given x:

P (c|x) = P (x|c)P (c)∑
c∈C P (x|c)P (c)

. (2)

The prior P (c) represents the probability of observing class
c, which can be determined from the number of samples in
each class:

P (c) =
|Xc|∑C
c=1 |Xc|

. (3)

Then, Eq. (2) can be reformulated as follows:

P (c|x) = P (x|c) |Xc|∑C
c=1 P (x|c) |Xc|

. (4)

From Eqs. (1) and (4), P (c|x) is approximated as follows:

P (c|x) =
#of Arrowsx,c∑C
c=1 #of Arrowsx,c

. (5)
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Algorithm 1: Extracting Structural Labels based on
reverse k-NN distribution estimation

Input : model encoder θ,
training dataset X ,Y = {(xi, y

r
i )

N
i=1}

Parameter: number of reverse nearest neighbors kst
Output : structural labels by st Yst = {(yst)Ni=1}

1 T = torch.zeros[N, K]
2 # K is the number of classes
3 # T indicates edge count table
4 F = Normalize(θ(X )) # Normalize all features
5 for i← 1 to N do
6 score = Cosine(fi,F)
7 indices = score.topk(kst)
8 # Emit k edges to kst nearest neighbors
9 T [indices, yri ] += 1

10 # Propagate its label to k nearest neighbors
11 end
12 Yst = T / T.sum(dim=1, keepdim=True)
13 # Aggregate from received labels and normalize these labels
14 return Yst

Since P (c|x) is estimated from noisy prediction of the
model, it can be affected by wrong predictions. How-
ever, if we assume that the uniform noise over the sample
space, it is clear that the probability is free from the uni-
form noise. Even though the noise is not uniform, it can
be easily smoothed if we use enough large kst. However, if
kst is too large, the number of arrows received from sam-
ples of classes other than c will increase. It can lead to
over-smoothing of lst and lose the structural information.
To avoid over-dilution of structural information, we need
to choose an appropriate value of kst, and it is discussed
in Sec. 5.2.

In conclusion, the structural label of x estimated by re-
verse k-NN effectively reflects the distribution information
of the samples in noisy data environments. Algorithm 1
shows how to obtain the structural labels.

3.2. Learning with Structural Labels (LSL)

To learn structural information, we utilize structural labels
lst to effectively reflect feature distribution with SSR [15].
It is one of the LNL methods that considers feature repre-
sentation. The procedure for the proposed method is de-
scribed in Algorithm 2.

In Algorithm 2, line 2 indicates relabeling based on
model prediction with Eq. (6), and line 3 indicates sample
selection based on k-NN.

yri =

{
argmaxlf(α(xi)), if maxl f(α(xi)) > τr

yi, otherwise
(6)

Algorithm 2: Learning with Structural Labels
(LSL)

Input : model encoder θ,
multi-layer neural network ϕ,
training dataset (X ,Y) = {(xi, yi)}Ni=1

Parameter: sample relabelling threshold τr,
feature consistency loss weight λfc,
structural loss weight λst

1 while e < epochs do
2 Yr ← Sample Relabeling(θ,X , τr) with Eq. (6)
3 Xsel,Yr

sel ← Sample Selection(θ, X )
4 # Relabeling and Selection with SSR
5 Yst ← Proposed Sample Relabeling(θ,X ,Yr)
6 # Structural labels extracted from Algorithm 1
7 From Xsel, draw a mini-batch

{(xsel,b, y
r
sel,b); b ∈ (1, ..., B)}

8 From X , draw a mini-batch
{(xb, y

st
b ); b ∈ (1, ..., B)}

9 for b← 1 to B do
10 Lce = Mixup(θ(A(xsel,b)), y

r
sel,b)

11 # A is a strong-augmentation
12 Lfc = −Cosine(ϕ(θ(α(xb))), ϕ(θ(A(xb))))
13 # α is a weak-augmentation
14 # Feature consistency learning
15 Lst = Mixup(θ(A(xb)), y

st
b )

16 # Calculate structural loss with yst
17 L = Lce + λfcLfc + λstLst

18 θ = SGD(L, θ)
19 # Update model parameters by minimizing L

20 end
21 end

where, α indicates the weak-augmentation, and τr indicates
the relabeling threshold.

In line 5, structural labels lst, which incorporate distri-
bution information, are extracted as described in Sec. 3.1.
These structural labels are learned with cross-entropy based
on the strong augmentation [10] and mixup [73], following
the same manner as learning selected samples in line 10.
Consequently, by learning structural labels, the model pre-
serves the structural assumption, leading to an enhancement
in the model’s generalization performance.

4. Experiments
To verify the effectiveness of our method, we conduct
experiments on multiple noisy benchmark datasets such
as CIFAR10 and CIFAR100 with IDN [27, 66], CIFAR-
N [63]. Additionally, we evalutate our method on real-
world noisy datasets such as Animal-10N [53], Red Mini-
Imagenet from CNWL [24], Mini-webvision [35], and Im-
agenet ILSVRC12 [11].
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Method IDN - CIFAR10 IDN - CIFAR100
0.20 0.30 0.40 0.45 0.50 0.20 0.30 0.40 0.45 0.50

CE [70] 75.81 69.15 62.45 51.72 39.42 30.42 24.15 21.45 15.23 14.42
Mixup [73] 73.17 72.02 61.56 56.45 48.95 32.92 29.76 25.92 23.13 21.31

Forward [46] 74.64 69.75 60.21 48.81 46.27 36.38 33.17 26.75 21.93 19.27
Reweight [39] 76.23 70.12 62.58 51.54 45.46 36.73 31.91 28.39 24.12 20.23
Decoupling [43] 78.71 75.17 61.73 58.61 50.43 36.53 30.93 27.85 23.81 19.59
Co-teaching [19] 80.96 78.56 73.41 71.60 45.92 37.96 33.43 28.04 25.60 23.97

MentorNet [23] 81.03 77.22 71.83 66.18 47.89 38.91 34.23 31.89 27.53 24.15

DivideMix [31] 94.80 94.60 94.53 94.08 93.04 77.07 76.33 70.80 57.78 58.61

SSR∗ [15] 96.49 96.52 96.33 95.89 94.06 78.84 78.60 76.95 74.98 72.83

InstanceGM [17] 96.68 96.52 96.36 96.15 95.90 79.69 79.21 78.47 77.49 77.19

LSL (Ours) 97.13 96.85 96.53 96.58 95.81 80.94 79.90 78.60 78.08 77.95

Table 1. Test accuracy (%) of different methods on CIFAR10-IDN and CIFAR100-IDN [66] under various IDN noise rates. Most of the
experimental results are extracted from state-of-the-art methods [15, 17, 31]. Bold values indicate the best performances. The reproduced
result is marked with ∗.

We describe these datasets in Sec. 4.1 and provide the
implementation details in Sec. 4.2. In Sec. 4.3, we compare
our approach with state-of-the-art models in various IDN
benchmarks and real-world noisy datasets.

4.1. Datasets

CIFAR10 and CIFAR100 both datasets [27] consist of
50,000 training images and 10,000 testing images, and each
image has dimensions of 32×32×3. The CIFAR10 has 10
classes, while CIFAR100 has 100 classes. To conduct ex-
periments in the instance-dependent noise (IDN) environ-
ment, we obtained noisy labels of the CIFAR10 and CI-
FAR100 datasets according to [66]. We set the noise rate for
IDN settings at values of 0.20, 0.30, 0.40, 0.45, and 0.50.

The CIFAR10N and CIFAR100N datasets [63] consist of
human-annotated noisy labels obtained from Amazon Me-
chanical Turk. CIFAR10N and CIFAR100N datasets in-
clude 5 and 2 noisy label types, respectively. In this pa-
per, we evaluate the settings with the highest noise rates,
specifically CIFAR10N Worst (CIFAR10N-W, a noise rate
of 40.21%) and CIFAR100N Fine (CIFAR100N-F, a noise
rate of 40.20%).

Animal-10N dataset [53] consists of 50,000 training im-
ages and 10,000 test images, with each image having a res-
olution of 64×64×3. The dataset has 10 animal categories,
including 5 pairs of animals with similar appearances and
the estimated noise rate of the dataset is 8%.

Red Mini-Imagenet from CNWL [24] dataset is anno-
tated by 3-5 labeling professionals using Google Cloud
Data Labeling Service. The dataset comprises 600 train-
ing samples for each of its 100 classes. While the origi-

nal image size is 84×84×3, we resize it to 32×32×3 for a
fair comparison with other experiments [17, 68]. It supports
noise ratios ranging from 0% to 80%, and we validate our
model on training data with noise ratios of 20%, 40%, 60%,
80%.

WebVision [35] is a large-scale dataset with 2.4 million
images collected from the web across 1k categories, and
Mini-WebVision is a dataset composed of the initial 50 cat-
egories from the WebVision dataset. Mini-WebVision con-
tains 65,994 training images, and we resized the images
to 256×256×3. For validation, we use not only Mini-
WebVision but also ImageNet ILSVRC12 dataset [11],
which shares the same subset of categories.

4.2. Implementation Details

All experiments are conducted using the PyTorch frame-
work on an NVIDIA RTX 3090Ti GPU. Unless otherwise
specified, all hyperparameter values mentioned below are
followed from SSR [15].

For CIFAR10 and CIFAR100 with IDN datasets, we use
a PreAct-ResNet-18 [20] following DivideMix [31]. We use
SGD optimizer for 300 epochs with a momentum of 0.9, a
weight decay of 5e-4, an initial learning rate of 0.02, and
the cosine annealing function as a learning scheduler. We
set a relabeling threshold, τr, from 0.55 to 0.8 for CIFAR10
and CIFAR100 with IDN as the noise ratio decreases, and
the batch size to 128. For CIFAR-N datasets, we set τr to
0.8 for CIFAR10-N and CIFAR100-N, and all other details
are consistent with CIFAR10/100 with IDN configurations.
For Red Mini-Imagenet from CNWL [24], we set τr to 0.8,
and all other details are consistent with CIFAR10/100 with
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Method CIFAR10N-W CIFAR100N-F

CE [70] 77.69 55.50

CAL [77] 85.36 61.73

ELR [37] 91.09 66.72

SOP+ [38] 93.24 67.81

DivideMix [31] 92.56 71.13

SSR∗ [15] 93.50 71.99

LSL (Ours) 94.57 74.46

Table 2. Test accuracy (%) of CIFAR-N [63]. Bold values indicate
the best performances and the reproduced result is marked with ∗.

IDN configurations.
For Animal-10N, we use a VGG-19 with batch-

normalization [55]. We use SGD optimizer for 150 epochs
with a momentum of 0.9, a weight decay of 5e-4, an ini-
tial learning rate of 0.02, and the step function as a learning
scheduler with a reduction factor of 10 and a step size of 50
epochs. We set τr to 0.8, and the batch size of 128.

For Mini-WebVision, we use an InceptionResNetv2 [56]
following [31]. We use SGD optimizer for 150 epochs with
a momentum of 0.9, a weight decay of 1e-4, an initial learn-
ing rate of 0.01, and the step function as a learning scheduler
with a reduction factor of 10 and a step size of 50 epochs.
We set τr to 0.8, and the batch size to 64.

For mixup interpolation, we set both α and β to 4 for
beta mixture on IDN datasets, CIFAR-N and Red Mini-
ImageNet, and to 0.5 on other datasets. We set the con-
sistency loss weight λfc and the structural loss weight λst

to 1.0, and the number of reverse nearest neighbors kst to
20.

4.3. Experimental Results

The results for CIFAR10 and CIFAR100 with IDN bench-
mark datasets are shown in Tab. 1. Our proposed method
exhibits the best performance in all cases except for CI-
FAR10 with an IDN noise ratio of 0.5. Even in CIFAR10
with an IDN noise ratio of 0.5, our method demonstrates
comparable performance to the baseline, within a margin of
0.1% points. These results demonstrate that our method is
consistently effective across various IDN environments.

Tables 2 to 5 show the results for real-world noisy
datasets. The performance on CIFAR10N-W and
CIFAR100N-F is presented in Tab. 2. For both datasets,
which have a noise rate of approximately 40%, our pro-
posed method shows significant improvements by 1.1%
and 3.4%, respectively, compared to the baseline methods.
These results confirm the effectiveness of our approach,
not only with synthetic IDN noise but also with human-
annotated real-world noisy labels.

Method Noise rate

0.2 0.4 0.6 0.8

CE [70] 47.36 42.70 37.30 29.79
Mixup [73] 49.10 46.40 40.58 33.58

MentorMix [24] 51.02 47.14 43.80 33.46

FaMUS [68] 51.42 48.06 45.10 35.50

DivideMix [31] 50.96 46.72 43.14 34.50

SSR∗ [15] 52.18 48.96 42.42 33.20

InstanceGM [17] 58.38 52.24 47.96 39.62
LSL (Ours) 54.68 49.80 45.46 36.78

Table 3. Test accuracy (%) of Red Mini-Imagenet (CNWL) [24].
Bold values indicate the best performances and the reproduced
result is marked with ∗.

Method Test Accuracy (%)

CE [70] 79.4

Nested-Dropout [6] 81.8

CE+Dropout [6] 81.3

SELFIE [54] 81.3

PLC [74] 83.4

Nested-CE [6] 84.1

SSR [15] 88.5

InstanceGM [17] 84.6

LSL (Ours) 89.1

Table 4. Test accuracy (%) of ANIMAL-10N [53]. Bold values
indicate the best performances.

The experimental results on the Red Mini-ImageNet
from CNWL dataset are presented in Tab. 3. Our proposed
method demonstrates the second-best performances.

Animal-10N is a challenging dataset consisting of 5 pairs
of easily confused animals and has a relatively low noise ra-
tio of approximately 8% compared to other real-world noisy
labels. For this dataset, our method outperforms other ap-
proaches, as shown in Tab. 4.

Lastly, Tab. 5 shows performance on the large-scale We-
bVision and ImageNet datasets. Our method achieves the
best performance on all cases in Top1 accuracy. Especially,
our proposed method shows best performance on the Top1
accuracy of ImageNet, and it shows that our method gener-
alizes very well to other datasets.
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Method WebVision IISVRC2012
Top-1 Top-5 Top-1 Top-5

Co-teaching [19] 63.58 85.20 61.48 84.70

ELR+ [37] 77.78 91.68 70.29 89.76

NGC [65] 79.16 91.84 74.44 91.04
LongReMix [8] 78.92 92.32 - -

RRL [32] 76.30 91.50 73.30 91.20

Sel-CL+ [33] 79.96 92.64 76.84 93.04
TCL [22] 79.10 92.30 75.40 92.40

DivideMix [31] 77.32 91.64 75.20 90.84

SSR [15] 80.92 92.80 75.76 91.76

LSL (Ours) 81.40 93.00 77.00 91.84

Table 5. Test accuracy (%) of WebVision [35] and
IISVRC2012 [11]. Bold values indicate the best performances.

0 50 100 150 200 250 300
Epochs

20

40

60

80

Ac
cu

ra
cy

DivideMix
SSR
proposed

Figure 3. Comparison of training accuracy. Our proposed method
outperforms existing approaches. Through the proposed structural
labels based on the feature distribution, the model can effectively
leverage the entire training dataset.

5. Ablation Studies
In this section, we analyze the effectiveness of our proposed
method and introduce its details. All ablation studies are
conducted on the CIFAR10 with IDN dataset [66].

5.1. Effectiveness of learning structural labels

Figure 3 shows the accuracy of training data, the agreement
between the model’s predictions and the original clean la-
bels as training progresses. The original clean labels are
used only for evaluation, not for training. In LNL, the ac-
curacy typically does not reach 100% by the end of train-
ing as models cannot fully generalize from noisy training
data. Our proposed method shows a higher training accu-
racy compared to other approaches such as DivideMix [31]
and SSR [15]. Existing methods are difficult to accurately
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(b) Histogram of logits by the proposed method

Figure 4. Histogram of Logits for the Training Dataset of CI-
FAR10 with IDN at noise rate 0.50.

relabel and select more samples with complex patterns, so
they only learn a fraction of the training data and struggle to
generalize. In contrast, our proposed method, which utilizes
structural labels lst based on feature distribution, effectively
leverages more samples and achieves better generalization
performance.

Figure 4 shows the distribution of logits for SSR and our
proposed method on CIFAR10 with IDN at noise rate 0.50.
In SSR, the total number of misclassified samples is 3238.
Among them, 1248 samples are misclassified as given noisy
labels, accounting for 0.39 percent of the total misclassified
samples. On the other hand, in our method, the total number
of misclassified samples is 2107. Among them, the number
of misclassified samples as given noisy labels is 646. The
percentage of them is 0.31. Thus, our proposed method ex-
hibits fewer total misclassified samples and a lower percent-
age of misclassified samples as given noisy labels. Also,
The logit distribution of misclassified samples with given
noise (red) is skewed to the right relative to the logit distri-
bution of misclassified samples (orange) in SSR, whereas
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Figure 5. Accuracy with respect to hyperparameters on CIFAR10
with IDN at noise rate 0.20. The red dashed line represents the
performance of the state-of-the-art (SOTA).

ours is not. As these statistics demonstrate, our method
avoids overfitting to given noisy labels and achieves better
generalization performance.

5.2. Hyperparameters

To validate the sensitivity of the hyperparameters, experi-
ments are conducted using various values of kst for reverse
k-NN and the weight of the structural loss, λst. The results
are shown in Fig. 5.

Figure 5a shows the model’s accuracy with respect to
different values of the hyperparameter kst. Based on the
feature distribution, the model can be trained by smooth-
ing over the correct answer labels of its neighboring sam-
ples in a noisy environment. However, if kst is too small,
our method cannot fully incorporate the feature distribution.
On the contrary, if kst is too large, the number of arrows re-
ceived from samples of classes other than c will increase,
and then structural labels lst are over-smoothed. To avoid
over-dilution of structural information, we need to choose
an appropriate value of kst. Therefore, we experiment with
various values to determine the optimal kst. Our proposed
model shows the best performances at a kst of 20.

Figure 5b shows the performance of our proposed
method with respect to value of λst, the weight of the struc-
tural loss. When applying structural loss, there is a clear
performance improvement compared to the case where it is
not applied, λst is 0. Additionally, it demonstrates stable,
improved performance regardless of changes in the value.

(a) (b)

Figure 6. Comparison of t-SNE visualization on CIFAR10 with
IDN at noise rate 0.50. (a) Ours on training samples with golden
labels. (b) Ours on training samples with predicted labels. There
are only smaller amount of wrongly trained samples than Di-
videMix and SSR.

5.3. The t-SNE visualization

Figure 6 shows t-SNE visualization of features for the pro-
posed method. Unlike DivideMix and SSR in Fig. 1, our
method not only learned a relatively simple manifold but
also exhibits well-separated clusters, each predominantly
representing one class. This confirms that our method
demonstrates superior generalization performance.

6. Conclusion

In this paper, we explored the generalization problem in
learning with noisy labels (LNL) and proposed a simple yet
effective approach to address these challenges. While exist-
ing LNL methods, our proposed method employed a reverse
k-NN to leverage structural information based on feature
distribution. And by learning the structural information, the
model had a better feature manifold and robustness against
overfitting to noisy labels, thus achieving better general-
ization performance. The proposed method demonstrated
outperformed performance across various datasets includ-
ing CIFAR10 and CIFAR100 with IDN, CIFAR-N, Animal-
10N, Red Mini-Imagenet, Mini-WebVision, and ImageNet.
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