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Abstract

Open-vocabulary object detection (OVD) has been stud-
ied with Vision-Language Models (VLMs) to detect novel
objects beyond the pre-trained categories. Previous ap-
proaches improve the generalization ability to expand the
knowledge of the detector, using ‘positive’ pseudo-labels
with additional ‘class’ names, e.g., sock, iPod, and alli-
gator. To extend the previous methods in two aspects, we
propose Retrieval-Augmented Losses and visual Features
(RALF). Our method retrieves related ‘negative’ classes
and augments loss functions. Also, visual features are aug-
mented with ‘verbalized concepts’ of classes, e.g., worn on
the feet, handheld music player, and sharp teeth. Specif-
ically, RALF consists of two modules: Retrieval Aug-
mented Losses (RAL) and Retrieval-Augmented visual Fea-
tures (RAF). RAL constitutes two losses reflecting the se-
mantic similarity with negative vocabularies. In addition,
RAF augments visual features with the verbalized con-
cepts from a large language model (LLM). Our experiments
demonstrate the effectiveness of RALF on COCO and LVIS
benchmark datasets. We achieve improvement up to 3.4
box APN

50 on novel categories of the COCO dataset and 3.6
mask APr gains on the LVIS dataset. Code is available at
https://github.com/mlvlab/RALF.

1. Introduction
Open-vocabulary object detection (OVD) aims to detect

objects belonging to open-set categories. It is a challenging
task because novel categories do not appear during train-
ing. Pre-trained vision-language models (VLMs) enable the
detector to recognize base categories as well as novel cate-
gories via their zero-shot visual recognition ability learned
from large-scale image-text pairs from the Internet. For in-
stance, CLIP [19] and ALIGN [12] are widely used in OVD
to classify unseen objects [8, 16, 28].

Knowledge distillation is one approach to transfer the
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Figure 1. Negative vocabularies and verbalized concepts from
a large vocabulary set. (a) Example of negative vocabularies that
can be derived from a large vocabulary set. From the vocabu-
lary set, ‘cat’ and ‘bottle’ can be retrieved as hard negative (simi-
lar) and easy negative (dissimilar) vocabulary, given the category
‘jaguar’. (b) Example of verbalized concepts that are generated
from LLMs. The concepts of the objects provide more detailed
information about the object, such as the attributes.

knowledge of VLMs to the detector. It has been extensively
explored in the literature [5, 8, 23, 28, 36]. For the more ef-
fective knowledge distillation, some works have endeavored
to match words at the region level rather than at the image
level to ensure better alignment [23, 28, 36]. To improve
generalization to novel categories, several studies employ
pseudo-labeling to expand detector knowledge [4,6,35,36].
Pseudo-labels (positive classes) are generated for region
proposals by matching their visual features with words from
additional vocabulary sets or captions. So, the additional
vocabulary sets are constructed only focusing on ‘positive’
classes. We believe that more diverse vocabulary sets such
as ‘negative’ classes and verbalized (visual) concepts with
new techniques will open the door to further improve OVD
frameworks.

To study the underexplored directions, in this paper we
propose methods utilizing ‘negative’ classes and ‘verbal-
ized concepts’ to more effectively use vocabulary sets to
enhance the generalization ability to novel categories. One
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approach involves retrieving vocabularies that have seman-
tic relationships from large vocabulary sets when given a
specific category. For example, given the category ‘jaguar’,
we retrieve ‘cat’ and ‘bottle’ as hard (similar) and easy (dis-
similar) negative vocabulary, respectively as shown in Fig-
ure 1a. Using these negative classes, we augment loss func-
tions. Another approach is generating verbalized concepts
that describe the attributes (e.g. sharp teeth) of classes by
LLMs, as depicted in Figure 1b. This information is useful
in learning effective representations.

We present a novel framework, Retrieval-Augmented
Losses and visual Features (RALF), which retrieves vocab-
ularies and concepts from a large vocabulary set and aug-
ments losses and visual features. RALF is composed of two
parts: Retrieval-Augmented Losses (RAL) and Retrieval-
Augmented visual Features (RAF). Given the ground-truth
label, we construct hard and easy negative vocabularies by
retrieving from the vocabulary store based on similarity.
Then, RAL optimizes the distance between the ground-truth
label and pre-defined vocabularies with additional losses.
Additionally, we utilize a large language model (LLM) to
obtain abundant information rather than word units. Af-
ter generating descriptions about large vocabularies from
LLM, we extract verbalized concept details that represent
the characteristics of the objects and pile them in a concept
store. During inference time, RAF augments visual fea-
tures with the verbalized concepts retrieved from the con-
cept store. Then the enhanced features are used in clas-
sification. To validate the effectiveness of RALF, we con-
ducted experiments on COCO and LVIS benchmarks. Over-
all, RALF improves the generalization ability of the detec-
tor.

Our contributions are threefold:

• We present RALF that retrieves vocabularies and aug-
ments losses and visual features to improve the gener-
alizability of open-vocabulary object detectors.

• RAL optimizes an embedding space by reflecting the
distance between ground-truth labels and negative vo-
cabularies from a large vocabulary set. And RAF aug-
ments visual features with verbalized concepts relevant
to visual attributes in images.

• With the method, we achieve 41.3 APN
50 in novel cat-

egories on the COCO benchmark and also reach 21.9
mask APr in novel categories on LVIS.

2. Related works
Pre-trained vision-language model. Pre-trained VLMs
such as CLIP [19] and ALIGN [12] are trained on large
image-text pair datasets via contrastive learning for joint
representation in visual and language modalities. Pre-
trained VLMs consist of two encoders - image encoder and

text encoder - extracting image embedding and text embed-
ding, respectively. By applying contrastive learning, they
can be aligned with each other in the same latent space. For
this reason, pre-trained VLMs have superior generalizabil-
ity and transferability to various downstream tasks. For ex-
ample, CLIP [19] which is pre-trained on extensive image-
text pair data, shows impressive performance on zero-shot
image classification tasks. Recently, thanks to the suc-
cess of CLIP, there have been many studies for introduc-
ing VLMs to various downstream tasks such as image seg-
mentation [15,22,37], image generation [20,29], and object
detection [8, 16, 23, 28, 30].
Open-vocabulary object detection. Object detection task
refers to a task that detects an object in a scene and classifies
the detected object. A representative study, Fast R-CNN [7],
shows excellent object detection performance with CNN ar-
chitecture. However, there is a limit to the object detection
task that requires a lot of human cost for annotation. A zero-
shot object detection approach was presented to determine
whether a detector can detect a category that was not seen
during learning. Recently, open-vocabulary object detec-
tion (OVD) [28, 30, 31] has attracted attention. OVD evalu-
ates the ability to predict novel categories by learning using
additional caption data such as CC3M [25]. As pre-trained
VLMs trained with large datasets perform well with zero-
shot for various downstream tasks, diverse approaches to
solve through pre-trained VLMs have been studied in OVD.
ViLD [8], the most representative study, uses knowledge
from CLIP, one of the pre-trained VLMs, and learns the
class-agnostic region proposal to perform well for unseen
classes. Many follow-up studies have also been conducted
on this, and Object-Centric-OVD [23] proposes an object-
centric alignment method to solve the localization problem
that occurs when CLIP is applied to OVD.
Retrieval-augmentation. Retrieval augmentation was ini-
tially introduced in language generation tasks for parame-
ter efficiency. RAG [14] introduces generation models that
combine parametric and non-parametric memory access.
Recently, retrieval augmentation has been utilized in many
vision tasks [18, 26, 32]. RDMs [1] suggest efficiently stor-
ing an image database and conditioning a relatively com-
pact generative model. EXTRA [21] proposes a retrieval-
augmented image captioning model that enhances perfor-
mance by leveraging cross-modal representations. Unlike
these methods employing retrieval augmentation in gener-
ation tasks, we applied retrieval augmentation to the OVD
task for the first time in our knowledge.

3. Method
In this section, we proposed a new framework RALF

that Retrieves information from a large vocabulary store and
Augments Losses and visual Features. Before we delve
into RALF, we briefly introduce the open-vocabulary ob-

17428



Ground-Truth Box

Backbone

RAL

RoI Head

RPN

(a) Training pipeline w/RAL.

RPN Crop Image
Encoder

Concept
Retriever Augmenter

Offline
G
enerate

Pseudo-label

(b) RAF training.

Ensemble

Backbone
+ RPN

Concept
Retriever Augmenter

RoI Head

Crop

Image
Encoder

Text Embeddings of

Text Embeddings of

Text Embeddings of

(c) Inference pipeline w/RAF.

Figure 2. Overall pipeline of RALF. (a) The first module, RAL, is utilized during detector training. Given a ground-truth box b, the
ground-truth box embedding eb is extracted and used to define LRAL, which is augmented with hard and easy negative vocabulary. The
augmented loss LRAL and the baseline loss Lbaseline are employed together to train the detector. The illustration of the other branches
(e.g., box regression, distillation, and mask prediction) is omitted in both training and inference pipelines. (b) The second module, RAF,
augments visual features with verbalized concepts and is pre-trained before being used in the inference pipeline. Augmented visual features
vaug
r are created through a process involving concept retriever and augmenter, using visual features vr generated from object proposals in

offline. RAF is trained with two losses (Lcls and Lreg), utilizing vr , vaug
r , and ỹr , which is the pseudo-label of visual feature. (c) During

detector inference time, the trained RAF is utilized. Classification logits lr trained by RAL and auxiliary logits laux
r influenced by RAF are

computed with text embeddings of test categories. Then, the final logits lfinal
r are determined through an ensemble of lr and laux

r .

ject detection task in Section 3.1. The overall pipeline
of the proposed method is described in Section 3.2. Our
method consists of two modules: 1) Retrieval-Augmented
Losses (RAL) to train the object detector, and 2) Retrieval-
Augmented visual Features (RAF) using the generated con-
cepts by a large language model. The modules are presented
in Section 3.3 and Section 3.4, respectively.

3.1. Preliminaries

Open-vocabulary object detection (OVD) is an advanced
visual recognition task that extends the capability of tradi-
tional object detectors beyond pre-trained categories. OVD
aims to localize and classify a wide range of objects, in-
cluding the categories not encountered during training. In
OVD, the pre-trained categories and unseen categories are
called base categories CB and novel categories CN , re-
spectively. In general, the approaches for OVD leverage
a pre-trained region proposal method, e.g., Region Proposal
Network (RPN), for category-agnostic (initial) localization.

After the region proposal step, OVD methods utilize a pre-
trained vision-language model to classify a wide range of
categories in a zero-shot learning manner. Specifically,
given region proposal r, the methods extract a region em-
bedding er ∈ Rd and compute the similarity or perform
zero-shot classification with the text embeddings of cate-
gory T (c) ∈ Rd, where T is the text encoder and c is either
a base or new category, i.e., c ∈ CB∪CN . Unless explicitly
stated, vectors are row vectors in this paper.

3.2. Overview of RALF

We present the overall pipeline of Retrieval-Augmented
Losses and visual Features (RALF). As described in Fig-
ure 2, RALF consists of two modules: 1) RAL (Figure 2a),
which retrieves negative vocabularies from the vocabulary
store by semantic similarity, and enhances the loss func-
tion for training object detectors, and 2) RAF (Figure 2b),
which augments visual features using verbalized concepts
by a large language model given retrieved vocabulary.
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In RAL, we define two negative vocabulary sets V hard
yb

and V easy
yb to train the object detector. They are retrieved

based on the semantic similarity score between the ground-
truth class label yb and vocabularies from the external vo-
cabulary store CV . In RAF, we extract the concepts asso-
ciated with objects by LLM and retrieve them to augment
visual feature vr ∈ Rd by using the augmenter A for better
classification.

Following the conventional OVD setup, our detector is
trained with annotated bounding boxes of base categories
CB. As shown in Figure 2a, retrieval-augmented losses are
additionally used for training. The total loss for training the
object detector is defined as follows:

Ltotal = Lbaseline + LRAL, (1)

where Lbaseline denotes the loss of the baseline and LRAL is
explained in Section 3.3. We utilize the obtained conceptual
information to train the RAF module independently. As il-
lustrated in Figure 2c, RAF augments the visual feature in
a plug-in manner during inference time. Detailed explana-
tions of RAL and RAF will be introduced in Section 3.3 and
Section 3.4, respectively.

3.3. Retrieval-Augmented Losses

In our method, we introduce Retrieval-Augmented
Losses (RAL), a novel framework utilizing a large vocab-
ulary store to enhance the detector’s generalization power
across both base and novel object categories. Our approach,
as described in Figure 3, involves the creation of distinct
negative vocabulary sets – categorized as ‘hard’ and ‘easy’
– based on their similarities to the ground-truth category.
RALF trains the detector with RAL, which is established
with triplet losses between hard and easy negative vocabu-
lary and ground-truth box.
Negative retriever. To derive hard and easy negative vo-
cabularies, we exploit a large vocabulary set containing a
wider range of object classes. First, we remove redundant
categories from a vocabulary set and refine the vocabulary
store CV to prevent the possibility that the detector may
see novel categories CN , i.e., CV ∩ CN = ∅. Then,
we define hard negative vocabulary V hard

yb
and easy nega-

tive vocabulary V easy
yb using relative similarity. Specifically,

given a ground-truth class label yb, we obtain text embed-
ding T (yb) ∈ Rd. The negative retriever samples hard and
easy negative vocabularies from CV with respect to cosine
similarity between T (yb) and T (CV). However, we ob-
served that some vocabularies have constantly high (or low)
similarity scores for any base category. In this case, the vo-
cabularies are not useful to augment losses. To mitigate this
issue, we adopt the rank variance sampling scheme, which
filters out the vocabularies based on the variance of their
rankings measured by similarity. Specifically, we first mea-
sure the similarity between a base category c ∈ CB and all

Mean Mean

Retrieved negative vocabularies

Hard Negative
lettuce

avocado
green beans

Easy Negative
greylag

carillonneur
trouser press

‘broccoli’ Vocabulary Store
Ground-Truth Label

Ground-Truth
Box Embedding

Negative
Retriever

Text Encoder

Figure 3. RAL. Given ground-truth class label yb, negative re-
triever extracts hard negative vocabulary V hard

yb and easy negative
vocabulary V easy

yb based on semantic similarity with T (yb). To en-
hance the generalizability of the detector, two triplet losses (i.e.
hard negative loss Lhard and easy negative loss Leasy) are aug-
mented with V hard

yb , V easy
yb , and ground-truth box embedding eb.

the vocabularies in CV . Then, the ranking of CV
i given c is

defined as:

rankc(C
V
i )

c∈CB
= 1 +

∑
j ̸=i

1[T (c)T (CV
j )

⊤ > T (c)T (CV
i )

⊤].

(2)
We finally compute the variance of rankc(CV

i ) using all CB.
Vocabularies with a relatively low variance of rankings are
removed. Then, top-m and bottom-m vocabularies based
on the similarity score are selected for each base category as
hard and easy negative vocabularies, respectively. For each
iteration of training, n vocabularies are randomly selected
among the m vocabularies to augment losses. Further de-
tails of sampling schemes are discussed in the supplemen-
tary materials.
Hard and easy negative losses. Hard and easy negative
vocabularies are denoted as V hard

yb
and V easy

yb , respectively.
V hard
yb

consists of the words similar to ground-truth yb class
whereas V easy

yb is the least similar words to V hard
yb

. Using
the two sets of negative vocabularies with the triplet loss,
we propose hard negative loss Lhard and easy negative loss
Leasy. Specifically, we first define the average cosine simi-
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larity with ground-truth embedding eb as below:

U hard
yb

:=
1

n
1T (V hard

yb
)e⊤b , (3)

U easy
yb

:=
1

n
1T (V easy

yb
)e⊤b , (4)

where 1 ∈ Rn given n vocabularies. Then, the hard neg-
ative loss Lhard and easy negative loss Leasy are defined as
follows:

Lhard = max
(
λhardU hard

yb
− T (yb)e

⊤
b + αhard, 0

)
, (5)

Leasy = max
(
λeasyU easy

yb
− U hard

yb
+ αeasy, 0

)
, (6)

where λhard and λeasy are hyperparameters, and αhard and
αeasy denote margins. To sum up, hard negative loss Lhard

encourages eb to have higher similarity with yb than V hard
yb

.
Easy negative loss Leasy prompts V hard

yb
to exhibit relatively

higher similarity to yb than V easy
yb . The total loss LRAL is

computed with a summation of hard negative loss and easy
negative loss as follows:

LRAL = βhardLhard + βeasyLeasy, (7)

where βhard and βeasy are hyperparameters.

3.4. Retrieval-Augmented visual Features

We introduce Retrieval-Augmented visual Features
(RAF) that augments visual features using the verbalized
concepts of each object category, as depicted in Figure 4.
Concept store. The concept store consists of a set of
characteristics describing the object (e.g., color, scale,
shape, etc.). The characteristics for CB ∪ CV are gener-
ated by a large language model (LLM) using ‘Describe
what a(n) {vocabulary} looks like.’ prompt
template, following [13]. Note that CN is not used to gen-
erate verbalized concepts. We remove meaningless words
such as prepositions from descriptions generated by LLM
and store only meaningful noun chunks in the concept store.
Concept retriever. Concepts for augmenting visual fea-
tures are retrieved by the concept retriever. Concept em-
beddings H are obtained from the text encoder T with
the concepts from the concept store. Given visual feature
vr ∈ Rd, the concept retriever calculates the cosine sim-
ilarity between concept embeddings H and visual feature
vr. Then, it returns the k most relevant concept embeddings
Hr ∈ Rk×d and corresponding scores sr ∈ Rk.
Augmenter. We propose an augmenter A that augments
visual feature vr with the retrieved concepts. Let vaug

r ∈ Rd

denote a combination of vcoarse
r ∈ Rd and vfine

r ∈ Rd. vcoarse
r

is calculated as:

vcoarse
r = Proj(vr), (8)

LLM Extract
Noun Chunks

Vocabulary Store

Concept
Retriever

Describe what a(n) {vocabulary} looks like.

Concept Store

0.30273
0.29639
0.29541

Retrieved     concepts and scores

Softmax

C
oncat

Decoder

Projection

Augmenter

Figure 4. RAF. Verbalized concepts are generated by LLM with
prompts and stored in the concept store. Given a visual feature vr ,
relevant concept embeddings Hr and scores sr are retrieved by
the concept retriever. Then the augmenter A creates augmented
visual feature vaug

r with related verbalized concepts.

where Proj(·) is a linear projection. On the other hand, vfine
r

is enhanced with the retrieved concepts. It is the final output
of the decoder that has query embedding q1 ∈ Rd as query
and M ∈ R(1+k)×d as key and value. M is computed as:

M = (vr +Etype
0 )∥(diag(softmax(sr))Hr +Epos +Etype

1 ),
(9)

where diag(·) denotes a diagonal matrix function and ∥ is
the concatenation function. Epos ∈ Rk×d denotes posi-
tional embeddings to determine how many concepts will be
utilized. Etype

0 ∈ Rd and Etype
1 ∈ Rd are type embeddings

to distinguish vr between information from retrieved con-
cepts. Etype

1 is replicated to Rk×d in Eq. (9). The augmenter
A consists of L decoder layers. The operation in l-th de-
coder layer is as follows:

q′
l = ql + CA(ql,M,M),

ql+1 = q′
l + FFN(q′

l),

vfine
r = qL,

(10)
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where l ∈ {1, . . . , L}. The term CA represents cross-
attention operation, while FFN stands for feed-forward net-
work. Finally, the augmented visual feature vaug

r is obtained
by adding the coarse and fine feature of vr as below:

vaug
r = vcoarse

r + vfine
r . (11)

At test time, as depicted in Figure 2c the augmented visual
features and text embeddings of test categories are used to
compute auxiliary logits laux

r :

laux
r = vaug

r T (CB ∪ CN )
⊤
. (12)

Then the auxiliary logits are ensembled with lr to compute
the final logits lfinal

r for the final classification of proposal r.
The details of the logit ensemble are described in Section 4.
Loss for RAF training. We pre-trained RAF with visual
features from region proposals. For pre-training, we use
classification loss Lcls and regularization loss Lreg. We first
define the pseudo-label of region proposal r as ỹr:

ỹr = argmax
c∈(CB∪CV)

(T (c)v⊤
r ). (13)

Then, using the pseudo-labels, classification loss Lcls is de-
fined as:

Lcls =
1

N

∑
r

Lce(vaug
r T (CB ∪ CV)

⊤
, ỹr), (14)

where N is the number of proposals per image and Lce is
the cross entropy loss. We encourage augmented visual fea-
ture vaug

r to similar to the original visual feature vr using
regularization loss Lreg defined as below:

Lreg =
1

N

∑
r

(vaug
r − vr)

2. (15)

Finally, the total loss LRAF for RAF training is the combi-
nation of Eq. (14) and Eq. (15) as follows:

LRAF = βclsLcls + βregLreg, (16)

where βcls and βreg are hyperparameters.

4. Experiments
In this section, we briefly discuss the experimental setup,

including datasets and implementation details. Next, we
evaluate the performance of RALF compared to various
baselines and investigate RALF with further analysis.
Datasets. We evaluate RALF on two public benchmarks,
COCO [17] and LVIS [9]. In the open-vocabulary object
detection setting, COCO dataset is split into 48 base cate-
gories and 17 novel categories following OVR-CNN [34].
It includes 118k images, which separated 107,761 images

for training and 4,836 images for validation. Referring to
ViLD [8], we divide the LVIS dataset into 866 base cate-
gories and 337 novel categories. For both benchmarks, we
use base categories during training, yet novel categories are
also validated for inference. We adopt the mean average
precision (mAP) as the evaluation metric. We report AP50,
APB

50, and APN
50 for COCO and APr, APc, APf, and AP for

LVIS. Note that instance segmentation (mAP) results are re-
ported on LVIS. To generate the vocabulary store, we adopt
V3Det [27] as a vocabulary set.
Implementation details. We implement RALF with pre-
trained CLIP [19] with ViT-B/32 image encoder backbone
and text encoder from the official repository. Note that we
freeze all parameters in image and text encoders during
training. Additionally, we use GPT-3 [2] DaVinci-002 to
generate descriptions from RAF as a large language model.
We use Faster R-CNN [24] with ResNet-50 [11] backbone
and Mask R-CNN [10] with ResNet-50 FPN backbone for
COCO and LVIS, respectively. For training RAF, we use re-
gion proposals provided from OADP [28]. We set our base-
lines as OADP [28], Object-Centric-OVD [23], and Det-
Pro [5]. As RALF enhances the generalizability power via
a plug-in manner, we construct RALF into baselines. In all
experiments, we train and evaluate on NVIDIA RTX-3090
4 GPUs. More implementation details, including hyperpa-
rameters, are discussed in the supplementary materials.
Logit ensemble in RAF. Since each baseline has a different
range of logits, the final logits lfinal

r are calculated as below:

lfinal
r =


lr + σ(laux

r ) if Object-Centric-OVD,

lr ∗ (σ(laux
r )− 0.25) if DetPro,

lr + laux
r if OADP,

(17)
where σ(·) denotes the sigmoid function. Without using
all values of auxiliary logits when adding to lr, only top-
1 figures on COCO and top-10 or 20 figures on LVIS are
utilized, considering the number of test categories.

4.1. Main results

We evaluate RALF on COCO and LVIS benchmarks
in the open-vocabulary object detection (OVD) setting and
compare with various baselines. Overall results are reported
in Table 1 and Table 2.
COCO benchmark. As reported in Table 1, RALF
shows great performance enhancement when plugged into
baselines for all evaluation metrics. RALF significantly
improved 4.7 APN

50 when plugged into Object-Centric-
OVD [23] and achieved state-of-the-art results. Moreover,
RALF surpasses Object-Centric-OVD for not only novel
categories but also base and all categories, with 0.3 APB

50
and 1.5 AP50 improvements, respectively. Like the incli-
nation observed in the Object-Centric-OVD, implementing
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Method APN
50 APB

50 AP50

ViLD [8] 27.6 59.9 51.2
PB-OVD [6] 29.1 44.4 40.4
OV-DETR [33] 29.4 61.0 52.7
VL-Det [16] 32.0 50.6 45.8
MEDet [3] 32.6 53.5 48.0
BARON [30] 34.0 60.4 53.5

OADP [28] 30.0 53.3 47.2
OADP + RALF 33.4 54.5 49.0

Object-Centric-OVD [23] 36.6 54.0 49.4
Object-Centric-OVD + RALF 41.3 54.3 50.9

Table 1. Results of OVD on COCO.

Method APr APc APf AP

ViLD [8] 16.1 20.0 28.3 22.5
OV-DETR [33] 17.4 25.0 32.5 26.6
BARON [30] 18.0 24.4 28.9 25.1

Object-Centric-OVD [23] 17.1 21.4 26.7 22.8
Object-Centric-OVD + RALF 18.5 21.0 26.3 22.6

DetPro [5] 19.8 25.6 28.9 25.9
DetPro + RALF 21.1 25.7 29.2 26.3

OADP [28] 19.9 26.0 28.7 26.0
OADP + RALF 21.9 26.2 29.1 26.6

Table 2. Results of OVD on LVIS.

RALF on OADP [28] demonstrates remarkable effective-
ness. The results show performance gains for the novel,
base, and all categories by 3.4 APN

50, 1.2 APB
50, and 1.8 AP50,

correspondingly.
LVIS benchmark. To verify that our method improves per-
formance in various cases, we experimented on the LVIS
benchmark and added another baseline – DetPro [5]. The
results are noted in Table 2. Overall, RALF improves de-
tection ability on novel categories for all baselines by up
to 2.0 APr. Although Object-Centric-OVD [23] slightly
decreases except APr, RALF improves all metrics on Det-
Pro and OADP [28]. To summarize, the results imply that
RALF improves generalizability.

4.2. Ablation study

As discussed in Section 3.2, RALF consists of two mod-
ules – RAL and RAF. We conducted ablation studies on
RAL and RAF to verify the effectiveness of each module
on COCO and LVIS benchmarks.
Effectiveness of RAL. We demonstrate the results of RAL
in Table 3 and Table 4. From the results, RAL improves
performance gain in all baselines. RAL shows an improve-
ment of up to 1.3 APN

50 and at least 1.0 APN
50 on COCO. In-

Method RAL RAF APN
50 APB

50 AP50

OADP† [28]

30.0 54.5 48.1
✓ 31.5 54.3 48.3

✓ 31.3 54.5 48.4
✓ ✓ 33.4 54.5 49.0

Object-Centric-OVD† [23]

40.0 53.8 50.2
✓ 40.8 54.0 50.5

✓ 41.0 54.1 50.7
✓ ✓ 41.3 54.3 50.9

Table 3. Ablation study of RALF on COCO dataset. † denotes
reproduce result.

Method RAL RAF APr APc APf AP

Object-Centric-OVD† [23]

18.1 21.4 26.6 22.8
✓ 19.5 21.4 26.6 23.1

✓ 18.5 20.8 26.3 22.6
✓ ✓ 18.5 21.0 26.3 22.6

DetPro† [5]

19.9 25.8 29.2 26.1
✓ 20.5 25.8 29.2 26.2

✓ 21.3 25.7 29.2 26.3
✓ ✓ 21.1 25.7 29.2 26.3

OADP† [28]

18.3 26.2 28.9 25.9
✓ 19.3 26.2 28.9 26.1

✓ 21.5 26.1 29.1 26.5
✓ ✓ 21.9 26.2 29.1 26.6

Table 4. Ablation study of RALF on LVIS dataset. † denotes
reproduce result.

terestingly, RAL demonstrates exceptional generalizability,
specifically within the COCO base categories, exhibiting no
performance declines. While there are marginal decreases
in APc, APf, and AP on LVIS, the performance of novel
categories is notably increased up to 3.2 APr.
Effectiveness of RAF. We plug RAF into several baselines
and evaluate performance to verify whether RAF is effec-
tive. Table 3 and Table 4 show the performance of RAF on
COCO and LVIS, respectively. There are notable improve-
ments in overall baselines. In particular, RAF improves the
prediction ability for novel categories of OADP and Object-
Centric-OVD by 1.5 APN

50 and 0.8 APN
50 on COCO, respec-

tively. Without performance decreasing in base categories,
the performance of novel categories improved by up to 1.4
APr on LVIS.

From the results in Table 3 and Table 4, irrespective
of the baselines, RAL and RAF enhance the prediction of
novel categories while maintaining somewhat the predic-
tion of base categories. The combination of RAL and RAF,
i.e., RALF, shows significant performance gain of the base-
lines compared with the sole use of each module. To sum
up, RAL and RAF demonstrate enhanced performance indi-
vidually, and their combined shows superior generalization
capabilities.
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Figure 5. Qualitative results on COCO. Results of bounding box predictions on novel categories for (a) OADP and (b) OADP+RALF.

4.3. Analysis on RALF

Easy and hard negatives. We evaluate the effects of var-
ious approaches to handle easy and hard negatives. First,
we use only one type of negative; ‘Easy negative only’ and
‘Hard negative only’. Second, we merge the easy and hard
negatives into one negative group denoted as ‘Merged’. Un-
like RAL, Leasy of Eq. (6) that uses two types of negatives is
not applied in the ‘Merged’ setting. Table 5 shows that the
baselines above show inferior performance to our method
RAL. Overall, our method that differentially treats easy and
hard negatives boosts performance the most.

APN
50 APB

50 AP50

Easy negative only 31.0 54.3 48.2
Hard negative only 30.9 54.6 48.4
Merged 30.9 55.5 49.0

RAL 31.3 54.5 48.4

Table 5. Analysis of easy and hard negatives on COCO.

4.4. Qualitative results

We visualize the detection results to verify that RALF
captures novel categories well. We compare one of our
baselines (i.e., OADP) and OADP + RALF at the top and
bottom of Figure 5, respectively. Each box in the image
represents the box prediction results. From the qualitative
results, RALF captures novel categories better than base-

line, which means RALF improves generalizability.

5. Conclusion

In this paper, we present Retrieval-Augmented Losses
and visual Features (RALF) that retrieves information from
a large vocabulary set and augments losses and visual
features. To optimize the detector, we add Retrieval-
Augmented Losses (RAL), which brings hard and easy neg-
ative vocabulary from the pre-defined vocabulary store and
reflects the semantic similarity with the ground-truth label.
Additionally, Retrieval-Augmented visual Features (RAF)
augments visual features with generated concepts from a
large language model and enables improved generalizabil-
ity. To sum up, RALF combines both modules and easily
plugs into various detectors and significantly improves de-
tection ability not only base categories but also novel cate-
gories.
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