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Abstract

The rapid advancement of generative models, facilitat-

ing the creation of hyper-realistic images from textual de-

scriptions, has concurrently escalated critical societal con-

cerns such as misinformation. Although providing some

mitigation, traditional fingerprinting mechanisms fall short

in attributing responsibility for the malicious use of syn-

thetic images. This paper introduces a novel approach to

model fingerprinting that assigns responsibility for the gen-

erated images, thereby serving as a potential countermea-

sure to model misuse. Our method modifies generative mod-

els based on each user’s unique digital fingerprint, imprint-

ing a unique identifier onto the resultant content that can

be traced back to the user. This approach, incorporating

fine-tuning into Text-to-Image (T2I) tasks using the Stable

Diffusion Model, demonstrates near-perfect attribution ac-

curacy with a minimal impact on output quality. Through

extensive evaluation, we show that our method outperforms

baseline methods with an average improvement of 11%

in handling image post-processes. Our method presents

a promising and novel avenue for accountable model dis-

tribution and responsible use. Our code is available in

https://github.com/kylemin/WOUAF.

1. Introduction

Recent advancements in generative models have propelled

their proficiency, expanding their repertoire to include not

just the generation of photorealistic images [4, 14] but also

the synthesis of images from textual prompts [21, 24, 26,

28]. These significant strides have equipped individuals

with the capacity to leverage these models to create hyper-

realistic images that correspond seamlessly with given tex-

tual instructions.

Nonetheless, the escalating prominence of generative

models instigates pressing societal apprehensions. A case

in point is Deepfake, intentionally crafted to disseminate

*These authors contributed equally to this work.
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Figure 1. Illustration of user attribution based on our method.

Please refer to the main text for detailed descriptions.

misinformation, fostering a climate of fake news and po-

litical disarray [2, 17, 23]. The gravity of these concerns

necessitates calls for governmental intervention to regulate

the indiscriminate application of generative models1.

A feasible method to counteract malicious use involves

assigning accountability for generated images. One ap-

proach to achieve this is by integrating independent fin-

gerprinting modules that can embed user-specific informa-

tion on top of image generation. The open-source Text-to-

Image (T2I) project Stable Diffusion (SD) [26] currently

employs this technique using discrete wavelet transform or

RivaGAN [34]. However, in the open-source setting, by-

passing the fingerprinting module is straightforward and can

be achieved by commeting just a single line in the source

code [5].

Is it feasible to achieve user attribution without an in-

dependent fingerprinting module? In response, we pro-

pose a distributor-oriented methodology named WOUAF,

standing for Weight mOdulation for User Attribution and

1President Biden Issues Executive Order on Safe, Secure, and Trust-

worthy Artificial Intelligence. The White House

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Fingerprinting. In practical terms, when a model inventor

open-sources their work to a model distributor such as Hug-

gingface, the distributor could utilize our proposed method

to create a generic version. Upon receiving a download re-

quest from an end-user, the distributor can adjust the model

weights using our technique and deploy a fingerprinted ver-

sion to the user, simultaneously registering the user’s finger-

print into their database. In the event of a model’s malicious

exploitation, the distributor can decode the fingerprint from

the misused image and cross-reference it with their database

to identify the responsible user. Consequently, this provides

the distributor with an actionable method to counteract ma-

licious uses of the model (see Fig. 1 for a comprehensive

framework of our methodology).

Our methodology, designed for T2I tasks, is integrated

into the Stable Diffusion (SD) framework without neces-

sitating any structural changes to the model. This de-

sign choice effectively prevents end-users from bypass-

ing the fingerprinting process. Consistent with prior re-

search [5, 16, 22, 32, 33], our primary goal is to maintain

high attribution accuracy while ensuring minimal impact on

output quality, as elaborated in Sec. 3. Our rigorous evalua-

tions of this method concentrate initially on assessing both

attribution accuracy and image quality. We have found that

our approach attains nearly flawless attribution accuracy

with only a slight influence on image quality. Moreover,

we evaluate the robustness of our method in various sce-

narios involving post-processing manipulations that images

might undergo. Our method outperforms baseline methods

in these robustness tests, showing an average improvement

of 11% in handling such manipulations (refer to Sec. 4 for

further details).

There are four main contributions: (1) We intro-

duce WOUAF, a distinctive distributor-centered fine-tuning

methodology. This approach embeds fingerprints within the

model in such a way that end-users cannot easily circum-

vent or remove them. (2) Our method successfully achieves

high attribution accuracy, while maintaining the quality of

the output images. (3) Our approach exhibits marked re-

silience against a diverse array of image post-processes, a

vital attribute for practical applications. (4) We conduct

thorough assessments to balance attribution accuracy with

manipulations to intentionally remove fingerprints, includ-

ing strategies like image compression via auto-encoders and

obfuscation through model fine-tuning.

2. Related Work

In this section, we discuss related works of model finger-

printing in generative models. More related works are avail-

able in the appendix.

Inventor-oriented Model Fingerprinting. Yu et al. [33]

leveraged a pre-trained deep steganography model to em-

bed fingerprints into the training set for fingerprinted GANs.

However, this approach suffers from limited scalability, as

it necessitates training a GAN from scratch for each distinct

fingerprint. To address this issue, Yu et al. [32] introduced

a weight modulation method [12] that directly embeds a

user’s fingerprint into the generator’s weights. Despite these

advancements, current methods are predominantly tailored

for GAN-based models and typically require training from

scratch. This raises important questions regarding their suit-

ability for diffusion-based models, which have a different

structural makeup compared to GANs, and the feasibility

of avoiding the requirement for training from scratch. The

adoption of fine-tuning as a method for embedding finger-

prints presents a promising solution. It facilitates the incor-

poration of fingerprints into pre-trained diffusion models,

eliminating the necessity for comprehensive retraining from

the ground up [5, 36]. This approach significantly stream-

lines the process, allowing model inventors to concentrate

on core model development without the complexities of em-

bedding fingerprints during training.

Distributor-oriented Model Fingerprinting. Kim et

al. [16] proposed a technique for achieving user attribu-

tion by explicitly incorporating user-specific fingerprints

into the generator’s output. While this simplified attribu-

tion method allowed for the derivation of sufficient fin-

gerprint conditions, it necessitates a trade-off between the

quality of the generated output and attribution accuracy,

which is further exacerbated when image post-processes

are taken into account. To tackle this issue, an approach

has been proposed that utilizes subtle semantic variations

along latent dimensions as fingerprints, generated by pertur-

bations of eigenvectors in the latent distribution [22]. This

method demonstrates an improved balance between gener-

ation quality and attribution accuracy. However, its appli-

cability is restricted to unconditional image generation, as

eigenvectors are computed by sampling the learned latent

representation. In the context of conditional image gener-

ation, estimating eigenvectors of latent representation be-

comes challenging due to the vast space of conditions, such

as those found in text conditions.

Recent Advances in Fingerprinting for Text-to-Image

Diffusion Models. Recent studies [5, 31, 36] have scru-

tinized fingerprinting techniques in the Stable Diffusion

model [26], uncovering vulnerabilities in existing meth-

ods [34] that facilitate easy circumvention [5] or ro-

bust post-hoc fingerprinting [31]. Fernandez et al. [5]

achieved near-perfect attribution accuracy by fine-tuning

user-specific models to align with steganography mod-

ule [37], demonstrating a viable alternative to conventional

post-hoc fingerprinting modules [34]. However, this ap-

proach scales linearly in computational demand with the

number of users since it necessitates fixed-time fine-tuning
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(a) The overall pipeline. (b) Weight modulation.

Figure 2. Depiction of our method’s pipeline and weight modulation: (a) The model fingerprinting procedure encompasses encoding via

the mapping network and weight modulation, along with decoding through the fingerprint decoding network. (b) Weight modulation of the

decoding network D to incorporate the fingerprint.

for each individual. In contrast, our method requires only

a one-time training followed by a negligible forward pass

time to generate user-specific models. Furthermore, our ap-

proach shows superior robustness against common image

post-processing techniques compared to that of Stable Sig-

nature [5] (refer to Section Sec. 4.6 for details).

Another notable contribution is by Wen et al. [31], who

introduced an alternative fingerprinting method for the Sta-

ble Diffusion model [26]. Their method, similar to post-

hoc style fingerprinting [34], depends on user-driven em-

bedding, which allows end-users the option to exclude the

fingerprint. Moreover, it is confined to the DDIM sched-

uler [30]. Our method, in contrast, is adaptable to both the

DDIM [30] and Euler schedulers [15], underscoring its ver-

satility and wider applicability (refer to the Appendix).

3. Methods

This section outlines our approach, beginning with an

overview of the Text-to-Image (T2I) diffusion model with

a focus on the Stable Diffusion (SD) model [26] detailed

in Sec. 3.1. We then introduce our key component, the user-

specific weight modulation, in Sec. 3.2. The section con-

cludes with a detailed explanation of our training objectives

and methods, outlined in Sec. 3.3.

3.1. Preliminaries

Our approach utilizes the Stable Diffusion (SD) model,

which functions within the latent space framework of an

autoencoder. SD comprises two main elements: Firstly, an

autoencoder is pre-trained on an extensive dataset of im-

ages. Its encoder, E(·) : Rdx → R
dz , converts an image

x ∼ pdata into a latent representation z = E(x). The de-

coder, D(·) : Rdz → R
dx , then reconstructs the original im-

age from this latent representation, resulting in x̂ = D(z).
The secondary element is a diffusion model, based on the

U-Net architecture [27], represented as ϵθ. This model is

adept at generating latent representations and can be condi-

tioned using pre-trained text embeddings

3.2. User­specific Weight Modulation

Our method is fundamentally based on integrating finger-

prints into the parameters of the SD through weight modu-

lation [12, 32].

The overall pipeline of our method is illustrated in

Fig. 2(a). A user-specific fingerprint is drawn from a

Bernoulli distribution with a probability of 0.5, represented

as ϕ ∈ Φ := Bernoulli(0.5)dφ , where dφ signifies the

fingerprint length in bits. We employ a mapping network

M(·) : R
dφ → R

dM to convert the sampled fingerprint

ϕ into an intermediate fingerprint representation within the

dM dimension. For modulating each layer in the SD com-

ponent, we introduce an affine transformation layer, Al(·) :
R

dM → R
dj , for all layers l. As depicted in Fig. 2(b),

this transformation matches the dimensions between dM
and the j-th channel in weight W ∈ R

i,j,k, where i, j, k

denote input, output, and kernel dimensions, respectively.

The weight modulation for the l-th layer is defined as:

W
φ
i,j,k = uj ∗Wi,j,k, (1)

where W and Wφ denote the pre-trained and fingerprinted

weights respectively, uj = Al(M(ϕ)) is the scale of the

fingerprint representation corresponding to the jth output

channel.

We incorporate fingerprints into the SD by applying

weight modulation exclusively to the weights in the decoder

D. The rationale for not applying modulation to both the

diffusion model ϵθ and decoder D, an approach that mirrors

GAN-based models [32], is explained in Sec. 4.5.

3.3. Training Objectives

Our training architecture comprises two primary objectives.

The initial objective is to decode fingerprints from the pro-
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Table 1. Evaluation of Attribution Accuracy and Image Generation Quality. We conducted validation using the MS-COCO [19] test set

and the LAION-Aesthetics [29] dataset, which were excluded from our training phase. Symbols ↑ and ↓ denote preferred higher and lower

values, respectively.

Model

MS-COCO LAION

Fingerprinting

Time (↓)

Attribution

Acc (↑)

CLIP-score

(↑)

FID (↓) Attribution

Acc (↑)

CLIP-score

(↑)

FID (↓)

Original SD [26] - - 0.73 24.48 - 0.50 19.67

DAG [16] 8.4 hr 0.70 0.73 26.54 0.71 0.49 23.13

Stable Signature [5] < 1 min 0.99 0.73 24.55 0.98 0.50 20.02

WOUAF-conv < 1 sec 0.99 0.73 24.43 0.98 0.51 20.46

WOUAF-all < 1 sec 0.99 0.73 24.42 0.99 0.51 19.91

vided images. We train a fingerprint decoding network

F(·) : Rdx → R
dφ , which is instantiated by ResNet-50 [6],

as follows:

Lφ = Ez=E(x),φ∼Φ

dφ
∑

i=1

[ϕi log σ(F(D(ϕ, z))i

+(1− ϕi) log(1− σ(F(D(ϕ, z)))i], (2)

where σ(·) refers to the sigmoid activation function, con-

straining the output of F to the range [0, 1]. Thus, this loss

function effectively combines binary cross-entropy for all

bits of the fingerprint. During training time, fingerprint ϕ is

sampled from Bernoulli distribution. However, after train-

ing, the model distributor initially samples a user-specific

fingerprint ϕα and subsequently modulates the decoder D
using ϕα. The user will receive the fingerprinted decoder

D(ϕα, ·), which solely permits latent input.

The secondary objective endeavors to regularize the

quality of outputs. Ideally, this regularization inhibits the

decoder D from compromising image quality while mini-

mizing Lφ in Eq. (2):

Lquality = Ez=E(x),φ∼Φ [ℓ(x,D(ϕ, z))] , (3)

ℓ represents the distance metric between original images

and fingerprinted images. For practical applications, we uti-

lize perceptual distance [35] to gauge the perceptual differ-

ence between x and D(ϕ, z).

The final objective function can be formulated as:

min
A,M,D,F

λ1Lφ + λ2Lquality, (4)

where both λ1 and λ2 are set to 1.0. Fundamentally, the

loss function aspires to reconstruct fingerprints while main-

taining the quality of the generated outputs. To assess the

efficacy of our proposed method, we employ attribution ac-

curacy and image quality metrics (Refer to Sec. 4.1 for de-

tails).

4. Experiments

4.1. Experiment Settings

Datasets. Our approach is fine-tuned on the MS-

COCO [19] dataset, adopting the Karpathy split. For

methodological evaluation, we harness the test set from

MS-COCO and randomly sample from the LAION-

aesthetics [29] dataset. For T2I image generation, we adopt

the Euler scheduler [15] with timestep T = 20, and the

classifier-free guidance scale [9] is set to 7.5 unless other-

wise specified. Evaluation for DDIM scheduler [30] and

various image generation hyperparameters are available in

the Appendix.

Experimental Setting. We implement the weight modula-

tion following the design specified in the source code of

StyleGAN2-ADA [13]. Our mapping network M is de-

signed with a series of fully connected layers, wherein all

experiments are conducted using a two-layer configuration.

To train robust models against image post-processing trans-

formations, differentiable post-processes are necessary. To

this end, we incorporate the Kornia library [25]. For Stable

Signature [5], we utilize the official code provided by the

authors. We note that its post-processing transformations

are replaced with our version for fair comparison. Appendix

includes details on mapping network dimensions, training

parameters, and optimizer.

Evaluations. User attribution accuracy is gauged by the

formula: 1
dφ

∑dφ

i=1 ✶(ϕi = ϕ̂i), where ϕ is the true finger-

print and ϕ̂ = ✶ [σ(F(xφ)) > 0.5] is the estimated finger-

print from image xφ. Unless otherwise stated, dφ is set to

32 in our experiments (Refer to Sec. 4.2 for additional in-

formation). We further employ a statistical test [32, 33] to

evaluate matching bits between ϕ̂ and ϕ. The null hypoth-

esis H0 suggests that the number of matching bits arises

by chance. The test uses a binomial distribution, with a p-

value derived as: P (X ≥ k|H0) =
∑dφ

i=k

(

dφ

i

)

0.5dφ . A

p-value below 0.05 leads to the rejection of H0, with 1− p

serving as an indicator of verification confidence. Lastly, to
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“A kitchen is shown 
with a variety of items 

on the counters”

“A ram is looking at the 
camera and standing on 

some grass”

“Amsterdam, Holland, 
Canals at dusk”

“Download premium 
image of Drone shot of 

the road in Dolomites”

Stable Diffusion Ours Pixel-wise difference Stable Diffusion Ours Pixel-wise difference

“Two women walking 
side by side holding 

umbrellas”

“High angle view of cars 
on production line in a 

factory”

(a) MS COCO (b) LAION Aesthetics

Figure 3. Qualitative comparison of the original and fingerprinted Stable Diffusion models on MS-COCO [19] and LAION aesthetics [29]

(Pixel-wise differences× 5: they are multiplied by a factor of 5 for better view). We can observe that our method maintains high image

quality.

validate the quality of our method, we assess image quality

using the Fréchet Inception Distance (FID) [8] and employ

the Clip-score [7] to determine the alignment between text

and generated images. Additional experimental details can

be found in the Appendix.

Models. For evaluating our methodology, we benchmark

against two established baseline methods: DAG [16] and

Stable Signature [5]. Both these methods, conceptualized

from the model distributor’s standpoint, incorporate fine-

tuning for model fingerprinting. To ensure a fair compar-

ison, we retrain the Stable Signature method within our

training settings by replacing its post-processing scheme.

Additionally, we evaluate our method against three distinct

variants based on the specific layers chosen for weight mod-

ulation implementation. The first variant, WOUAF-conv,

applies modulation to only the convolutional layers in D.

In contrast, WOUAF-all extends this approach across all

layers of D, covering both self-attention and convolution

layers. The final variant implements weight modulation in

both the diffusion model ϵθ and the decoder D, mirroring

the approach used in GAN-based methods [32]. Further de-

tails on why this variant is not used in our experiments are

discussed in Sec. 4.5.

4.2. Fingerprint Capacity

The capacity of our method depends on the maximum num-

ber of unique user-specific fingerprints it can support with-

out significant crosstalk. This capacity is primarily influ-

enced by the fingerprint dimension (dφ). Selecting an opti-

mal dφ presents a challenge: while a larger dφ can accom-

modate more users, it also complicates effective fingerprint

Table 2. Experiments of attribution accuracy across various fin-

gerprint dimensions (dφ).

Attribution Accuracy

Fingerprint Dims. 16 32 64 128

WOUAF-conv 0.99 0.99 0.98 0.94

WOUAF-all 0.99 0.99 0.99 0.97

decoding [18].

To investigate this trade-off, we conduct an analysis with

varying fingerprint dimensions, specifically dφ values of 16,

32, 64, and 128. Tab. 2 presents the user attribution ac-

curacy for each dφ value. As shown in Tab. 2, attribution

accuracy tends to decrease monotonically as dφ increases.

Importantly, both our variant models achieve a near-perfect

attribution accuracy of 0.99 for dφ values of 16, 32, and 64.

However, for dφ = 128, WOUAF-all variant outperforms

the WOUAF-conv variant. For a balanced comparison with

existing methods, we choose dφ = 32, which notably can

support a substantial user base exceeding 4 billion ≈ 232.

4.3. Attribution Accuracy and Image Quality

We conduct a comprehensive evaluation of WOUAF, focus-

ing on attribution accuracy and image quality. The assess-

ment involves the MS-COCO [19] test set and the LAION-

Aesthetics [29] dataset, which are excluded from the train-

ing phase. The results, detailed in Tab. 1, showcase the effi-

cacy of our method.

Our variants, namely WOUAF-conv and WOUAF-all,

demonstrate superior performance in attribution accuracy
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over DAG [16], indicating their proficiency in accurately

decoding embedded fingerprints from the generated images.

These variants also show competitive results when com-

pared to Stable Signature [5], reinforcing our methodol-

ogy’s robustness. Notably, we achieve this high level of

accuracy without significantly compromising image quality.

Both FID scores and Clip-scores showed minimal variation

from the baseline SD model, indicating that our approach

has a negligible impact on image output quality. This is fur-

ther corroborated by qualitative examples in Fig. 3, which

highlight WOUAF’s ability to reliably incorporate finger-

printing without degrading image generation quality. For

additional insights, uncurated image collections are pro-

vided in the Appendix.

Given the growing importance of T2I models, computa-

tion time for fingerprinting emerges as a key metric. Our

method stands out in computational efficiency. It contrasts

with approaches like Stable Signature that need fine-tuning

for each new fingerprint. Our method requires just a single

forward pass, markedly reducing computational overhead.

4.4. Attribution Analysis for Diverse Image Sources

Investigating the attribution of generated images to respon-

sible users, we explore the potential for images from non-

fingerprinted or varied sources to bypass our system. Our

analysis aims to determine if decoded fingerprints from

such images match any entries in the model distributor’s

database. A mismatch indicates the image’s external origin,

absolving users in the database.

We adopt the experimental setup from [32], compiling a

dataset with different image types: authentic images from

the MS-COCO test set [19], non-fingerprinted images from

Stable Diffusion [26], and synthesized images from Pro-

GAN [10], StyleGAN [11], and StyleGAN2 [12], with each

category containing 1,000 samples. Given our extensive

user database of 1 million entries, we set a threshold at

32 ∗ 0.95 ≈ 30 bits, aligning with our 0.99 attribution accu-

racy as shown in Tab. 1.

Our rigorous experiments revealed that, irrespective of

the source, no images were incorrectly attributed as pos-

sessing a fingerprint from our 1 million fingerprint database.

This reinforces the reliability of our attribution approach as

detailed in Sec. 4.3 demonstrating the robustness of our sys-

tem against diverse image sources.

4.5. Benefits of Finetuning only Decoder

When developing our last variant that incorporates weight

modulation into both the diffusion model ϵθ and the decoder

D, we note that the resultant pipeline demonstrates similar-

ities with the GAN-based method [32]. A direct compar-

ison between ours and the GAN-based methods may not

be entirely straightforward, given the fundamental differ-

ences in their training methodologies. This is because the

Stable Diffusion Diffusion +Ours

Figure 4. Comparative analysis of weight modulation on decoder

D and diffusion model ϵθ with decoder D. Modulating the diffu-

sion model negatively affects image quality.

GAN-based methods entail training from scratch, whereas

our proposed approach leans towards fine-tuning. Neverthe-

less, both methodologies share a common mechanism: they

aim to modulate the weights of the layers instrumental in

learning the latent space. The shared characteristic under-

scores the fundamental objective of optimizing the balance

between attribution accuracy and generation quality.

However, our empirical observations suggest that this

variant does not consistently achieve commendable perfor-

mance as an attribution model. Specifically, it appears that

this variant can only optimize either attribution accuracy or

generation quality, but not both simultaneously. In our tests,

the highest attribution accuracy reached by this variant is

89%, with a Clip-score of 0.68 and FID of 63.48 (detailed

in Fig. 4). The inherent trade-off observed here further rein-

forces the challenge of balancing these two critical parame-

ters in the context of model fingerprinting techniques.

4.6. Robust User Attribution against Image Post­
processes

This section evaluates the robustness of our method in sce-

narios where generated images undergo post-processing.

These processes could potentially alter the embedded fin-

gerprint within the images.

Consistent with methodologies outlined in previous re-

search [5, 16, 22, 32, 33], we examine our model’s re-

silience to various image post-processing operations. We

simulate the effect of post-processing at random intensities

before inputting data into the fingerprint decoding network,

F :

Lrobust = Ez=E(x),φ∼Φ

dφ
∑

i=1

[ϕi log σ(F(T (D(ϕ, z)))i

+(1− ϕi) log(1−σ(F(T (D(ϕ, z)))i], (5)
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Figure 5. Enhanced Robustness Against Image Post-Processes. For almost all scenarios, WOUAF consistently exceeds the performance of

DAG [16] and Stable Signature [5].

where, T (·) : R
dx → R

dx denotes the post-processing

function. In the optimization process, we employ an ob-

jective function akin to the one detailed in Eq. (4), with Lφ

substituted by Lrobust.

In our exploration, we contemplate eight different post-

processing techniques: Erasing, Rotation, Gaussian Blur-

ring, Cropping, Brightness jittering, the addition of Gaus-

sian Noise, JPEG compression, and a Combination of

all these post-processes. The parameters for these post-

processes are designed as follows: For random erasing,

we use a random erase ratio within the range [5%, 10%,

15%, 20%]. Rotation involves randomly sampling a degree

within the range (-30, 30). For Gaussian Blurring, we ran-

domly select a kernel size from [3, 5, 7]. For Cropping,

we use a random cropping-out ratio within the range [5%,

10%, 15%, 20%]. The Brightness factor is randomly sam-

pled within the range (-0.3, 0.3). For Gaussian Noise, we

add noise with a standard deviation randomly sampled from

a uniform distribution U [0, 0.2]. JPEG compression quality

level is selected from [90, 80, 70, 60, 50]. The Combi-

nation technique randomly selects a subset of these seven

post-processing methods with a probability of 0.5.

User attribution accuracy for each post-process is evalu-

ated under these parameters. Our tests, depicted in Fig.5,

offer a comparative analysis of user attribution accuracy

across robust versions of DAG [16], Stable Signature [5],

and WOUAF. Remarkably, our method demonstrates ro-

bustness across a range of post-processes, achieving an at-

tribution accuracy improvement of 11% over Stable Signa-

ture and 29% over DAG. A notable trend across all transfor-

mations is the monotonic decrease in user attribution accu-

racy as the intensity of post-processing increases. This rein-

forces the challenges posed by post-processing in maintain-

ing accurate user attribution. However, our results also un-

derscore the benefits of robust training in overcoming these

challenges, emphasizing the importance of resilient train-

ing strategies for fingerprinting methods in the face of post-

processing transformations. Considering the robustness of

our method against various post-processes, it becomes a vi-

able choice for model distributors seeking reliable finger-

printing solutions. Detailed results of FID scores and visual

examples are available in the Appendix.

5. Deliberate Fingerprint Manipulations

This section delves into our method’s robustness against de-

liberate attempts to remove fingerprints, which include ma-

licious manipulations via auto-encoders and model purifi-

cation. Further details and extended attack scenarios are

provided in the Appendix.

5.1. Resilience Against Deep Classifier

The imperceptibility of the fingerprint in generated images

is crucial to prevent its detection and subsequent tampering

by malicious entities. To assess the secrecy of our method,

we adopt an attack scenario akin to the one in [32], assum-

ing an attacker aims to train a classifier to detect the pres-

ence of a fingerprint.

We assume that the attacker seeks to train a classifier ca-

pable of detecting the presence of a fingerprint. To assess

this scenario, we utilize a pretrained ResNet-50 [6] based

binary classifier, trained using 10K SD generated images
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(5K original SD images and 5K fingerprinted SD images).

This configuration is deemed valid as detecting the presence

of a fingerprint necessitates using both non-fingerprinted

and fingerprinted images in the training set. The binary

classifier achieve 98% accuracy in the training stage. In

subsequent evaluations using a separate set of 5K images

from our variant models, the binary classification accuracy

is 0.66 for WOUAF-conv and just 0.56 for WOUAF-all,

which is nearly equivalent to random chance.

These findings imply that detecting our embedded fin-

gerprint, particularly in the WOUAF-all variant, poses a

challenge to detect. Upcoming subsections will delve into

further evaluations, predicated on the stringent assumption

that users are cognizant of the fingerprint’s presence and en-

deavor to eliminate it by employing auto-encoder methods

or fine-tuning techniques.

5.2. Resilience Against Auto­Encoders

In contexts where adversaries aim to alter output images,

leveraging deep learning techniques such as neural auto-

encoders [1, 3, 20] becomes a common strategy for the pur-

pose of obfuscating or removing fingerprints embedded in

images [5]. To assess the resilience of our approach, we

utilize the robust model against JPEG described in Sec. 4.6.

This comparison is appropriate as JPEG represents a con-

ventional image compression method. However, the auto-

encoders [1, 3, 20] employed in our evaluation exhibit su-

perior compression performance compared to JPEG. Our

research explores the resilience of our proposed method

against these sophisticated auto-encoders, focusing partic-

ularly on the impact of their varying compression rates.

As depicted on the left side of Fig. 6, our investigations

reveal a notable trend: attribution accuracy progressively

declines towards a near-random level (approximately 50%)

as the compression rate employed by the auto-encoders es-

calates. This trend highlights a critical trade-off: the reduc-

tion in attribution accuracy is achievable solely by compro-

mising the quality of the image [18]. Our findings indicate

that compromising the integrity of the image is a necessary

consequence to effectively obscure the fingerprinting pro-

cess.

5.3. Resilience Against Model Purification

This subsection addresses the scenario where an adversary,

upon recognizing the presence of fingerprints within the im-

ages generated by the image decoder D, opts to fine-tune D
with the objective of obliterating the embedded fingerprint.

This strategy, known as model purification, is a sophisti-

cated approach to altering the model’s output to erase trace-

able imprints [5].

In this adversarial setting, the primary aim is to refine

the downloaded fingerprinted model by optimizing the re-

construction error between the adversary’s proprietary im-

Figure 6. Left: Auto-Encoder-based Fingerprint Removal. With

heightened compression rates, both image quality and attribution

accuracy experience a decrease. Right: Model Purification. Pro-

gressive fine-tuning leads to concurrent declines in both image

quality and attribution accuracy. Note that a lower FID score is

preferable, indicating better image quality.

age dataset and the output from the fingerprinted model. By

adhering to the experimental framework outlined in [5], we

charted the interplay between FID scores and attribution ac-

curacy, as presented on the right side of Fig. 6. Our empir-

ical analysis reveals a significant challenge: efforts to de-

crease the attribution accuracy lead to a decline in the qual-

ity of the generated images. This finding underscores the in-

herent complexity in fine-tuning processes aimed at model

purification, particularly when striving to maintain the vi-

sual quality of the output while endeavoring to obscure its

traceable characteristics.

6. Conclusion

In this study, we have delved into user attribution for Sta-

ble Diffusion-based Text-to-Image (T2I) model, employing

a weight modulation-based fingerprinting approach. Our

method, WOUAF, not only achieves near-perfect accuracy

but also preserves the high quality of generated images. A

key aspect of WOUAF is its computational efficiency cou-

pled with enhanced robustness against various image post-

processing techniques compared to existing baselines. Our

results lay a solid groundwork for future exploration into

the broader implications and challenges posed by genera-

tive models. In future work, we plan to expand and refine

our methodology to encompass various data types including

text, audio, and video, necessitating tailored adjustments in

model fingerprinting techniques.
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