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Abstract

Parkinson’s disease (PD) is a devastating movement dis-
order accelerating in global prevalence, but a lack of preci-
sion symptom measurement has made the development of ef-
fective therapies challenging. The Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) is the gold standard for assess-
ing motor symptom severity, yet its manual scoring criteria
are vague and subjective, resulting in coarse and noisy clin-
ical assessments. Machine learning approaches have the
potential to modernize PD symptom assessments by mak-
ing them more quantitative, objective, and scalable. How-
ever, the lack of benchmark video datasets for PD motor
exams hinders model development. Here, we introduce the
TULIP dataset to bridge this gap. TULIP emphasizes pre-
cision and comprehensiveness, comprising multi-view video
recordings (6 cameras) of 25 UPDRS motor exam activities,
together with ratings by 3 clinical experts, in a cohort of
Parkinson’s patients and healthy controls. The multi-view
recordings enable 3D reconstructions of body movement
that better capture disease signatures than more conven-
tional 2D methods. Using the dataset, we establish a base-
line model for predicting UPDRS scores from 3D poses,
illustrating how existing diagnostics could be automated.
Looking ahead, TULIP could aid the development of new
precision diagnostics that transcend UPDRS scores, pro-
viding a deeper understanding of PD and its potential treat-
ments.

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder leading to a spectrum of motor impairments that
differ between individuals and worsen over time. In the last
quarter-century, the global prevalence of PD has increased
two-fold and continues to rise, now impacting over 8.5 mil-
lion individuals [1]. Despite decades of research, no cure
has emerged, and the focus has shifted towards managing
symptoms to improve quality of life.

The current standard for PD clinical assessment, the
Movement Disorder Society-Sponsored Revision of the
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Figure 1. Landscape of Parkinson’s disease datasets. The black
icons indicate which activities were recorded. Previous studies
recorded a small number of activities, typically either walking,
finger tapping, or sitting/standing. TULIP includes 25 different
activities, capturing a wider set of movements and postures.

Unified Parkinson’s Disease Rating Scale (UPDRS), relies
on a manual scoring system that can lead to imprecise diag-
noses. While the scale is validated [2—4], examiners score
subjects coarsely based on vague guidelines. For instance,
‘global spontaneity’ is rated on an ordinal scale from ‘1
(Slight)’ to ‘4 (Severe)’ [5]. This manual scoring is labor-
intensive and a source of variability, and it precludes identi-
fication of fine-scale motor pathologies. Numerous studies
have identified significant inter-rater differences in UPDRS
scoring, with disagreements as large as 53% [6].

Recent advances in machine learning have greatly en-
hanced healthcare workflows and patient outcomes across
many clinical domains, but applying machine learning ap-
proaches to PD remains challenging due to a shortage of
training and benchmark datasets. Some approaches have
explored modeling PD using electronic health record [7]
or neuroimaging data [8], but ultimately such datasets rely
on clinical diagnosis of motor symptoms [9]. While small

22551



subsets of symptoms, such as tremor, can be measured pre-
cisely with wearable devices [ 10], video recordings can cap-
ture the wide diversity of PD symptoms, which occur on
multiple spatiotemporal scales. However, while there are
some video-based datasets for other neurological disorders
[11, 12], there are currently no benchmark video datasets
for PD.

Previous studies have reported PD video analyses, but
these studies have been restricted to single-camera record-
ings, which inherently limit kinematic measurement preci-
sion. Precision can be enhanced by analyzing 3D data ex-
tracted from multi-camera recordings, but thus far 3D data
has only been collected with the aid of markers (i.e., mo-
tion capture) [13, 14]. Previous video analyses have also
been restricted to a very small subset of UPDRS activities
as shown in Figure 1. Past approaches have thus been un-
able to capture the full spectrum of PD motor deficits, lim-
iting their sensitivity and utility.

Here, we introduce TULIP (Three-dimensional (3D) Un-
derstanding and Learning of Impairments in Parkinson’s
disease) to address this unmet need. To our knowledge,
TULIP is the world’s first multi-camera video dataset of
PD motor exams to: 1) be available for benchmarking, 2)
include all of the body movement tests of UPDRS (TULIP
excludes the speech test), and 3) enable markerless 3D kine-
matic analysis. TULIP also nearly triples the acquisition
frame rate of past studies (Figure 1).

Using TULIP, we show that UPDRS classifiers built with
3D features significantly outperform those with 2D fea-
tures. We also identify interpretable distinctions in move-
ment variables between PD patients and healthy controls.
We chose the name TULIP, a nod to the floral emblem of
PD research and advocacy, to symbolize our goal for this
dataset, to foster transformative new machine learning ap-
proaches for PD understanding and treatment.

2. Previous work
2.1. Machine learning for neurological disorders

Machine learning is widely used for analyzing motor symp-
toms in neurological disorders like stroke [12]. Zhang et
al. used cameras to detect ADHD by tracking child facial
expressions and limb movements [15]. Seifallahi et al. em-
ployed Kinect cameras for Alzheimer’s gait analysis [16].
In PD, existing computational methods focus on sit-to-stand
[17], gait [13, 18] and finger tapping activities [19, 20],
which have been the easiest to measure with computer vi-
sion. Machine learning has also been pivotal in predicting
PD progression and symptom severity. Nilashi et al. pro-
posed a system for predicting UPDRS scores and making
holistic decisions only on biomedical voice measurements
[21]. Exley et al. used machine learning to build more
objective UPDRS motor symptom scores by way of force

places [22]. These efforts highlight the evolving landscape
of PD research, combining traditional clinical assessments
with advanced analytical techniques for better understand-
ing and managing the disease.

2.2. PD datasets

Existing datasets for PD detection and analysis fall into
three primary categories: speech datasets, handwriting
datasets, and body movement datasets. Speech datasets
[23, 24] encompass sustained phonation tests, and voice sig-
nal analysis can be employed for PD diagnosis. Handwrit-
ing datasets [25-27], gathered in image form, primarily fo-
cus on subjects’ writing of letters or shapes to assess the im-
pact of PD on fine motor control. Body movement datasets
are particularly valuable for PD analysis, as they character-
ize the motor symptoms and motor dysfunction commonly
associated with PD progression and can be used to formu-
late treatment plans. Body movement data are commonly
collected using expensive wearable sensors that only cap-
ture a small number of body parts [13, 28-32]. Alterna-
tively, video-based data collected by RGB cameras [20, 33—
37] provide a contactless, cost-effective, and comprehen-
sive approach to quantify motor disorders. However, while
the UPDRS comprises several dozen motor activities, most
video-based data collection is limited to one or two activi-
ties, usually gait or index finger tapping. Furthermore, these
video datasets use only a single camera and thus are fun-
damentally limited in their precision when capturing fine-
scale features of body movement, an inherently 3D process.
Another significant limitation of these datasets is that they
are not shared with the community. This makes replica-
tion difficult and precludes further algorithmic advances by
other resesearchers.

3. TULIP Dataset
3.1. Clinical motivation

The complexity of PD progression and symptomatology
necessitates a high-resolution, multi-dimensional dataset
of PD body kinematics. Current clinical assessment tools,
such as the UPDRS, are coarse, subjective, and noisy.
Studies have shown that the UPDRS score for a single
exam can vary significantly between raters, with inter-rater
Kappa values as low as 0.37, indicating minimal agreement
between raters [38, 39]. This underscores a need for more
objective, quantitative, and sensitive measures.

To address this need, we require a rich data streams
that accurately capture the complexities and nuances of
PD motor symptoms. Research has shown that wearables
[40] and force plates [22] can track some PD symptoms,
but they struggle to align with UPDRS guidelines and
face hospital implementation challenges [41, 42]. Video
recordings, however, can efficiently capture a broad range
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Figure 2. Overview of the TULIP Dataset. In this figure, subject faces are occluded for privacy, and * denotes there are separate left and
right activity recordings. In addition to multi-view video recordings, TULIP contains UPDRS scores for each subject. We tracked 2D and
3D poses to build UPDRS classifiers.

of PD movement symptoms and can be more flexibly expressions, a key element of PD assessment, with mark-
integrated into clinical settings. For TULIP, we recorded erless systems. Markerless 3D analysis could also provide
activities using a multi-camera setup to more accurately the necessary granularity to identify subtle but clinically
capture complex 3D movement features. For single-camera significant changes in motor function, thereby enhancing
recordings, 2D features are measured as projections onto a the sensitivity of clinical trials.

plane. The resulting 2D features thus vary with perspective
and depth, reducing the resolution with which articulated
3D bodies moving freely through 3D space can be mea- 3.2. Dataset structure
sured. We designed TULIP to address this issue.
Marker-based multi-camera motion capture systems
are traditionally used to track 3D movement quantities,
and recent studies have used such systems for movement
disorder analyses [43—45]. But requiring that patients
wear markers, together with the size of the motion capture
camera array, is not feasible for routine PD assessments.
A markerless diagnostic system could easily be deployed
in the clinic, or even at home, where it could be used to
support decision making or monitor disease progression
longitudinally. Furthermore, it is easier to capture facial

For the TULIP dataset, we enrolled 15 subjects, compris-
ing PD patients and healthy individuals. Ten were clinically
diagnosed with PD, while five had no prior PD diagnosis.
Subjects demographics are detailed in Supplementary Ta-
ble 2. The study was approved and conducted in accordance
with the ethical guidelines set by the Duke Institutional Re-
view Board.

TULIP focuses on observational Part III: Motor Exami-
nation UPDRS components (Figure 2). With clinician guid-
ance, we recorded 25 total activities from which UPDRS
scores could be derived, including unilateral tasks, such
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as guided hand movement, index finger tapping, and step-
ping, and bilateral tasks, such as arm straightening and gait.
Twenty-one of these activities are described in the UPDRS
guidelines, and 4, including standing on one leg and fin-
ger tapping using all fingers, were added to encompass a
wider range of body movements, on the advice of clinicians.
See Supplementary Section 3 for full activity list and other
paradigm details.

3.3. Video collection

To comprehensively capture the activities enumerated in the
UPDRS, we set up the system to record a 6.3 x 3 me-
ter hexagonal space fully capturing subjects in all 6 cam-
eras (1920 x 1200 pixels; 80 fps; Basler acA1920-155uc).
Cameras were synchronized via GPIO cables controlled by
campy [46]. Intrinsic and extrinsic camera parameters were
fit before and after each recording session.

3.4. UPDRS Labeling

For our study, we recruited three clinical expert neurologists
(2 professors, 1 MD fellow) in PD diagnosis and manage-
ment with over 30 years of PD experience combined. These
professionals reviewed the video recordings and scored sub-
jects according to UPDRS guidelines, and further made an
overall judgment about whether the subject had PD or was
healthy. The evaluations were conducted without access to
the subjects’ personal or medical history information to en-
sure unbiased scoring. From the videos, we obtained 29 dis-
tinct UPDRS Part III scores summarizing motor function,
including bilateral Hand movements, Kinetic body tremor,
Resting tremor amplitude arms and elbows, Facial expres-
sions, Gait, Posture, Dyskinesias, and more. The map-
ping between the 25 recorded activities and the 29 UPDRS
scores is delineated in Supplementary Section 3. We de-
rived ‘gold-standard” UPDRS labels from clinician scores
using majority voting, as per prior research [35].

4. Analysis Methods
4.1. Pose Estimation

We used TULIP to test automated UPDRS scoring models
for finger tapping and gait given features extracted from 2D
and 3D pose sequences. For pose estimation, we utilized
Mediapipe [47] and MMPose [48], which tracked com-
plementary sets of body keypoints on study subjects with-
out fine-tuning. We used MediaPipe to track 21 keypoints
on each hand for finger tapping, and we used MMpose
(Halpe26 configuration) to track 26 keypoints on the legs,
arms, trunk, and head for gait. To estimate 3D poses, we
triangulated 2D poses using the direct linear transformation
algorithm. We further improved 3D tracking by interpo-
lating over keypoint outliers and smoothing. We evaluated
pose tracking precision via comparison to human keypoint

annotation and via body segment length consistency. Mean
errors relative to manual annotations were 21 mm for fin-
ger tapping and 56 mm for gait, corresponding to reprojec-
tion errors of 22 and 16 pixels, respectively. Tracked body
segment lengths were also stable, with standard deviations
below 20 mm across all frames in each recording (Supple-
mentary Section 4).

4.2. Features for disease classification

To assess the utility of our dataset and establish benchmarks
for future studies, we trained classifiers to distinguish PD
from healthy individuals and predict UPDRS score, using
spatiotemporal kinematic features extracted from 2D and
3D pose sequences. In this study, we focused on only two
activities: index finger tapping and gait, both of which are
frequently analyzed in PD research [32, 35, 40, 49-52]. We
designed our feature set to enable accurate classification but
also include clinical variables that are commonly utilized
when scoring UPDRS manually.

UPDRS index finger
tapping activity

=15

1. Split pose traces into tapping epochs

UPDRS gait activity

£~ 2

1. Split pose traces into individual strides

Fingertip distance (mm)

2. Split each gait event

SRg¥ a7 e W

Angle Distance

2. Measure angle & distance

3. Extract features

S

Spatial ic features

Figure 3. Overview of feature extraction from finger tapping and
gait recordings.

4.2.1 Index finger tapping

During the index finger tapping task, subjects were in-
structed to perform tapping movements solely with their
thumb and index finger while keeping their palm oriented
forward. This activity yields valuable data on tremor, rigid-
ity, and the stability of hand posture [35, 53]. For feature
extraction, we first segmented pose traces based on tapping
events, measuring the angle between the thumb and index
fingertip, as well as the distance between them (Figure 3).
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Tapping events were detected as minima in finger-thumb
distance traces, i.e. the frames where the index fingertip
and thumb made contact.

After detecting the tapping events, the dataset was seg-
mented into windows, each encompassing a sequence of 10
tapping events, in accordance with the UPDRS finger tap-
ping criteria [5] and aligned with methodologies employed
in prior research [35]. For each tapping event, separately for
2D and 3D feature sets, we cgmputed three features from
the angle 7 = cos™! (H:;tff”%) , where f is the frame,
wi represents the vector from the wrist to the thumb tip, and
E% denotes the vector from the wrist to the index fingertip:
angular speed, angular accleration, amplitude. For the 3D
features, we also computed additional quantities, as key-
point coordinates are in real-world metric units. We utilized
the 3D distance between the thumb tip and index fingertip to
get speed relative features, as issues with contact vigor can
be a PD indicator [35, 54]. These included wrist cartesian
coordinates and finger velocities (opening velocity, closing
velocity). Finger velocity, in particular, is regarded as a
critical measure for PD detection [54—-56]. We then com-
puted seven summary statistics within each tapping window
(arithmetic mean, minimum, maximum, median, interquar-
tile range (IQR), standard deviation, and Shannon entropy)
and used only these statistics as our final feature set for
our baseline PD classifiers. These statistics provide concise
summaries of the feature distribution, and previous studies
have shown they can be used to discriminate between PD
severity levels in finger tapping recordings [35, 57-59].

To enhance this final feature set, we incorporated seven
additional metrics capturing dynamic aspects of tapping
motions: tapping period, tapping frequency, aperiodicity,
number of interruptions, number of freezing events, longest
freezing event duration, and complexity of fitting periods.
The methodologies for calculating these additional features
are detailed in the Supplementary Section 4.2.1. In total,
this resulted in a suite of 28 features for 2D and 49 features
for 3D poses.

422 Gait

Gait analysis is pivotal in tracking the progression of PD
and evaluating symptom severity. Characteristically, PD
patients display aberrant gait patterns marked by shortened
stride length, heightened stride variability, and a reduction
in walking speed [51, 60]. Prior research has documented
disparities in spatiotemporal and kinematic gait features
between PD patients and healthy subjects [52, 61], but
these studies have only utilized a limited range of features.
Using TULIP, we assessed whether a more comprehensive
set of features could enhance gait analysis, and whether
gait assessments benefit from 3D vs. 2D measurements.

During the gait measurement task, subjects began from a
standing position and then walked 6 meters, turned around,
and returned to the starting point. We recorded subject
gait for one minute, resulting in several walking cycles for
each subject. The methodology for extracting gait features
is depicted in Figure 3. Since subjects slowed down and
turned around at the end of the recording space, to extract
gait features we first segmented each linear walking bout.
We then identified the precise timepoints of heel-strike
and toe-off events to isolate individual strides. Heel-strike
and toe-off events were identified as the extrema in the
anterior-posterior trajectories of the heels and toes relative
to the hip [62]. We computed two types of gait features:
spatiotemporal features, such as double support time (the
time that both feet are touching the ground during a gait
cycle) and step length; and kinematic features, such as knee
angles, etc. For example, we calculated double support
time from one foot’s heel-strike to the other’s toe-off using
tas = (ft,., — fn,)/Fs (different feet), where f;
denotes the frame number of the (j + 1)th toe-off event,
fn; denotes frame number of the jth heel-strike event, and
F, denotes the frame rate. Features derived from 2D poses
were calculated in a single side-camera view selected to
best capture linear gait. For 3D poses, we derived these
features after projecting the poses onto the plane best
capturing subject displacement during a linear walking
bout. This projection reduces perspective ambiguities, an
advantage unique to 3D data. As with finger tapping, we
assembled our final feature set for modeling by computing
7 summary statistics, incorporating 'CV (Coefficient of
Variation)’ instead of ’entropy’ of these gait features. The
selection of CV in gait analysis was based on its common
usage in describing gait variability. Additionally, the
amount of variability, such as CV in the movement pattern,
has been emphasized in prior research [63].

5. Results
5.1. Clinician agreement

In our study, we quantified the consistency and reliability of
clinical evaluations using the Intraclass Correlation Coeffi-
cient (ICC) and weighted Cohen’s Kappa of UPDRS scores.
The ICC for mean UPDRS score was consistent across clin-
icians for the complete study cohort, ICC = 0.92 (95% CI
[0.81, 0.97]). Within the PD patient group, the ICC for
mean UPDRS score was 0.87 (95% CI [0.58, 0.97]), with
the slight drop in agreement likely due to the increased het-
erogeneity of PD presentation. Pairwise weighted Kappa
values (for ordinal variables) indicated similar levels of con-
sistency for mean UPDRS (0.82 clinician 1 and 2; 0.81 clin-
ician 1 and 3; 0.75 clinician 2 and 3 for the full cohort; 0.81,
0.80, 0.73 within the PD group, respectively). However,
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Figure 4. Schematic of the classification pipeline incorporating LOSO and bias matrices.

the reliability of specific UPDRS component scores was
more variable. While some components, such as “Finger
tapping - Left hand” (ICC = 0.89) and “Postural stability”
(ICC =0.90) were scored consistently, others exhibited sig-
nificant discrepancies, such as “Kinetic tremor - Left hand”
(ICC=0.4) and “Kinetic tremor - Right hand” (ICC=0.1).
This underscores the inherent complexity of these evalua-
tions and highlights the need for uniformity in clinical as-
sessments.

5.2. Disease classification

5.2.1 Modeling details

We used our feature set to train a suite of traditional ma-
chine learning models (SVM, Random Forest, AdaBoost,
XGBoost, LightGBM, MLP) classifying ordinal UPDRS
scores and the overall clinical PD/healthy diagnosis, estab-
lishing baseline benchmarks for TULIP. We chose these tra-
ditional models because it allowed us to compare to pre-
vious studies that have used them with more limited fea-
ture sets. Models were trained using a leave-one-subject-out
(LOSO) validation scheme for small sample sizes [35, 64],
with validation performance calculated using ‘gold stan-
dard’ clinician labels (majority voting over the group of
3 clinicians). For finger tapping, we integrated features
from both left and right activities, in line with methodolo-
gies established by previous research [35]. To help account
for clinician UPDRS scoring variability, our models were
trained to predict each of the clinician UPDRS scores sep-
arately. These scores were then weighted by clinician bias
matrices [65] (calculated only on training samples) and av-
eraged to produce final predicted scores. Detailed modeling
pipeline can be shown in Figure 4. Before training, we also
refined the feature sets for each activity by removing highly
correlated variables. We calculated Pearson’s correlation
coefficient for all pairs of features and removed one of the
pair from the dataset if 7 > 0.85.

5.2.2 Index finger tapping

Finger tapping analyses captured consistent periodicity in
all subjects, with variability in frequency and amplitude.
After removing highly correlated features, we arrived at a
diverse set of 20 features for 3D analyses: angular speed
(median), number of freezing, angular speed (entropy),
wrist movement (maximum), amplitude (median), aperi-
odicity, amplitude (entropy), angular acceleration (mini-
mum), amplitude (standard deviation), angular speed (min-
imum), complexity of fitting periods, amplitude (minimum),
angular acceleration (maximum), amplitude (IQR), longest
[freezing duration, wrist movement (mean), wrist movement
(minimum), closing velocity (maximum), wrist movement
(median), opening velocity (minimum), and 14 features
for 2D analyses: longest freezing duration, angular speed
(entropy), angular speed (maximum), number of freezing
events, amplitude (minimum), aperiodicity, amplitude (me-
dian), angular speed (median), amplitude (IQR), angular
acceleration (max), amplitude (entropy), complexity of fit-
ting periods, angular speed (minimum), angular accelera-
tion (minimum).

As outlined above, we tested a suite of classifiers on
two different tasks: UPDRS score prediction (0-4, ordinal
scale) and overall PD/Healthy diagnosis. Among the mod-
els tested, a simple MLP neural network using 3D features
was most accurate on both UPDRS score prediction (0.69
F1) and overall diagnosis (0.87 F1) as shown in Table 1.
We tested previously published approaches for PD classifi-
cation, including a ResNet50 CNN trained directly on 3D
pose sequences and LightGBM using 2D features, on the
TULIP finger tapping activity, but they did not perform as
well as the 3D feature MLP. In general, models using 2D
finger tapping features tended to perform poorly, supporting
the case for 3D PD data acquisition and analysis. The poor
performance of the ResNet50 pose sequence classifier could
stem from the relatively small size of the TULIP dataset.
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Figure 5. Gait feature extraction. Top: Left knee angles with real images. Bottom: Leg angles with 3D mesh models. Traces show clear
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Note that Mehta et al. [17] use this ResNet50 CNN for
sit-stand UPDRS classification and ensemble the ResNet50
with a Graph Convolutional Network. Here we tested the
ResNet50 on its own.

We quantified clinician assessment performance by com-
paring each clinician to the gold standard consensus labels
for each subject. On UPDRS scoring, clinician raters were
not perfect, achieving F1 scores between 0.7 and 0.87, with
our top performing model commensurate with the least ac-
curate rater. For binary PD/Healthy diagnoses, our model,
which was trained only on finger tapping features, was
nearly as good as one clinician (0.87 F1 for the model, 0.90
F1 for Clinician C). Note that clinicians assigned their over-
all PD/Healthy scores after viewing all 25 activities.

5.23 Gait

Our analysis pipeline captures kinematics continuously and
accurately at a millisecond resolution. In traces of joint an-
gle (Figure 5), we found evidence for restricted ranges of
motion in PD patients, corroborating findings from prior
clinical studies [61, 66]. As with finger tapping, we re-
moved highly correlated features, reducing the set to 57 fea-
tures for 3D and 45 for 2D. The refined feature set captured
a variety of step, stride, and cadence measures. Further de-
tails on these features are available in Supplementary Sec-
tion 5.2.2.

As with finger tapping, we tested classifiers for gait UP-

DRS score and overall PD/Healthy diagnosis. For gait, a
simple Random Forest model using 3D features demon-
strated the best performance on UPDRS score prediction
(0.72 F1). Again, models using 2D features underper-
formed. A similar pattern was observed for PD/Healthy
classification, although we note that on this task our model
performed slightly less well than a previously published
Random Forest approach using a smaller set of 3D features.

Clinician UPDRS scoring of gait was less accurate (be-
tween 0.67 and 0.73 F1), compared to consensus gold stan-
dard labels, than for finger tapping, and our model using
3D features outperformed both Clinician B and Clinician
C. This finding suggests that our model, to some extent, ef-
fectively mitigates biases present in medical assessments,
thus aiding in the diagnostic process and contributing to a
more objective scoring system. All approaches performed
less well on gait than finger tapping, potentially due to the
increased natural heterogeneity of gait. The performance of
all tested models can be found in Supplementary Section 5.

6. Discussion

Here we present the TULIP dataset—a pioneering resource
in PD research—as well as baselines for automated PD
symptom scoring. TULIP stands out as the first dataset uti-
lizes a markerless multi-camera setup to document both PD
patients and healthy subjects, encompassing a comprehen-
sive range of motor examination tasks from the UPDRS,
which is the clinical standard for PD assessment. Despite
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Target Task Features Model F1 score Reference
UPDRS Fingertap 2D features MLP 037 Ours
Prediction LightGBM 0.36 (Islam et al., 2023)
3D features MLP 0.69 Ours
3D poses ResNet50 030 (Mehta et al., 2021)
Videos Clinician A 0.80
Clinician B 0.70
Clinician C 0.87
Gait 2D features Random Forest 041 Ours
3D features Random Forest 0.72
Random Forest 034 (Rehman et al. 2019)
3D poses ResNetS0 027 (Mehta et al., 2021)
Videos Clinician A 0.73
Clinician B 0.67
Clinician C 0.67
PD/Healthy |Fingertap 2D features MLP 0.69 Ours
Prediction LightGBM 0.77 (Islam et al., 2023)
3D features MLP 0.87 Ours
3D poses ResNetS0 0.64 (Mehta et al., 2021)
Gait 2D features SVM 0.72 .
3D features Random Forest 0.72
Random Forest 0.73 (Rehman et al. 2019)
3D poses ResNetS0 059 (Mehta et al., 2021)
All 25 Videos Clinician A 1.00
activities Clinician B 093
Clinician C 0.90

Table 1. UPDRS scores and holistic PD vs. healthy predictions
using gold-standard labels. For UPDRS classification, F1 score
denotes weighted F1 score. Clinicians’ holistic decisions were not
activity-specific and thus are not separated by activity in the PD
vs. healthy comparison.

the extensive adoption of UPDRS, current clinical scoring
for PD remains semi-subjective, heavily reliant on clinician
experience and their interpretation of the rating scale. By
curating the TULIP dataset and demonstrating its utility for
behavioral analysis in PD patients, we’ve provided a valu-
able tool that can propel forward the integration of advanced
analytical techniques in clinical settings for PD.

We used TULIP to benchmark models predicting UP-
DRS scores for gait and finger tapping directly from video
recordings. For these baselines, we chose to use tempo-
ral, spatial, and kinematic feature extraction approaches to
align with previous work and enable more direct compar-
isons between our 3D approach and existing 2D methods.
On TULIP, we found that 3D features significantly out-
performed 2D features, underscoring the importance of 3D
video measurements. We expect UPDRS score predictions
to improve in the future, for instance via networks fit di-
rectly to 3D pose time series. Nevertheless, our models
achieved results that were commensurate with the accu-
racy of a clinician subset, demonstrating the potential of 3D
computer vision approaches to enable automated and scal-
able PD assessments.

We note several current limitations and future directions.
While the number of recorded subjects in TULIP exceeds
that of some popular 3D multi-camera 3D human datasets,
such as Human 3.6M, our cohort is still relatively small,
especially considering the hetereogeneity of PD. TULIP
also contains relatively little demographic diversity, which
could hinder generalization to more representative patient
populations. In addition, our baseline TULIP analyses did
not incorporate data from all of the activities we recorded.

TULIP was also collected in a large room that does not re-
flect the constraints of a typical clinical exam environment,
and in the future it will be important to adapt the behavioral
paradigm and acquisition hardware to smaller spaces.

In the future, we plan to augment our dataset by incor-
porating a larger and more diverse set of subjects, coupled
with an expanded range of activities aligned closer to activ-
ities of daily living. We are also excited by the potential of
unsupervised analysis of TULIP data, which could reveal
new quantitative signatures of PD independent of UPDRS
scoring. Long term, we hope to expand data collection to
include movement disorders other than PD, with the overall
aim to unearth novel digital behavioral biomarkers.

7. Conclusion

TULIP is the first dataset of its kind to comprehensively
record the UPDRS motor examination, providing high-
resolution multi-view 3D readouts together with annota-
tions from multiple clinical experts. By leveraging the
TULIP dataset, we have shown that UPDRS classifiers in-
corporating 3D features markedly outperform those based
on 2D features, and we have identified interpretable dis-
tinctions in movement variables between PD patients and
healthy controls in finger tapping and gait activities. TULIP
is poised to advance Parkinson’s research by aiding the de-
velopment of more precise, objective, and scalable diagnos-
tics, fostering more effective patient management and more
successful treatment discovery.
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