
The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by
Harnessing Forward Passes

Myeongseob Ko1 Feiyang Kang1 Weiyan Shi2 Ming Jin1 Zhou Yu2 Ruoxi Jia1

1Virginia Tech 2Columbia University
{myeongseob, fyk, jinming, ruoxijia}@vt.edu, {ws2634, zy2461}@columbia.edu

Abstract

Large-scale black-box models have become ubiquitous
across numerous applications. Understanding the influence
of individual training data sources on predictions made by
these models is crucial for improving their trustworthiness.
Current influence estimation techniques involve computing
gradients for every training point or repeated training on
different subsets. These approaches face obvious compu-
tational challenges when scaled up to large datasets and
models.

In this paper, we introduce and explore the Mirrored In-
fluence Hypothesis, highlighting a reciprocal nature of in-
fluence between training and test data. Specifically, it sug-
gests that evaluating the influence of training data on test
predictions can be reformulated as an equivalent, yet in-
verse problem: assessing how the predictions for training
samples would be altered if the model were trained on spe-
cific test samples. Through both empirical and theoretical
validations, we demonstrate the wide applicability of our
hypothesis. Inspired by this, we introduce a new method
for estimating the influence of training data, which requires
calculating gradients for specific test samples, paired with
a forward pass for each training point. This approach can
capitalize on the common asymmetry in scenarios where
the number of test samples under concurrent examination
is much smaller than the scale of the training dataset, thus
gaining a significant improvement in efficiency compared to
existing approaches. We demonstrate the applicability of
our method across a range of scenarios, including data at-
tribution in diffusion models, data leakage detection, analy-
sis of memorization, mislabeled data detection, and tracing
behavior in language models.

1. Introduction
As the popularity of large-scale, black-box machine learn-
ing models continues to surge across diverse applications,
the need for transparency—an understanding of the factors

driving their predictive behaviors—becomes increasingly
critical. These models are learned from training data, and as
such, an important step towards achieving transparency lies
in estimating the influence of individual training data points
on the model’s predictions.

Extensive research on training data influence estimation
has been conducted over the years [16, 18, 22, 27, 29]. De-
spite the diversity of techniques, they all fundamentally re-
volve around a central idea of assessing the counterfactual
impact of a training data source:

How would the prediction on specific test points
change if we removed a training source? (P1)

One line of approaches [16] focuses on the direct eval-
uation of the counterfactual impact, i.e., by retraining a
model on the set excluding the training source and mea-
suring the change in the prediction. Besides the obvi-
ous computational overhead, such evaluation results suf-
fer from a low signal-to-noise ratio due to the stochasticity
in widely-used learning algorithms and are largely incon-
sistent across different runs [37]. To magnify the change
caused by removing a single source, existing techniques
mostly involve retraining models on smaller subsets of the
training data and measuring a source’s influence by aggre-
gating its contribution to different subsets not containing the
source [11, 12, 17]. While these methods produce more
consistent influence scores, they are infeasible for large-
scale models.

Another line of approaches bypasses the need for re-
training by estimating the influence through the final trained
model or intermediate checkpoints reached during the train-
ing process [22, 29]. In particular, they evaluate a training
point’s influence using the corresponding gradient of the fi-
nal model or checkpoints, which effectively represents the
local changes made by introducing the point into training.
However, calculating gradients is not only time-intensive
but also memory-inefficient compared to forward pass [26].
In our tests, it took up to 10.92 times longer and used 5.36
times more memory than inference for the Vision Trans-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

26286

Backward+
…

+

+

Re-training Based Gradient Based Forward-INF (Ours)

Training
Data

Test Data

Train-to-Test Influence Methods

 Dtst

 D1

 D2

…
 DN

Re-train for each subset

+ X

 D1

 DN

Forward

Backward

Repeat for each model

Test-to-Train Influence

+ Dtst Forward

 Dtst

+ Backward Di

Repeat for each data source

Backward Dtst

+ Di

Forward

—

 Di

Forward

Repeat for each data source

 Di

—

Figure 1. Overview of our approach and comparison with prior
work which can be generally categorized into re-training-based
methods and gradient-based methods. The former requires re-
training models on many different subsets of training data [11, 12,
16, 17]. The latter calculates the influences based on training data
gradients (TracIn [29] is illustrated as an example in the second
column). Our proposed method Forward-INF features only for-
ward pass computation for each training point, offering significant
efficiency improvement.

former vit-b-32 [8]. Furthermore, identifying the most
influential training point requires computing the gradient
for every single training data point. Combined, these chal-
lenges hinder the efficient determination of data influence,
especially for large-scale datasets and large models. Fig-
ure 1 highlights the conceptual difference between existing
approaches and we will defer the detailed discussion of Re-
lated Work to Appendix A.

Given the discrepancy in efficiency between gradient cal-
culation and inference, an intriguing yet uncharted question
arises: Can we maximize the usage of forward pass when
estimating influence? We will introduce a technique that
exploits the considerable efficiency gap between forward
and backward passes, especially when applied to all training
points. This method is anchored on the following Mirrored
Influence Hypothesis.
The Mirrored Influence Hypothesis. The train-to-test in-
fluence characterized by the problem (P1) is correlated with
the test-to-train influence characterized by (P2) in which the
role of training and test points is swapped:

How would the prediction on a training source
change if the model was trained on specific test
points? (P2)

More formally, consider a training dataset comprising N
data sources, Dtrn = D1 ∪ . . . ∪DN and a test set Dtst. Let
A denote the learning algorithm which takes a dataset as
input and returns a model, and let L be a loss function. The
train-to-test influence characterized by P1 can be expressed
as

Inf(Di → Dtst) = L(A(Dtrn), Dtst)− L(A(Dtrn \Di), Dtst). (1)

On the other hand, the test-to-train influence characterized
by P2 can be written as

Inf(Di ← Dtst) = L(A(Dtrn ∪Dtst), Di)− L(A(Dtrn), Di). (2)

Figure 2. We observe high correlation between train-to-test influ-
ence Inf(Di → Dtst) and test-to-train influence Inf(Di ← Dtst).
The average Pearson Correlation is 0.9673 for logistic regression
and 0.8851 for CNN trained on CIFAR-10.

We find that Inf(Di → Dtst) is highly correlated with
Inf(Di ← Dtst) for i ∈ {1, . . . , N}. Figure 2 illustrates the
correlation for convex and non-convex models trained on
the CIFAR-10 dataset and we defer results on other datasets
and models to the Appendix B due to the similarity in their
trends.
Leveraging the Hypothesis. In most data influence esti-
mation applications, the size of the test set is typically much
smaller than the training set (|Dtst|<<|Dtrn|). For example,
when identifying influential training points for a specific
model prediction, Dtst represents just a single test point.
Similarly, in detecting low-quality training data, Dtst is a
small, clean reference set, usually less than 1% of the entire
training set [19, 39, 41]. The Mirrored Influence Hypothe-
sis enables leveraging this size asymmetry between training
data and test samples under concurrent examination to de-
velop more efficient influence estimation algorithms. This
hypothesis allows for a shift in approach: from calculating
the train-to-test influence of training data, which requires
locally updating the model for each training point, to as-
sessing the test-to-train influence. In practice, this means
updating the model for the relatively few test samples and
conducting forward passes on training samples. This shift
effectively applies the more computationally intensive pro-
cess (the backward pass) to the smaller scale test set, while
the computationally lighter task (the forward pass) is ap-
plied to the larger training data, optimizing overall effi-
ciency.
Evaluation. Leveraging the insights articulated, we de-
velop a new influence estimation algorithm. We evalu-
ate its performance across diverse applications handling
image data, such as detecting mislabeled data, identify-
ing data leakage, analyzing memorization, and attributing
data in diffusion models. To further demonstrate its wide-
ranging applicability, we extended its use to tracing be-
havior in language models. This new method not only
showcases promising utility but also offers significantly
faster performance compared to traditional train-to-test in-
fluence focused techniques. For instance, our method de-
tects data leakage with 100% accuracy on CIFAR-10, sur-
passing the Influence Function [22] (30% detection rate)

26287

and TracIn [29] (0% detection rate) by being 30 and 40
times faster, respectively.

2. Delve Into the Hypothesis
In this section, we empirically assess the Mirrored Influ-
ence Hypothesis as applied to different datasets and mod-
els. Then, we study different influence approximators: In-
fluence Function [22] and TracIn [29], and show that our
hypothesized correlation between forward and backward
influences holds naturally under the assumptions made by
these approximators.

2.1. Empirical Study

We investigate the Hypothesis in both deterministic and
stochastic learning settings, due to the distinct noise lev-
els inherent in the influence scores of these two scenarios.
Specifically, both train-to-test and test-to-train influences
depend on the chosen learning algorithm A. Algorithms
like stochastic gradient descent (SGD) introduce random-
ness, such as through random mini-batch selection, which
affects the training process and, consequently, the trained
models. This randomness can cause variations in the losses
evaluated on these models, ultimately impacting the influ-
ence scores, which are derived from these losses, as seen in
Eqn. (1) and (2).

Particularly, the influences for individual training and
test points, which are determined by the exclusion of a train-
ing point or the addition of a test data point into the train-
ing set, are typically small and can be heavily impacted
by the stochasticity of the learning process. For example,
prior research [36] shows that the variability in an individual
point’s influence due to learning stochasticity often largely
surpasses their magnitude. This means that even when eval-
uating the same type of influence, there can be a significant
inconsistency in the rankings of different data points’ in-
fluence scores across different algorithm runs. Hence, to
meaningfully analyze the correlation between train-to-test
and test-to-train influences, it is critical to focus on settings
where the signal strength in both types of influence scores
is substantial enough to withstand the overshadowing effect
of noise.
A Near-Noiseless Setting. We start with a near-noiseless
setting where the model being trained is strongly convex
and the learning algorithm is deterministic. With long
enough iterations, the final model A(D) is guaranteed to
converge to the vicinity of the global minima for any train-
ing dataset D. Specifically, we train a logistic regression
model using L-BFGS [25] with L2 regularization. Due to
the low noise in this setting, we can investigate the point-
to-point influence, i.e., |Di| = |Dtst| = 1. We use Pearson
correlation and Spearman rank-order correlation coefficient
to measure the correlation between the two influences. As
we are mainly interested in a test point that has a high loss

(e.g., in the application of debugging a misclassified test
point), we select 10 test points that have the highest loss
and take an average over their correlation scores.
A Noisy Setting. As discussed, training non-convex models
using stochastic learning algorithms inherently produces a
high level of noise in the influence between individual train-
ing and test points. Specifically, we train a convolutional
neural network (CNN) using SGD with a learning rate of
0.01. To mitigate the noise, our initial approach is to aver-
age the influence scores over multiple runs of the learning
algorithm. However, the number of runs required to suf-
ficiently reduce the noise is prohibitively demanding. To
effectively analyze the correlation between two types of in-
fluences, we design experiments where the influence scores
across different Di are more significant in magnitude, thus
reducing the chance of these scores being overwhelmed by
noise. Specifically, we assess the group-to-group influ-
ence, i.e., the impact of various groups of training points
on a test set. Effectively, modifying a group of points in
the training set would result in more substantial changes in
loss, thereby making the influence scores more indicative.
To amplify the effect of each group’s removal or addition,
we randomly mislabel 50% of samples into different classes
and assign varying mislabeling ratios to each group. We use
30 different training groups with mislabeling ratios ranging
linearly from 0% to 100%. Dtst consists solely of clean sam-
ples.
Result. In Table 1, we show Pearson and Spearman rank-
order correlations between Inf(Di → Dtst) and Inf(Di ←
Dtst) for both settings. For the noiseless setting, we ob-
serve high correlation scores (i.e., greater than 0.96 in terms
of Pearson Correlation) across different datasets. On the
other hand, the Spearman correlation is relatively lower. As
illustrated by Figure 2, there exists a high-density region
with many similar values, which could lead to a lot of tied
ranks. These ties can disrupt the monotonic relationship that
Spearman correlation seeks to measure.

In the noisy setting with group-to-group influence, the
correlation between the two types of influences remains
high. Notably, while the Pearson correlation exhibits a
decrease in comparison to the noiseless scenario, Spear-
man correlation retains a high value. This discrepancy
arises partly because Pearson correlation, which relies on
actual data values, is more susceptible to noise. In contrast,
Spearman correlation employs ranks rather than raw values,
which inherently provides resistance to the distorting effects
of noise. Moreover, as depicted in Figure 2, the relationship
between train-to-test and test-to-train influences maintains
its correlation, albeit with a diminished linear characteris-
tic. The pronounced linear correlation for point-to-point
influences in the noiseless setting aligns with the theoreti-
cal insights discussed in the subsequent subsection. These
insights indicate that under minor perturbations to the train-

26288

Setting Metric MNIST FMNIST CIFAR-10

Near-Noiseless
(point-to-point inf)

Pearson 0.9975 0.9939 0.9673
Spearman 0.9027 0.7274 0.8069

Noisy
(group-to-group inf)

Pearson 0.9640 0.9752 0.8551
Spearman 0.9907 0.9915 0.8848

Table 1. The evaluation of the Mirrored Influence Hypothesis in
different settings with different datasets.

ing set, such as the alteration of a single data point, it can
be shown that training and test data have symmetrical roles
and the two types of influences are empirically equivalent.
Conversely, in the context of the group-to-group influence,
the removal or addition of entire data groups leads to more
significant model perturbations, which are not adequately
described by current theoretical frameworks. An in-depth
theoretical exploration of the correlations between the two
influences under general conditions is outside this paper’s
scope and presents an intriguing avenue for future research.

2.2. Validity of the Hypothesis for Influence Ap-
proximators

In addition to the empirical study, we show that the hypoth-
esized mirrored influence holds for well-known influence
approximators: Influence functions [22] and TracIn [29].

We begin by introducing the notations. For ease of ex-
position, we will examine the validity of the Hypothesis
in the case where |Di| = 1 and |Dtst| = 1. The ar-
gument naturally extends to more general cases. Specifi-
cally, consider a training set consisting of n samples Dtrn =
{z1, z2, ...zn}, a given test sample ztst, and a neural net-
work parameterized by θ ∈ Rd. Define the loss func-
tion L as the model’s empirical risk on the training dataset
L(θ,Dtrn) = 1

n

∑n
i=1 ℓ(θ, zi), where ℓ(θ, zi) denotes the

loss of a predictor parameterized by θ on the training sample
zi. The optimal model parameters are given by the follow-
ing empirical risk minimization: θ̂ := argminθ L(θ,Dtrn).
Influence Function (IF). The idea of IF is to analyze the
change in prediction loss when a training sample is up-
weighted infinitesimally. In particular, if we perturb the
weight of a sample z from 1 to 1 + ε, the new parameter
on the perturbed training dataset can be given as θ̂ε,z =
argminθ L(θ,D) + εℓ(θ, z). With assumptions on the loss
function being twice-differentiable and strictly convex, the
influence of an infinitesimal perturbation of a training sam-
ple z on the loss of a test sample ztst can be calculated as
[22]

dℓ(θ̂ε,z, ztst)

dϵ

∣∣∣∣∣
ε=0

= −∇θℓ(θ̂, ztst)
TH−1

θ̂
∇θℓ(θ̂, z), (3)

where Hθ̂ := ∇2
θℓ(θ̂, D) denotes the Hessian. Since remov-

ing a point z is equivalent to upweighting it by ε = − 1
n , for

n sufficiently large and 1
n → 0, one can approximate the

train-to-test influence defined in Eqn. (1) with its first-order
Taylor approximation, which gives

Inf(Di → Dtst) ≈
(
− 1

n

)
·

[
− dℓ(θ̂ε,z, ztst)

dε

∣∣∣∣∣
ε=0

]
,

combing with Eqn. (3), we have

Inf(Di → Dtst) ≈ −
1

n
∇θℓ(θ̂, ztst)

TH−1

θ̂
∇θℓ(θ̂, z) (4)

Symmetrically, consider the alternative of adding a test
sample ztst with weight ε to the training dataset. The
model trained with the new objective will be θ̂ε,ztst =
argminθ L(θ,D)+εℓ(θ, ztst). Similar to Eqn. (3), the influ-
ence of training on the test sample ztst with an infinitesimal
weight ε on the prediction loss of a training sample z can
be calculated as

dℓ(θ̂ε,ztst , z)

dε

∣∣∣∣∣
ε=0

= −∇θℓ(θ̂, z)
TH−1

θ̂
∇θℓ(θ̂, ztst) (5)

As adding a test point into the training set is the same as
setting ε = 1

n , following the same procedure, we can again
linearly approximate the test-to-train influence in Eqn. (2)
by computing

Inf(Di ← Dtst) ≈ −
1

n
∇θℓ(θ̂, z)

TH−1

θ̂
∇θℓ(θ̂, ztst) (6)

Due to the fact that Hessian is symmetric by definition, Eqn.
(4) and Eqn. (6) are equivalent. Then, we can observe that
using influence functions to approximate influence yields
the same result for both train-to-test and test-to-train in-
fluences, which coincides with our Mirrored Influence Hy-
pothesis.
TracIn. TracIn [29] approximates the influence of a train-
ing sample zti on a testing sample ztst using a first-order ap-
proximation of the model and aggregating through multiple
checkpoints during the training process:

Inf(Di → Dtst) ≈
∑
c∈C

ηc∇θℓ(θ̂c, ztst) · ∇θℓ(θ̂c, z), (7)

where c denotes an index of iteration during model train-
ing, C denotes the set of iteration indices where checkpoints
are available, and ηc and θ̂c represent the step size and the
model weights at iteration c, respectively. Then, we also
consider the alternative of estimating the influence on train-
ing sample z by training the model on the test sample ztst at
each checkpoint, which can be easily given as

Inf(Di ← Dtst) ≈
∑
c∈C

ηc∇θℓ(θ̂c, z) · ∇θℓ(θ̂c, ztst) (8)

Again, with the TracIn approximator, the influence between
a training-test sample pair can be calculated from both di-
rections and achieve the same result. Echoing our intuition,
these results suggest the universal application of the pro-
posed Hypothesis in influence approximators.

26289

3. Forward-INF: An Influence Approxima-
tion Algorithm Harnessing Forward Passes

In this section, we will present a new data influence estima-
tion algorithm unlocked by the Hypothesis. This algorithm
differs from existing methods by substituting the backward
pass computations for individual training points with a for-
ward pass, aiming to reduce computational costs.

Inspired by the Hypothesis, to rank the train-to-test in-
fluences among different training points, we can alterna-
tively arrange them in order based on the test-to-train in-
fluences, as described in Eqn. (2). Specifically, calculat-
ing Inf(Di ← Dtst) involves first acquiring two models
θ̂ = A(D) and θ̂+Dtst = A(D ∪ Dtst). We assume that
θ̂ is available after training. As getting θ̂+Dtst by training
on D ∪ Dtst from scratch can be expansive, we propose
to use continual learning and obtain this model by updat-
ing the existing model θ̂ with Dtst. Denote the resulting
model as θ̃+Dtst . In Appendix C, we will show that when n

is large and θ̂ and θ̂+Dtst are close, continually updating θ̂
on Dtst is a good approximation to training from scratch. In
Appendix E, we will also empirically compare the result-
ing influence scores of the two settings. Finally, with the
two models θ̂ and θ̃+Dtst , one can calculate the influence for
each training source Di by two forward passes, which give
L(θ̃+Dtst , Di) and L(θ̂, Di), and then take the difference.
Implementation. The pseudo-code is provided in Algo-
rithm 1. We call this algorithm the Forward-INF algo-
rithm because it implements forward passes on the training
set. Note that this algorithm still applies backward passes
on the test set. However, as typically, the training size is or-
ders of magnitude larger than the number of test points be-
ing inspected concurrently, this algorithm is usually much
faster than existing methods, like Influence Functions and
TracIn, which apply backward passes on the training set
(and the test set).

Also, note that gradient ascent is implemented as default
to update θ̂. This is because if the test sample is drawn from
a similar distribution as the training data, the magnitude of
the gradient ∇θℓ(θ, ztst)|θ=θ̂ tends to be small. Thus, em-
ploying gradient descent would introduce a small loss dif-
ference L(θ̂K , Di)−L(θ̂, Di). By contrast, gradient ascent
is likely to produce a model underfitting for points simi-
lar to the test points, thus resulting in a larger loss differ-
ence for training points, which is beneficial for comparing
their influences. However, it is observed in experiments that
both gradient descent and ascent perform similarly well.
A detailed ablation study on this aspect is deferred to Ap-
pendix E.
Hyperparameter. The number of maximization iterations
K and the learning rate α can be tuned if one has access
to or can create some ground-truth “influential points.” For
example, one could use a subset of training data as test sam-

Algorithm 1 Forward-INF Algorithm

Require: Training set Dtrn = D1∪. . .∪Dn, Trained model
θ̂, Target test samples Dtst, Number of continual learn-
ing iterations K, Learning rate α

Ensure: Forward-INF (Di) for i = 1, . . . , n
1: Initialize θ̂0 ← θ̂
2: for j = 1 to K do
3: Gradient ascent: θ̂j+1 ← θ̂j + α∇θL(θ̂j , Dtst)
4: end for
5: for Di ⊂ Dtrn do
6: Forward pass of θ̂K to get L(θ̂K , Di)

7: Forward pass of θ̂ to get L(θ̂, Di)

8: Forward-INF (Di) = L(θ̂K , Di)− L(θ̂, Di)
9: end for

ples. Intuitively, the same training point would be most in-
fluential to the test. In this case, one can tune K so that the
duplicates in the training set (i.e., the ground-truth influen-
tial point) are assigned with the highest influence score.

4. Application

In this section, we evaluate our approach to both vision and
natural language processing (NLP) tasks. In particular, we
apply our proposed method to the data influence estima-
tion problem in diffusion models [37] (Section 4.1), data
leakage detection [4] (Section 4.2), analysis of memoriza-
tion [11] (Section 4.3) as well as mislabeled data detection
(Section 4.4).

We extend our method into the NLP task to showcase
the performance in the context of a model behavior tracing
task [3] (Section 4.5). The scope of this study is to empha-
size the method’s versatility across different applications
rather than to outperform existing application-specific base-
lines in each case. However, we will compare our test-to-
train influence calculation method with existing train-to-test
influence methods, both characterized by their application-
agnostic nature.

4.1. Data Influence Estimation in Diffusion Model

Motivation. Recent advancements in generative models,
such as stable diffusion [31], have shown remarkable per-
formance in synthesizing high-quality images. Even though
the generated images differ from the original training data,
these are largely influenced by them, raising potential issues
of copyright infringement [38]. Therefore, it is important to
identify the training points contributing most to synthesiz-
ing a specific output.
Setup. Following [37], we leverage the stable diffusion [31]
as a pre-trained model and a specific concept in ImageNet
with various pre-defined prompts related to the concept
for fine-tuning. This will generate a model customized to

26290

Figure 3. Data attribution in diffusion models. For given syn-
thesized samples of the second column, obtained by fine-tuning
with an image of the first column, we illustrate the points with the
highest influences in the candidate set. Our method can assign the
highest influence to the fine-tuning point which computationally
influences the synthesized image the most.

the concept. The synthesized images from the customized
model are computationally influenced by the fine-tuning
examples by construction. Hence, the fine-tuning exam-
ples can be regarded as ground-truth high-influence training
points. Our goal is to test whether the proposed method can
indeed assign a higher influence to the fine-tuning points
than the points in the pre-training set. We regard each in-
dividual synthesized image as Dtst and apply our method
to calculate the influence of individual training points in
both the pre-training set (i.e., LAION 2B [32]) and the fine-
tuning set. We adopt a strategy similar to [3] to acceler-
ate the evaluation. In particular, we create a candidate set
Dcandidate ⊂ Dtrn [3], consisting of: (1) Ground truth, which
is the fine-tuning examples and (2) Distractors, which in-
clude 50 pre-training samples whose captions have the most
overlap with the given prompt as well as 50 random samples
drawn from the pre-training set.
Result. Figure 3 shows the qualitative results of our pro-
posed method. We retrieved a set of 7 samples with the
highest influence scores from the candidate set. We observe
that the fine-tuning image consistently is ranked with the
highest influence. This aligns with the design of our ex-
periment, where the fine-tuned example is deliberately con-
structed to exert the most computational influence on the
synthesized image. Also, it can be seen that the remaining
samples retrieved mostly share similarities either in image
or caption or both with the synthesized image. We also pro-
vide the quantitative results in identifying the ground truth
across different sizes of candidate sets and the comparison
with the baselines in the Appendix E.

4.2. Data Leakage Detection

Motivation. Data leakage refers to an oftentimes unin-
tended mistake that is made by the creator of a machine
learning model in which they accidentally share the infor-

CIFAR-10 – ResNet18 CIFAR-100 – ResNet50

Method Time T-1 T-5 T-10 Time T-1 T-5 T-100

IF-100 10 30 35 45 38 0 0 20

IF-1000 15 45 45 50 92 0 0 25

IF-10000 72 0 0 0 570 0 0 0

TracIn-1 12 2 6 7 43 6 11 19

TracIn-3 36 6 10 14 130 9 14 20

TracIn-5 60 6 10 14 215 10 13 19

Forward-INF 0.3 100 100 100 1.5 95 100 100

Table 2. Data leakage detection with top-K (T-K) accuracy (%).
Performance is compared on different datasets and models. Here,
TracIn-K denotes that we use K checkpoints for TracIn and
IF-L denotes that we used L depths for IF. We also report com-
putation time (in minutes) for each test point.

mation between the test and training data set. In this task,
we apply data influence estimation methods to detect data
leakage. Intuitively, for a given test point, if there exists a
leakage to the training set, then the corresponding leaked
duplicate point would have the highest influence. To evalu-
ate the detection performance of the leaked samples, we use
the top-k detection rate metric.
Setup. In training data leakage evaluation, we use ResNet-
18 (RN18) and ResNet-50 (RN50) classifiers [15], trained
on CIFAR-10 [23] and CIFAR-100 [7], respectively. To
simulate the case of data leakage, we set Dtst ⊂ Dtrn. For
baseline methods, we vary the key hyperparameters (i.e.,
the number of depths for Taylor expansion used by LISSA
in approximating the Hessian for IF [2, 27] and the number
of checkpoints for TracIn). We present the details, results
of ImageNet100, and visualizations in Appendix E.
Result. As shown in Table 2, our approach is effective in
identifying duplicated samples with 100% and 95% top-1
detection accuracy for both RN18 and RN50 classifiers. We
observe that with the larger model RN50, the performance
of IF deteriorates when detecting data leakage. This result
is consistent with [5] that IFs are poor estimates of the im-
pact of excluding a training point for neural networks. Re-
garding the depth parameter, the algorithm’s convergence to
α−1(G+λI)−1v depends on the condition α(G̃+λI) ⪯ I
being valid at every step [13], which is rarely the case
with large and complex models. Hence, errors could ac-
cumulate with each iteration, leading to the worst result for
the IF-10000. Moreover using more iterations can re-
sult in a larger per-iteration cost. It is interesting to note
that TracIn also exhibits poor performance in data leak-
age detection. Although it often identifies visually similar
samples to the test example, it fails to accurately detect the

26291

0.996

Most
Memorized
Sample [10]

Test
Reference

Forward-INF
Retrieved
Sample

0.886

1.000 0.947

0.966 1.000

Memorization Score

Most
Memorized
Sample [10]

Test
Reference

Forward-INF
Retrieved
Sample

Memorization Score

Memorization Score

Memorization Score

Memorization Score

Memorization Score

Figure 4. Memorization analysis, where the goal is to identify
which training point’s memorization is critical for predicting a spe-
cific test point. Prior work [11] proposed an algorithm to compute
memorized training-test pairs, but it requires re-training the target
model many times. We show that Forward-INF can identify the
same memorized pairs without the need for re-training.

ground-truth leaked sample as illustrated in Figure 12. This
discrepancy arises because, although the gradient of a dupli-
cated sample may align with that of a test sample, numerous
other training samples may align in a similar direction but
with greater magnitude, yielding even higher scores than the
duplicate itself. Additionally, TracIn in large-scale mod-
els often relies on last-layer gradient information [3], which
may lead to a suboptimal approximation to ground truth at-
tribution. As shown in Table 6, Forward-INF achieves
the best scores in terms of both efficacy and computational
efficiency, while other approaches suffer from a signifi-
cant computational bottleneck (benchmarked on NVIDIA
GeForce RTX 2080 Ti), as well as difficulty in finding du-
plicated pairs.

4.3. Memorization Analysis

Motivation. Prior research [11], studied the pair of train-
ing and test samples in which memorization of the training
point is important to predicting a given test sample. Charac-
terizing these memorized pairs is essential for understand-
ing the learning mechanisms in neural networks. Towards
that end, they proposed a re-training-based approach that
directly evaluates the train-to-test influence in order to iden-
tify such so-called “influential pairs” (following their termi-
nology). However, this approach entails high computational
requirements. Here, we aim to examine whether our ap-
proach, which is much more light-weighted than [11], can
identify the same pairs.
Setup. To ensure a fair comparison, we employ the same
training algorithm as described in [11] to train ResNet-50
classifiers on CIFAR-100. We utilize the influential pairs
provided by the authors for a qualitative comparison.
Results. In Figure 4, we compare the most influential
training point as determined by our influence score calcu-
lations with the results from prior research. In each sub-
figure, the first two panels display the test point and the

most influential training point characterized by [11], while
the third one presents the top-influence point retrieved by
Forward-INF . Figure 4 shows that our approach can
identify the same influential pairs as those in [11] but with-
out retraining models. As mentioned in [11], the high-
influential pairs (with an influence score > 0.4) are near du-
plicated samples and benefit the most from memorization.
Therefore, it leads to high memorization scores. Further
qualitative results are provided in Appendix E.

4.4. Mislabeled Data Detection

Motivation. Automated identification of incorrectly la-
beled samples in training datasets is essential, particularly
given the high incidence of human labeling errors [20]. Hu-
man judgment often varies and can be subjective, leading
to inconsistent labeling, a situation that is particularly pro-
nounced in the case of ambiguous samples. Reliable mis-
labeled data detection can substantially reduce the costs
associated with human labeling by facilitating automated
checks.
Setup. For our study, we select a random training subset
Dtrn of 2000 data points from the CIFAR-10 dataset, in-
tentionally introducing label errors in 20% of these samples
by assigning them to random classes. This data size is used
due to the computational complexities associated with the
Influence Function (IF). We then train a ResNet-18 model
for 100 epochs. We follow the same setting by calculat-
ing self-influence scores, i.e. the influence of the training
point onto itself, without relying on the validation data, i.e.,
Dtst = Dtrn. After computing the scores for each training
point, we sort them in descending order and then examine
them for potential mislabeling in this sorted order.
Result. In Figure 5, we show the mislabeled data detec-
tion result. As shown in the figure, our proposed method
can find over 80% of mislabeled samples within the first
300 checked samples. While IF would require to go
through 75% of training samples to detect that many mis-
labeled samples, regardless of the sorting order. For the
case of computing self-influence, the gradient-based meth-
ods, IF and TracIn, in fact, compute the magnitude of
each point’s gradient. Thus, even though the gradients of
mislabeled training points might point in the opposite di-
rection than the gradients of the clean samples, their mag-
nitude can be smaller than those of the clean ones, result-
ing in the incapability of successful mislabel detection. Our
method overcomes this issue by computing the loss differ-
ence between two models, θ̂ and θ̂+Dtst , where the loss
difference for clean samples will be smaller than those of
the mislabeled ones, since clean samples highly likely have
samples with similar labeling distribution, while the ran-
domly mislabeled samples hardly have the support in the
training dataset. Thus, they are more prone to larger loss
changes. In conclusion, our approach demonstrates high

26292

mislabeled data detection performance and computation ef-
ficiency compared to existing baselines.

Influence
Functions

TracIn

Forward-INF
(Ours)

1725s

Computation Time

63s

1665s

Figure 5. Mislabeled data detection in a subset of CIFAR-10.
Left) Mislabeled data detection performance comparison between
Forward-INF and IF. Right) Computation time comparison be-
tween methods. Forward-INF is not only effective in detecting
mislabeled training data but also efficient in its computation.

4.5. Language Model Behavior Tracing

Motivation. With the growing prevalence of large lan-
guage models in various applications, such as conversa-
tional agents [10, 33, 34], the importance of providing rea-
sonable supporting evidence has become paramount. As a
result, the need to trace the origin of a model’s output back
to specific data samples has also become indispensable to
identifying the responsible training data. Driven by this mo-
tivation, we study the task of model behavior tracing regard-
ing factual assertion, which involves identifying the training
examples responsible for inducing the model to make some
factual assertion at test time.
Setup. We utilize a MT5 model [40] to finetune on the
FTRACE-TREx dataset [3]. We consider each training ex-
ample that conveys the same fact as a “proponent” of the
corresponding test example and as a “distractor” otherwise.
We provide the details of the dataset and hyperparameter se-
lection in Appendix D. Due to the demanding computation
required by other direct train-to-test influence estimation
methods, such as IF, here we only compare with TracIn.
In order to make TracIn [1] more efficient, for each test
sample, we limit the scope of our search to a candidate set,
i.e., a subset of the entire training dataset, following pre-
vious studies [3, 27]. We leverage the same evaluation
metrics (i.e., precision and Mean Reciprocal Rank (MRR))
described in the previous studies [3, 27]. To consider the
efficiency and the performance simultaneously, we propose
a time-dependent performance metric, i.e., performance in
a limited time budget. This metric is realistic because, in
practice, user-facing products cannot afford to spend an in-
definite amount of time responding to a user’s request.
Results. As shown in Table 3, we observe that
Forward-INF outperforms the TracIn in terms of
both metrics as TracIn cannot inspect enough samples
within the given time. Also, counter-intuitively, the per-
formance for TracIn drops when using multiple check-
points compared with a single checkpoint. This finding

Candidate Set Size 15K 20K Inspected Queries

Metric MRR Precision MRR Precision # of Queries/Min

TracIn (Single) 0.1658 0.1367 0.1532 0.1300 307.522

TracIn (Multi) 0.1596 0.1300 0.1508 0.1300 307.522

Forward-INF 0.2101 0.1650 0.1927 0.1518 1306.323

Table 3. Language model behavior tracing performance com-
parison of different attribution methods.

is also reported in the previous studies [3, 27]. In addi-
tion, Forward-INF is more than four times faster than
TracIn, in terms of the inspected number of queries per
minute, even if we calculate only one layer’s gradient for
TracIn. Therefore, in the domain of large-scale models
trained on vast quantities of data samples, the benefit of our
method stands out. We further provide behavior-tracing ex-
periments on paraphrased queries in Appendix E. We also
provide a comparison with a simple model-independent in-
formation retrieval [30] approach in Appendix E.

5. Conclusion
Our contribution lies in the investigation of the Mirrored
Influence Hypothesis. Expanding upon this hypothesis, we
have developed a novel method to estimate train-to-test in-
fluence by solving the test-to-train influence problem. This
approach involves evaluating the impact of incorporating a
specific test set into the training set on the prediction of a
training data source. Our method can be applied broadly
and contribute meaningful insights across various settings.
In particular, it outperforms traditional approaches that di-
rectly compute train-to-test influence by achieving an im-
proved tradeoff between utility and efficiency.
Limitations & Future Work. The exploration of the
Hypothesis unveils many avenues for future research.
Although this paper excludes heuristic enhancements to
Forward-INF , it is expected that strategic layer selec-
tion, and incorporating strategies to counter catastrophic
forgetting [21], could enhance our method’s performance.
Formulating a theoretical framework to formally validate
the Hypothesis constitutes an intriguing direction for future
studies.

6. Acknowledgment
We thank Hoang Anh Just and Himanshu Jahagirdar from
the ReDS lab for their invaluable help in experiments and
discussion. RJ and the ReDS lab acknowledge support
through grants from the Amazon-Virginia Tech Initiative
for Efficient and Robust Machine Learning, the National
Science Foundation under Grant No. IIS-2312794, NSF
IIS-2313130, NSF OAC-2239622, and the CCI SWVA Re-
search Engagement Award.

26293

References
[1] Milton Abramowitz and Irene A Stegun. Handbook of math-

ematical functions with formulas, graphs, and mathematical
tables. US Government printing office, 1964. 8

[2] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-
order stochastic optimization for machine learning in linear
time. The Journal of Machine Learning Research, 18(1):
4148–4187, 2017. 6

[3] Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin
Xiong, Ian Tenney, Jacob Andreas, and Kelvin Guu. Trac-
ing knowledge in language models back to the training data.
arXiv preprint arXiv:2205.11482, 2022. 5, 6, 7, 8, 14, 16, 18

[4] Björn Barz and Joachim Denzler. Do we train on test data?
purging cifar of near-duplicates. Journal of Imaging, 6(6):
41, 2020. 5

[5] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influ-
ence functions in deep learning are fragile. arXiv preprint
arXiv:2006.14651, 2020. 6

[6] R Dennis Cook and Sanford Weisberg. Residuals and influ-
ence in regression. New York: Chapman and Hall, 1982.
11

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6, 14

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[9] Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique Lafor-
est, and Elena Simperl. T-rex: A large scale alignment of
natural language with knowledge base triples. In Proceed-
ings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), 2018. 14

[10] Meta Fundamental AI Research Diplomacy Team (FAIR)†,
Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina,
Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray,
Hengyuan Hu, et al. Human-level play in the game of diplo-
macy by combining language models with strategic reason-
ing. Science, 378(6624):1067–1074, 2022. 8

[11] Vitaly Feldman and Chiyuan Zhang. What neural networks
memorize and why: Discovering the long tail via influence
estimation. Advances in Neural Information Processing Sys-
tems, 33:2881–2891, 2020. 1, 2, 5, 7, 16, 18

[12] Amirata Ghorbani and James Zou. Data shapley: Equi-
table valuation of data for machine learning. In International
Conference on Machine Learning, pages 2242–2251. PMLR,
2019. 1, 2, 11

[13] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex
Tamkin, Amirhossein Tajdini, Benoit Steiner, Dustin Li,
Esin Durmus, Ethan Perez, et al. Studying large lan-
guage model generalization with influence functions. arXiv
preprint arXiv:2308.03296, 2023. 6

[14] Zayd Hammoudeh and Daniel Lowd. Training data influ-
ence analysis and estimation: A survey. arXiv preprint
arXiv:2212.04612, 2022. 11

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[16] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. Datamodels: Pre-
dicting predictions from training data. arXiv preprint
arXiv:2202.00622, 2022. 1, 2, 11

[17] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nezihe Merve Gurel, Bo Li, Ce Zhang, Costas J Spanos, and
Dawn Song. Efficient task-specific data valuation for near-
est neighbor algorithms. arXiv preprint arXiv:1908.08619,
2019. 1, 2, 11

[18] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn
Song, and Costas J Spanos. Towards efficient data valuation
based on the shapley value. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 1167–
1176. PMLR, 2019. 1

[19] Hoang Anh Just, Feiyang Kang, Jiachen T Wang, Yi Zeng,
Myeongseob Ko, Ming Jin, and Ruoxi Jia. Lava: Data
valuation without pre-specified learning algorithms. arXiv
preprint arXiv:2305.00054, 2023. 2, 11

[20] Davood Karimi, Haoran Dou, Simon K Warfield, and Ali
Gholipour. Deep learning with noisy labels: Exploring tech-
niques and remedies in medical image analysis. Medical im-
age analysis, 65:101759, 2020. 7

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 8

[22] Pang Wei Koh and Percy Liang. Understanding black-box
predictions via influence functions. In International Confer-
ence on Machine Learning, pages 1885–1894. PMLR, 2017.
1, 2, 3, 4, 11

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6, 14

[24] Yongchan Kwon and James Zou. Beta shapley: a unified and
noise-reduced data valuation framework for machine learn-
ing. arXiv preprint arXiv:2110.14049, 2021. 11

[25] Dong C Liu and Jorge Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical program-
ming, 45(1-3):503–528, 1989. 3

[26] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora. Fine-
tuning language models with just forward passes. arXiv
preprint arXiv:2305.17333, 2023. 1

[27] Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume
Leclerc, and Aleksander Madry. Trak: Attributing model
behavior at scale. arXiv preprint arXiv:2303.14186, 2023.
1, 6, 8, 11

[28] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian

26294

Riedel. Language models as knowledge bases? arXiv
preprint arXiv:1909.01066, 2019. 14

[29] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. Estimating training data influence by tracing
gradient descent. Advances in Neural Information Process-
ing Systems, 33:19920–19930, 2020. 1, 2, 3, 4, 11

[30] Stephen E Robertson, Steve Walker, Susan Jones, Miche-
line M Hancock-Beaulieu, Mike Gatford, et al. Okapi at
trec-3. Nist Special Publication Sp, 109:109, 1995. 8, 16

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 5

[32] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Advances in Neural In-
formation Processing Systems, 35:25278–25294, 2022. 6

[33] Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael
Smith, Stephen Roller, Megan Ung, Moya Chen, Kushal
Arora, Joshua Lane, et al. Blenderbot 3: a deployed conver-
sational agent that continually learns to responsibly engage.
arXiv preprint arXiv:2208.03188, 2022. 8

[34] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia
Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda:
Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022. 8

[35] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 14

[36] Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data
valuation framework for machine learning. International
Conference on Artificial Intelligence and Statistics, 2023. 3,
11

[37] Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust
data valuation framework for machine learning. In Inter-
national Conference on Artificial Intelligence and Statistics,
pages 6388–6421. PMLR, 2023. 1, 5

[38] Sheng-Yu Wang, Alexei A Efros, Jun-Yan Zhu, and Richard
Zhang. Evaluating data attribution for text-to-image models.
arXiv preprint arXiv:2306.09345, 2023. 5, 14, 15, 16

[39] Zhen Xiang, David Miller, and George Kesidis. Post-training
detection of backdoor attacks for two-class and multi-attack
scenarios. In International Conference on Learning Repre-
sentations, 2021. 2

[40] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin
Raffel. mt5: A massively multilingual pre-trained text-to-
text transformer. arXiv preprint arXiv:2010.11934, 2020. 8

[41] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin,
and Ruoxi Jia. Adversarial unlearning of backdoors via im-
plicit hypergradient. In International Conference on Learn-
ing Representations, 2021. 2

26295

