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Figure 1. Generated results of StableVITON: VITON-HD (the first row), SHHQ-1.0 (the first two images in the second row), and web-

crawled images (the last two images in the second row). All results are generated using StableVITON trained on VITON-HD dataset.

Abstract

Given a clothing image and a person image, an image-

based virtual try-on aims to generate a customized image

that appears natural and accurately reflects the character-

istics of the clothing image. In this work, we aim to ex-

pand the applicability of the pre-trained diffusion model so

that it can be utilized independently for the virtual try-on

task. The main challenge is to preserve the clothing details

while effectively utilizing the robust generative capability

of the pre-trained model. In order to tackle these issues,

we propose StableVITON, learning the semantic correspon-

dence between the clothing and the human body within the

latent space of the pre-trained diffusion model in an end-to-

end manner. Our proposed zero cross-attention blocks not

only preserve the clothing details by learning the semantic

correspondence but also generate high-fidelity images by

utilizing the inherent knowledge of the pre-trained model

in the warping process. Through our proposed novel at-

tention total variation loss and applying augmentation, we

achieve the sharp attention map, resulting in a more pre-

cise representation of clothing details. StableVITON out-

performs the baselines in qualitative and quantitative eval-

uation, showing promising quality in arbitrary person im-

ages. Our code is available at https://github.com/

rlawjdghek/StableVITON .

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8176



1. Introduction

The objective of an image-based virtual try-on is to dress a

given clothing image on a target person image. Most of the

previous virtual try-on approaches [3, 7, 10, 14, 15, 29, 31,

33] leverage paired datasets consisting of clothing images

and person images wearing those garments for training pur-

poses. These methods typically include two modules: (1) a

warping network to learn the semantic correspondence be-

tween the clothing and the human body, and (2) a generator

that fuses the warped clothing and the person image.

Despite achieving significant advancements, previous

methods [3, 8, 15, 31] still have limitations in achiev-

ing generalizability, particularly in maintaining the com-

plex background in an arbitrary person image. The nature

of matching clothing and individuals in the virtual try-on

dataset [3, 10, 18] makes it challenging to collect data in di-

verse environments [20], which in turn leads to limitations

in the generator’s generative capability.

Meanwhile, recent advancements in large-scale pre-

trained diffusion models [23, 24, 27] have led to the emer-

gence of downstream tasks [6, 8, 16, 19, 26, 34, 36] that

control the pre-trained diffusion models for task-specific

image generation. Thanks to the powerful generative abil-

ity, several works [17, 34] have succeeded in synthesizing

high-fidelity human images using the prior knowledge of

the pre-trained models, which signifies the potential for ex-

tension to the virtual try-on task.

In this paper, we aim to expand the applicability of the

pre-trained diffusion model to provide a standalone model

for the virtual try-on task. In the effort to adapt the pre-

trained diffusion model for virtual try-on, a significant chal-

lenge is to preserve the clothing details while harnessing

the knowledge of the pre-trained diffusion model. This

can be achieved by learning the semantic correspondence

between clothing and the human body using the provided

dataset. Recent research [8, 19] that has employed pre-

trained diffusion models in virtual try-on has shown limi-

tations due to the following two issues: (1) insufficient spa-

tial information available for learning the semantic corre-

spondence [19], and (2) the pre-trained diffusion model not

being fully utilized, as it pastes the warped clothing in the

RGB space, relying on external warping networks as pre-

vious approaches [3, 7, 15, 31, 33] for aligning the input

condition.

To overcome these issues, we propose StableVITON,

which learns the semantic correspondence between the

clothing and the human body within the latent space of the

pre-trained diffusion model. To incorporate the spatial in-

formation of the clothing for learning semantic correspon-

dence, we introduce an encoder [34] that takes clothing as

input and conditions the U-Net with the intermediate fea-

tures of the encoder via zero cross-attention blocks. Warp-

ing through the zero cross-attention block in a pre-trained
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Figure 2. Visualization of the semantic correspondence learned by

our StableVITON. We overlay the attention map for the clothing

regions onto the generated images for visualization.

diffusion model has the following two advantages: (1) pre-

serving the clothing details by learning the semantic corre-

spondence; (2) synthesizing high-fidelity images by lever-

aging the pre-trained models’ inherent knowledge about hu-

mans in the warping process. As shown in Fig. 2, the at-

tention mechanism in the latent space performs patch-wise

warping by activating each token corresponding to clothing

alignment within the generation region.

To further sharpen attention maps, we propose a novel

attention total variation loss and apply the augmentation,

which yields improved preservation of clothing details. By

not impairing the pre-trained diffusion model, this architec-

ture generates high-quality images even when images with

complex backgrounds are provided, only using an exist-

ing virtual try-on dataset. Our extensive experiments show

that StableVITON outperforms the existing virtual try-on

method by a large margin. In summary, our contributions

are as follows:

• Our proposed StableVITON, to the best of our knowl-

edge, is the first end-to-end virtual try-on method fine-

tuned on the pre-trained diffusion model without an inde-

pendent warping process.

• We propose a zero cross-attention block, which learns se-

mantic correspondence between the clothing and the hu-

man body, to condition the intermediate features from the

spatial encoder.

• We propose a novel attention total variation loss and ap-

ply augmentation for further precise semantic correspon-

dence learning.

• StableVITON shows state-of-the-art performance over

existing virtual try-on models in both qualitative and

quantitative results. Moreover, through the evaluation of a

trained model on multiple datasets, StableVITON demon-

strates its promising quality in a real-world setting.
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2. Related Work

GAN-based Virtual Try-On. To properly try-on the given

clothing image to the target person, existing approaches [3,

7, 15, 31] based on generative adversarial network (GAN)

have attempted to address the virtual try-on problem using

a two-stage strategy: (1) deforming the clothing to the pro-

posal region and (2) fusing the warped clothing via try-on

generator based on GAN. In order to achieve precise cloth-

ing deformation, previous methods [1, 7, 11, 15, 31] lever-

age a trainable network that estimates a dense flow map [37]

to deform the clothing to the human body. At the same

time, several approaches [3, 7, 14, 15, 31, 33] have been

attempted to address the misalignment between the warped

clothing and the human body, such as using a normaliza-

tion [3] or distillation [7, 14]. However, the existing ap-

proaches still are not generalized well, leading to signif-

icant performance degradation in arbitrary person images

with complex backgrounds. In this paper, we effectively

address such issues by proposing a method that leverages

the powerful generation ability of the pre-trained model.

Diffusion-based Virtual Try-On. Due to the remarkable

generative capabilities, research on virtual try-on has ex-

tensively discussed the application of the diffusion models.

While TryOnDiffusion [38] introduces an architecture for

try-on using two U-Nets, this method requires a large-scale

and challenging-to-collect dataset, consisting of image pairs

of the same person wearing the same clothing in two differ-

ent poses. Therefore, much recent research has shifted their

focus towards using the prior of a large-scale pre-trained

diffusion models [13, 22, 24, 32] in the virtual try-on task.

LADI-VTON [19] represents the clothing as pseudo-words,

and DCI-VTON [8] applies a warping network to input the

clothing as conditions for the pre-trained diffusion models.

While both models deal with background-related issues,

they suffer from preserving high-frequency details due to

the excessive loss of spatial information from the CLIP en-

coder [19] and drawbacks such as incorrectly warped cloth-

ing inherited from the independent warping network [8].

On the other hand, we propose to condition the interme-

diate feature maps of a spatial encoder through zero cross-

attention block, which allows for using the prior knowledge

of the pre-trained model in the warping process.

3. Preliminary

Stable Diffusion Model. Stable Diffusion model [24] is a

large-scale diffusion model trained on LAION dataset [28],

built upon the Latent Diffusion model (LDM) [24], which

performs a denoising process in the latent space of an au-

toencoder. With a fixed encoder (E), an input image x is

first transformed to latent feature z0 = E(x). Given a pre-

defined variance schedule ´t, we can define a forward dif-

fusion process in the latent space following denoising diffu-

sion probabilistic models [13]:

q(zt|z0) = N (zt;
√
³̄tz0, (1− ³̄t)I), (1)

where t ∈ {1, ..., T}, T represents the number of steps in

the forward diffusion process, ³t := 1 − ´t, and ³̄t :=
Πt

s=1³s. As a training loss, Stable Diffusion model em-

ploys the simplified objective function from LDM [15]:

LLDM = EE(x),y,ϵ∼N (0,1),t

[

∥ϵ− ϵ¹(zt, t, Ä¹(y))∥22
]

,

(2)

where the denoising network ϵ¹(·) is implemented with a U-

Net architecture [25] and Ä¹(·) is the CLIP [22] text encoder

to condition the text prompt y.

4. Method

4.1. Model Overview

An overview of StableVITON is presented in Fig. 3(a).

Given a person image x ∈ R
H×W×3, the clothing-agnostic

person representation xa ∈ R
H×W×3 (we call it as ‘agnos-

tic map’) [3] is proposed to eliminate any clothing infor-

mation in x. In this work, we approach the virtual try-on

as an exemplar-based image inpainting problem [32] to fill

the agnostic map xa with the clothing image xc. As the

input of the U-Net, we concatenate four components: (1)

the noisy image (zt), (2) latent agnostic map (E(xa)), (3)

the resized clothing-agnostic mask (xma
), (4) latent dense

pose condition (E(xp)) [9] to preserve the person’s pose.

To align the input channels, we expand the initial convolu-

tion layer of the U-Net to 13 (i.e., 4+4+1+4=13) channels

with a convolution layer initialized with zero weights. For

exemplar conditioning, we input the xc to the CLIP image

encoder [32].

To preserve the fine details of the clothing, we intro-

duce a spatial encoder, which takes latent clothing (E(xc))
as input. This spatial encoder copies the weight of the

pre-trained U-Net [34] and conditions the intermediate fea-

ture maps of the encoder to U-Net via zero cross-attention

blocks. During training, we apply augmentation and further

finetune the model with our proposed attention total varia-

tion loss, which makes the attention region on the clothing

sharper. The detailed model architecture is described in the

supplementary material.

4.2. StableVITON

Zero Cross-Attention Block. We aim to condition the in-

termediate feature maps of the clothing to U-Net, properly

aligning with the human body. The operation of adding the

unaligned clothing feature map to the human feature map is

insufficient to preserve clothing details due to misalignment

between the human body and the clothing. Therefore, we

proposed a zero cross-attention block to be a flexible oper-

ation by applying an attention mechanism for conditioning.
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Figure 3. For the virtual try-on task, StableVITON additionally takes three conditions: agnostic map, agnostic mask, and dense pose, as

the input of the pre-trained U-Net, which serves as the query (Q) for the cross-attention. The feature map of the clothing is used as the key

(K) and value (V) for the cross-attention and is conditioned on the UNet, as depicted in (b).

Specifically, as shown in Fig. 3(b), the feature map of the U-

Net decoder block inputs to self-attention, followed by the

cross-attention layer where the query (Q) comes from the

previous self-attention layer and the spatial encoder’s fea-

ture map serves as the key (K) and value (V). To eliminate

harmful noise, we introduce a linear layer initialized with

zero weight after the feed-forward operation [34].

To successfully align the clothing to the human body part

via cross-attention, it is crucial to ensure semantic corre-

spondence between the key tokens (clothing) and the query

tokens (human body). For instance, when dealing with a

query token related to the right shoulder, the corresponding

key tokens should exhibit higher attention scores in the cor-

responding right shoulder area of the clothing. In Fig. 4(a),

we averaged the attention maps of the resolution of 32× 24
across the head dimension and arranged them flatly. For

clear visualization, we downsample the generated image to

a resolution of 32× 24 and then resize it back to 322 × 242.

Subsequently, we overlay this generated image with the at-

tention map corresponding to each query token. Zooming in

on the upper and middle of the generated clothing area, we

observe that the key tokens unrelated to the corresponding

query token, such as the bottom of the clothing, are acti-

vated in the attention map. This indicates that the cross-

attention layer fails to learn the exact semantic correspon-

dence between query and key tokens, combining the several

key tokens of the clothing to generate the color correspond-

ing to the query token during training. Therefore, as shown

in Fig. 4, the stripes on the clothing are not distinctly visi-

ble.

Augmentation. To mitigate such issues of key tokens unre-

lated to query tokens being attended to, we alter the feature

map by applying augmentation, including random shifts to

input conditions. Detailed settings of augmentation are de-

scribed in supplementary material. Along with the aug-

mented input conditions, we train our model with the ob-

jective function defined as follows:

LLDM = E·,xc,E(xc),ϵ,t

[

∥ϵ− ϵ¹(·, t, Äϕ(xc), E(xc))∥22
]

,

(3)

where · = [zt; E(xa);xma
; E(xp)], and Äϕ is the CLIP im-

age encoder. Note that we do not update the parameters of

the original blocks, as depicted in Fig. 3(a).

The rationale behind this strategy is to force the model

to learn fine-grained semantic correspondence using aug-

mentation, instead of just moderately injecting the clothes

at similar positions. As shown in Fig. 4(b), we can confirm

that key tokens related to query tokens have high attention

scores, signifying that the cross-attention layer has learned

the high semantic correspondence between the clothing-

agnostic region and clothing.

Attention Total Variation Loss. While the cross-attention

layer successfully aligns the clothing to the agnostic map,

the points with high attention scores appear in dispersed

positions, as shown in the attention map of Fig. 4(b). This

causes inaccurate details in generated images, such as color

discrepancies.

To address such an issue, we propose attention total vari-

ation loss. As the attention scores are the weight for the

output, we calculate the center coordinates as a weighted

sum of the attention map and the grid. Therefore, given

the HqWq query tokens and hkwk key tokens, we calculate

center coordinate map F ∈ R
Hq×Wq×2 as follows:
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Figure 4. Visualization of attention map from a zero cross-attention block of 32 resolution.

Fijn =
1

hkwk

hk
∑

k=1

wk
∑

l=1

(Aijkl »Gkln) , (4)

where we average the attention map over the head dimen-

sion and reshape it as A ∈ R
Hq×Wq×hk×wk , and G ∈

[−1, 1]hk×wk×2 is a 2D normalized coordinate. n ∈ {0, 1}
in Eq. 4 denotes the dimension of attention map coordinates

and » indicates element-wise multiplication operation.

For each query token in each clothing-agnostic region,

the center coordinates should be evenly distributed, and the

attention total variation loss LATV is defined as follows:

LATV =∥ ∇(F »M) ∥1, (5)

where M ∈ {0, 1}Hq×Wq is the ground truth clothing mask

to only affect the clothing region. The attention total varia-

tion loss LATV is designed to enforce the center coordinates

on the attention map uniformly distributed, thereby alleviat-

ing interference among attention scores located at dispersed

positions. As illustrated in Figure (c), this leads to the gen-

eration of a sharper attention map, thereby more accurately

reflecting the color of the clothing.

Finally, we finetune our StableVITON by adding LATV

to Eq. 3:

Lfinetune = LLDM + ¼ATV LATV , (6)

where ¼ATV is a weight hyper-parameter.

5. Experiment

Baselines. We compare StableVITON with three GAN-

based virtual try-on methods, VITON-HD [3], HR-

VITON [15], and GP-VTON [31], and two diffusion-

based virtual try-on methods, LADI-VTON [19] and DCI-

VTON [8]. We also evaluate a diffusion-based inpaint-

ing method, Paint-by-Example [32]. We use pre-trained

weights if available; otherwise, we train the models follow-

ing the official code.

Dataset. We conduct the experiments using two publicly

available virtual try-on datasets, VITON-HD [3] and Dress-

Code [18], and one human image dataset, SHHQ-1.0 [5].

We train our model with VITON-HD and upper-body

images in DressCode, respectively. For the evaluation of

SHHQ-1.0, we use the first 2,032 images and follow the pre-

processing instruction of VITON-HD [3] to obtain the input

conditions such as the agnostic maps or the dense pose.

Evaluation. We evaluate the performances in two test set-

tings. Specifically, the paired setting uses a pair of a person

and the original clothes for reconstruction, whereas the un-

paired setting involves changing the clothing of a person

image with a different clothing item. As previous work [3],

training and evaluation within a single dataset are referred to

as ‘single dataset evaluation’. On the other hand, we extend

our evaluation on other datasets (e.g., SHHQ-1.0), which

we refer to as a ‘cross dataset evaluation’. This evaluation

enables an in-depth assessment of the model’s generaliz-

ability in handling arbitrary person images, demonstrating

applicability in real-world scenarios. Our model is capable

of training at a 1024× 768 resolution, but for a fair evalua-

tion with baselines, we used a model trained at a 512× 384
resolution. More results and details about experiments are

described in the supplementary material.

5.1. Qualitative Results

Single Dataset Evaluation. As shown in Fig. 5, Stable-

VITON generates realistic images and effectively preserves

the text and clothing textures compared to the six baseline

methods. Specifically, in the first row of Fig. 5, GAN-based

methods such as GP-VTON struggle to generate the arms of

the target person naturally. Moreover, other diffusion-based

models either fail to preserve the text (Paint-by-Example

and LADI-VTON) or show an overlapped artifact between

the clothing and the target person (DCI-VTON). On the

other hand, despite some parts of the arm being covered

by clothing, our model produces a high-fidelity result that

omits the ‘L’ in ‘Love’.

Cross Dataset Evaluation. We visualize the generation im-

ages of the models trained on VITON-HD for DressCode

and SHHQ-1.0 datasets in Fig. 6 and Fig. 7, respectively.

The results clearly demonstrate that StableVITON gener-

ates high-fidelity images while preserving the details of the
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Person & Clothing VITON-HD HR-VITON Paint-by-Example LADI-VTON GP-VTON OursDCI-VTON

Figure 5. Qualitative comparison with baselines in a single dataset setting (VITON-HD / VITON-HD). Best viewed when zoomed in.

VITON-HD HR-VITON Paint-by-Example LADI-VTON GP-VTON OursDCI-VTONPerson & Clothing

Figure 6. Qualitative comparison with baselines in a cross dataset setting (VITON-HD / DressCode). Best viewed when zoomed in.

Train / Test VITON-HD / VITON-HD D.C. Upper / D.C. Upper

Method SSIM LPIPS FID KID SSIM LPIPS FID KID

VITON-HD [3] 0.862 0.117 12.117 3.23 - - - -

HR-VITON [15] 0.878 0.1045 11.265 2.73 0.936 0.0652 13.820 2.71

LADI-VTON [19] 0.864 0.0964 9.480 1.99 0.922 0.0628 14.17 3.04

Paint-by-Example [32] 0.802 0.1428 11.939 3.85 0.897 0.0775 15.332 4.64

DCI-VTON [8] 0.880 0.0804 8.754 1.10 0.937 0.0421 11.920 1.89

GP-VTON [31] 0.884 0.0814 9.072 0.88 0.769 0.2679 20.110 8.17

Ours 0.852 0.0842 8.698 0.88 0.911 0.0500 11.266 0.72

Ours (RePaint [17]) 0.888 0.0732 8.233 0.49 0.937 0.0388 9.940 0.12

Table 1. Quantitative comparisons in single dataset settings, VITON-HD and DressCode upper-body (D.C. Upper) datasets. Bold and

underline denote the best and the second best result, respectively.

clothing. GAN-based methods especially show significant

artifacts on the target person and fail to maintain back-

ground. While diffusion-based methods generate natural

images, they fail to preserve clothing details or the shape

of the clothing. Furthermore, even when applying the aug-

mentation we used to DCI-VTON (denoted as DCI-VTON

(Aug.)), as depicted in Fig. 7, a significant improvement in

the performance of the warping network is not achieved,

failing to preserve clothing details.

5.2. Quantitative Results

Metrics. For quantitative evaluation, we use SSIM [30] and

LPIPS [35] in the paired setting. In an unpaired setting,

we assess the realism using FID [12] and KID [2] score.

We follow the evaluation paradigm [19] for the implemen-

tation [4, 21].

Single Dataset Evaluation. We evaluate our StableVI-

TON and existing baselines on a single dataset setting and

report the results in Table 1. In the unpaired setting (i.e.,

FID and KID), StableVITON outperforms all the baselines.

We observe that the performance degradation in the paired

setting occurs due to the autoencoder’s reconstruction er-

ror of the agnostic map. To mitigate this issue, we adapt

RePaint [17], which samples the known region (i.e., agnos-

tic map) and replaces it in each denoising steps during the

inference, used in DCI-VTON. Applying RePaint, Stable-
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Clothing HR-VITON Paint-by-Example LADI-VTON DCI-VTONPerson OursDCI-VTON (Aug.)VITON-HD

Figure 7. Qualitative comparison with baselines in a cross dataset setting (VITON-HD / SHHQ-1.0). Best viewed when zoomed in.

Train / Test VITON-HD / D.C. Upper D.C. Upper / VITON-HD VITON-HD / SHHQ-1.0

Method SSIM LPIPS FID KID SSIM LPIPS FID KID FID KID

VITON-HD [3] 0.853 0.1874 44.257 28.82 - - - - 71.149 52.01

HR-VITON [15] 0.909 0.1077 19.970 7.35 0.811 0.2278 45.923 36.69 52.732 31.22

LADI-VTON [19] 0.901 0.1009 16.336 5.36 0.795 0.272 28.27 19.3 24.904 6.07

Paint-by-Example [32] 0.889 0.0867 16.398 4.78 0.784 0.1814 15.625 7.52 26.274 9.830

DCI-VTON [8] 0.903 0.1217 23.076 12.03 0.825 0.1870 16.670 6.40 24.850 6.68

DCI-VTON (Aug.) [8] 0.898 0.1240 18.809 8.02 - - - - 24.368 6.11

GP-VTON [31] 0.724 0.3846 65.711 66.01 0.804 0.2621 52.351 48.68 - -

Ours 0.911 0.0603 12.581 1.70 0.817 0.1308 10.104 1.72 23.531 5.68

Ours (RePaint [17]) 0.938 0.0470 10.480 0.41 0.855 0.1173 9.714 1.35 21.077 5.10

Table 2. Quantitative comparisons in cross dataset settings. We train the models on VITON-HD and DressCode upper-body (D.C. Upper)

datasets and evaluate them on different datasets. Bold and underline denote the best and the second best result, respectively.

VITON outperforms the baselines for all evaluation met-

rics. Since RePaint greatly helps maintain regions unrelated

to clothing, it shows notable performance improvement in

the paired setting. Nevertheless, even without RePaint, our

method demonstrates superior performance in terms of FID

and KID in the unpaired setting compared to the baselines.

Cross Dataset Evaluation. Table 2 presents that our Sta-

bleVITON shows state-of-the-art performance for all the

evaluation metrics with a large margin. GAN-based meth-

ods fail to maintain background consistency, resulting in

significantly high FID and KID scores. While diffusion-

based methods exhibit better performance due to the plau-

sible generation outcomes enabled by pre-trained diffusion

models, they fail to preserve clothing details. Consequently,

they exhibit lower similarity scores in the paired setting

(i.e., SSIM and LPIPS) compared to our method.

5.3. User Study

For the models trained on the VITON-HD dataset, we con-

ducted a user study with 40 participants. Each participant

was shown one image generated by the baseline and the

other by our model. They were asked to choose the bet-

ter image based on three criteria: (1) fidelity, (2) person

attributes, and (3) clothing identity. We added a question
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Figure 8. User study results. We compare our StableVITON with

six baselines, involving a total of 40 participants.

about (4) background quality for the cross dataset setting.

Detailed questions can be found in the supplementary mate-

rial. As shown in Fig. 8, StableVITON outperforms in most

of the criteria, and especially in the cross dataset setting,

our method is overwhelming in human evaluations. While

LADI-VTON shows better preference in the evaluation of

fidelity and person attributes on the VITON-HD dataset, it

fails to preserve clothing details, resulting in a 35% prefer-

ence in the clothing identity criteria.
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Train / Test on VITON-HD SSIM LPIPS FID KID

ControlNet + Aug. 0.832 0.1157 9.81 1.81

ControlNet-W + Aug. 0.822 0.1124 9.66 1.57

Zero Cross-Attention Block + Aug. 0.850 0.0851 8.74 0.91

Table 3. Quantitative comparison results between our zero cross-

attention block and ControlNet. We train ControlNet with clothing

and warped clothing [15] (ControlNet-W). We apply augmentation

to all the models in training.

Aug.
Attention

TV Loss
SSIM LPIPS FID FID

: : 0.847 0.0969 9.35 1.33

6 : 0.850 0.0851 8.744 0.91

6 6 0.852 0.042 8.698 0.88

Table 4. Ablation study of our proposed training components on

VITON-HD dataset.

5.4. Ablation Study

Comparison with ControlNet. To demonstrate the effec-

tiveness of StableVITON in tackling the alignment issue

compared to ControlNet [34], we train ControlNet under

two different input conditions: (1) clothing, and (2) warped

clothing [15] (dubbed as ControlNet-W). We apply our pro-

posed augmentation to both models during training. Using

the warping network to align the clothing helps Control-

Net capture coarse features, such as the overall shape and

color of the logo, as shown in Fig. 9(b) and (c). However,

since the misalignment still exists between warped clothing

and the human body in the training phase, ControlNet-W

struggles to reflect more fine-grained clothing details to the

generation results. These observations highlight that Con-

trolNet is highly sensitive to subtle misalignment across

the input, stemming from the limitations of the Control-

Net’s direct addition operation in conditioning. In contrast,

as shown in Fig. 9(d), the zero cross-attention block, free

from the alignment constraints, successfully preserves the

logos and patterns and leads to a qualitative performance

improvement, as shown in Table 3.

Effect of Training Components. We investigate the effect

of the two proposed components during training: augmen-

tation and attention total variation loss. In Fig. 10, we visu-

alize the generated images while incrementally introducing

the proposed training components one by one. Compared to

Fig 10(a) and (b), we observe that detailed features such as

logos and patterns of the clothing are more preserved when

augmentation is applied. However, as the attention maps are

not sufficiently distinct, we observe inaccuracies in the gen-

erated images, such as the ‘M’ in ‘PUMA’ being incorrectly

depicted or lines blurring, as shown in Fig. 10(b). After

finetuning with our proposed attention total variation loss,

these finer details are significantly improved. Such visual

enhancements correspond to quantitative performance im-

provements as demonstrated in Table 4.

(a) Target Person (b) ControlNet (c) ControlNet-W (d) Ours
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Figure 9. Comparison our StableVITON to ControlNets under the

two different input conditions: (1) clothing, and (2) warped cloth-

ing [15] (ControlNet-W). Best viewed when zoomed in.

(c) Ours
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(a) w/o Aug. & (b) w/o 

Figure 10. Visual comparisons according to our training compo-

nents. Best viewed when zoomed in.

6. Conclusion

We propose StableVITON, a novel image-based virtual try-

on method using the pre-trained diffusion model. Our pro-

posed zero cross-attention block learns semantic correspon-

dence between the clothing and the human body, enabling

try-on in the latent feature space. A novel attention total

variation loss and augmentation are designed to preserve

the clothing details better. Extensive experiments, including

cross dataset evaluation, clearly demonstrate that StableVI-

TON shows the state-of-the-art performance compared to

the existing methods and its promising quality in the real-

world setting.
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