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Figure 1. Human Gaussian Splats (HUGS) is a neural rendering framework that trains on 50-100 frames of a monocular video containing
a human in a scene. HUGS enables novel view rendering with novel human poses at 60 FPS by learning a disentangled representation that
can also render the human in other scenes.

Abstract

Recent advances in neural rendering have improved
both training and rendering times by orders of magnitude.
While these methods demonstrate state-of-the-art quality
and speed, they are designed for photogrammetry of static
scenes and do not generalize well to freely moving humans
in the environment. In this work, we introduce Human
Gaussian Splats (HUGS) that represents an animatable hu-
man together with the scene using 3D Gaussian Splatting
(3DGS). Our method takes only a monocular video with
a small number of (50-100) frames, and it automatically
learns to disentangle the static scene and a fully animat-
able human avatar within 30 minutes. We utilize the SMPL
body model to initialize the human Gaussians. To capture
details that are not modeled by SMPL (e.g., cloth, hairs),
we allow the 3D Gaussians to deviate from the human body
model. Utilizing 3D Gaussians for animated humans brings
new challenges, including the artifacts created when ar-
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ticulating the Gaussians. We propose to jointly optimize
the linear blend skinning weights to coordinate the move-
ments of individual Gaussians during animation. Our ap-
proach enables novel-pose synthesis of human and novel
view synthesis of both the human and the scene. We achieve
state-of-the-art rendering quality with a rendering speed
of 60 FPS while being ∼100× faster to train over previ-
ous work. Our code will be announced here: https:
//github.com/apple/ml-hugs

1. Introduction
Photorealistic rendering and animation of human bod-

ies is an important area of research with many applications
in AR/VR, visual effects, visual try-on, movie production,
etc. Early works [1–3] for creating human avatars relied
on capturing high-quality data in a multi-camera capture
setup, extensive compute, and lots of manual effort. Re-
cent work addresses these problem by directly generating
3D avatars from videos using 3D parametric body mod-
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els like SMPL [4, 5], which offers advantages such as ef-
ficient rasterization and the ability to adapt to unseen de-
formations. However, the fixed topological structure of pa-
rameteric models limit the modeling of clothing, intricate
hairstyles and other details of the geometry.

Recent advancements have explored the use of neural
fields for modeling 3D human avatars [6–11], often using
a parametric body models as a scaffold for modeling defor-
mations. Neural fields excel in capturing details like cloth-
ing, accessories, and hair, surpassing the quality that can be
achieved by rasterization of parametric models with texture
and other properties. However, they come with trade-offs,
notably being less efficient to train and render. Furthermore,
deformation of neural fields in a versatile manner presents
challenges, often requiring recourse to an inefficient root-
finding loop, which adversely affects both training and ren-
dering durations [12–14].

To address these challenges, we introduce a novel avatar
representation HUGS—Human Gaussian Splats. HUGS
represents both the human and the scene as 3D Gaussians
and utilizing the 3D Gaussian Splatting (3DGS) [15] for its
improved training and rendering speeds as compared to im-
plicit NeRF representations [7, 16]. While utilizing the 3D
Gaussian representation allows explicit control of human-
body deformation, it also creates new problems. Specifi-
cally, a realistic animation of human motions requires a co-
ordination of individual Gaussians to retain surface integrity
(i.e., without generating holes or pop outs).

To enable human-body deformation, we introduce a de-
formation model that represents the human body in a canon-
ical space using the 3D Gaussians. The deformation model
predicts the mean-shifts, rotations, and scale of the 3D
Gaussians to fit the subject’s body shape (in the canonical
pose). Moreover, the deformation model predicts the Lin-
ear Blend Skinning (LBS) weights [4] that are used to de-
form the canonical human into the final pose. We initialize
HUGS from the parameteric SMPL body shape model [4]
but allow the Gaussians to deviate, increase, and pruned
from the SMPL model. This enables HUGS to model the
geometry and appearance details (e.g., hair and clothing)
beyond the SMPL model. The learned LBS weights also
coordinate the movement of Gaussians during animation.
HUGS is trained on a single monocular video with 50-100
frames and learns a disentangled representation of the hu-
man and scene, enabling versatile use of the avatars in dif-
ferent scenes. In summary, our main contributions are:
• We propose Human Gaussian Splats (HUGS), a neural

representation for a human embedded in the scene that
enables novel pose synthesis of the human and novel view
synthesis of the human and the scene.

• We propose a forward deformation module that represents
the target human in a canonical space using 3D Gaussians
and learns to animate them using LBS to novel poses.

• HUGS enables fast creation and rendering of animatable
human avatars from in-the-wild monocular videos with a
small number of (50-100) frames, taking 30 minutes to
train, improving over baselines [6, 7] by ∼100×, while
rendering at 60 frames per second (FPS) at HD resolu-
tion.1.

• HUGS achieves state-of-the-art reconstruction quality
over baselines such as NeuMan [7] and Vid2Avatar [6]
on the NeuMan dataset and the ZJU-Mocap dataset.

2. Related Work
Early works on photorealistic rendering and animation

employed traditional computer graphics pipelines which in-
volved large multi-camera setups such as lightstages [17] to
capture the detailed texture and material of the human body.
The animation of human bodies involved the rigging of an
artist-created template of a human body mesh [1, 2]. The
introduction of statistical body shape models [3–5, 18, 19]
enabled representation of diverse human shape and anima-
tion of the human body by a single model. This reduced
the manual effort in creating template meshes and rigging
them. However, these shape models do not account for
many details such as clothing, hair, accessories etc. Fol-
low up works such as DRAPE [20] or CAPE [21] augment
the shape models to add an additional layer of clothing or
altogether choose a different representation such as occu-
pancy [12, 22–25] to represent the details of the geometry.

In recent years, Neural Radiance Fields (NeRF) [26]
have enabled a joint representation of geometry and appear-
ance for view-synthesis using multiview images without the
need of a large capture setup. Although, a NeRF is designed
for capturing static objects, recent work [6–9,16,27–33] has
extended the NeRF to enable capturing a dynamic moving
humans. Weng et al. [8] propose a method to model a NeRF
representation of a human using a single monocular video
enabling 360 degree view generation of a human. Further-
more, NeuMan [7] introduces a joint NeRF representation
of human and the scene capable of view synthesis and an-
imation of the human in the scene. However, a major lim-
itation of NeRF-based methods is that NeRFs are slow to
train and render. Several methods have emerged to speed
up training and rendering of NeRFs. These include using
an explicit representation such as learning a function at grid
points [34, 35], using hash encoding [36] or altogether dis-
carding the learnable component [37, 38].

Recent work on 3D Gaussian Splatting [15, 39, 40] uses
a set of 3D Gaussians to represent a scene and renders it
by splatting and rasterizing the Gaussians. This approach
significantly improves the training and rendering times over
traditional NeRFs. Recent work has addressed the exten-
sion of 3DGS scenes to controlled dynamic scenes [41] and

1The train/rendering speed is thanks to 3DGS [15], our contribution is
enabling it for deformable cases such as humans.
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multi-camera capture setup [42]. However, the 3D Gaus-
sian Splatting framework is not trivial to extend to dynamic
humans that allows for both novel-view and novel-pose syn-
thesis of human and the scene.

Our methods builds on the 3D Gaussian Splatting frame-
work [15] and utilize the SMPL body shape model [4] as a
prior and learns a deformation model for animation control.
We use a triplane and three MLPs to coordinate the Gaus-
sians (e.g., their rotation, scale, color, and LBS weights).

3. Method
Given a monocular video containing camera motions, a

moving human, and a static scene, our method automati-
cally disentangles and represents the human and the static
scene with 3D Gaussians. The human Gaussians are ini-
tialized using the SMPL body model and the scene Gaus-
sians are initialized from the structure-from-motion point
cloud from COLMAP [43, 44]. In the following, we first
quickly review 3D Gaussian splatting and the SMPL body
model. Then, we introduce the proposed method to address
challenges when modeling and animating humans in the 3D
Gaussian framework.

3.1. Preliminaries

3D Gaussian Splatting (3DGS) [15] represents a scene by
arranging 3D Gaussians. The i-th Gaussian is defined as

G(p) = oi e
− 1

2 (p−µi)
TΣ−1

i (p−µi), (1)

where p∈R3 is a xyz location, oi ∈ [0, 1] is the opac-
ity modeling the ratio of radiance the Gaussian absorbs,
µi ∈R3 is the center/mean of the Gaussian, and the co-
variance matrix Σi is parameterized by the scale Si ∈R+

3

along each of the three Gaussian axes and the rotation
Ri ∈SO(3) with Σi = RiSiS

⊤
i R

⊤
i . Each Gaussian is also

paired with spherical harmonics [45] to model the radiance
emit towards various directions.

During rendering, the 3D Gaussians are projected onto
the image plane and form 2D Gaussians [46] with the co-
variance matrix Σ2D

i = JWΣiW
⊤J⊤, where J is the

Jacobian of the affine approximation of the projective trans-
formation and W is the viewing transformation. The color
of a pixel is calculated via alpha blending the N Gaussians
contributing to a given pixel:

C =

N∑
j=1

cjαj

j−1∏
k=1

(1− αk), (2)

where the Gaussians are sorted from close to far, cj is the
color obtained by evaluating the spherical harmonics given
viewing transform W , and αj is calculated from the 2D
Gaussian formulation (with the covariance Σ2D

j ) multiplied

by its opacity oj . The rendering process is differentiable,
which we take advantage of to learn our human model.

SMPL [4] is a parametric human body model which allows
pose and shape control. The SMPL model comes with a
template human mesh (T̄ ,F ) in the rest pose (i.e., T-pose)
in the template coordinate space. T̄ ∈Rnv×3 are the nv ver-
tices on the mesh, and F ∈Nnt×3 are the nt triangles with a
fixed topology. Given the body shape parameters, β ∈R|β|,
and the pose parameters, θ∈R3nk+3, SMPL transforms the
vertices T̄ from the template coordinate space to the shaped
space via

TS(β,θ) = T̄ +BS(β) +BP (θ), (3)

where TS(β,θ) are the vertex locations in the shaped space,
BS(β) ∈ Rnv×3 and BS(θ) ∈ Rnv×3 are the xyz off-
sets to individual vertices. The mesh in the shaped space
fits the identity (e.g., body type) of the human shape in the
rest pose. To animate the human mesh to a certain pose
(i.e., transforming the mesh to the posed space), SMPL uti-
lizes nk predefined joints and Linear Blend Skinning (LBS).
The LBS weights W ∈Rnk×nv are provided by the SMPL
model. Given the i-th vertex location on the resting human
mesh, pi ∈R3, and individual posed joints’ configuration
(i.e., their rotation and translation in the world coordinate),
G = [G1, . . . ,Gnk

], where Gk ∈SE(3), the posed ver-
tex location vi is calculated as vi = (

∑nk

k=1 Wk,i Gk)pi,
where Wk,i ∈R is the element in W corresponding to the
k-th joint and the i-th vertex. While the SMPL model pro-
vides an animatable human body mesh, it does not model
hair and clothing. Our method utilizes SMPL mesh and
LBS only during the initialization phase and allows Gaus-
sians to deviate from the human mesh to model details like
hairs and clothing.

3.2. Human Gaussian Splats

Given T captured images and their camera poses, we first
use a pretrained SMPL regressor [47] to estimate the SMPL
pose parameters for each image, θ1, . . . ,θT , and the body
shape parameters, β, that is shared across images.2 Our
method represents the human with 3D Gaussians and drive
the Gaussians using a learned LBS. Our method outputs the
Gaussian locations, rotations, scales, spherical harmonics
coefficients, and their LBS weights with respect to the nk

joints. An overview of our method is illustrated in Fig. 2.
The human Gaussians are constructed from their cen-

ter locations in a canonical space, a feature triplane [48,
49] F ∈R3×h×w×d, and three Multi-Layer Perceptrons
(MLPs) which predict properties of the Gaussians. All of

2We also obtain a coordinate transformation from SMPL’s posed space
to the world coordinate (used by the camera poses) for each frame, follow-
ing Jiang et al. [7]. For simplicity, we will ignore the coordinate transfor-
mation in the discussions.
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Figure 2. HUGS overview. Given a video with dynamic human and camera motions, HUGS recovers an animatable human avatar and
synthesizes human and scene from novel view points. Our method represents both the human and the scene as 3D Gaussians. The human
Gaussians are parameterized by their mean locations in a canonical space and the features from a triplane. Three MLPs are used to estimate
their color, opacity, additional shift, rotation, scale, and LBS weights to animate the Gaussians with given joint configurations. The human
and the scene Gaussians are combined and rendered together with splatting.

them are optimized per person. The Human Gaussians live
in a canonical space, which is a posed space of SMPL where
the human mesh performs a predefined Da-pose.

Rendering process. Given a joint configuration G, to ren-
der an image, for each Gaussian, we first interpolate the
triplane at its center location µi and get feature vectors
f i
x,f

i
y,f

i
z ∈Rd. The feature f i representing the i-th Gaus-

sians is the concatenation of f i
x,f

i
y,f

i
z . Taking f i as input,

an appearance MLP, DA, outputs the RGB color and the
opacity of the i-th Gaussian; a geometry MLP, DG, outputs
an offset to the center location, ∆µi, the rotation matrix
Ri (parameterized by the first two columns), and the scale
of three axes Si; a deformation MLP, DD, outputs the LBS
weights, Wi ∈Rnk for this Gaussian. The LBS uses W and
the joint transformation G to transform the Human Gaus-
sians, which are then combined with the Scene Gaussians
and splat onto the image plane. Here, we use the static 3D
Gaussians for scene representation identical to [15]. The
rendering process is end-to-end differentiable.

Optimization. We optimize the center locations of the
Gaussians µ, the feature triplane, and the parameters of
the three MLPs.3 The rendered image is compared with
the ground-truth captured image using L1 loss, the SSIM

3We also follow Jiang et al. [7] and adjust the per image SMPL pose
parameters θ during the optimization, since θ are initialized by an off-the-
shelf SMPL regressor [47] and may contain errors (see the details in the
supplementary material).

loss [50] Lssim, and the perceptual loss [51] Lvgg. We also
render a human-only image (using only the human Gaus-
sians on a random solid background) and compare regions
containing the human in the ground-truth image using the
above losses. The human regions are obtained using a pre-
trained segmentation model [52]. We also regularize the
learned LBS weights W to be close to those from SMPL
with an ℓ2 loss. Specifically, to regularize the LBS weights
W , for individual Gaussians we retrieve their k = 6 near-
est vertices on the SMPL mesh and take a distance-weighted
average of their LBS weights to get Ŵ . The loss is LLBS =
∥W − Ŵ ∥2F.

Specifically, our loss is composed of

L = λ1L1 + λ2Lssim + λ3Lvgg︸ ︷︷ ︸
scene + human

+ λ1Lh
1 + λ2Lh

ssim + λ3Lh
vgg︸ ︷︷ ︸

human

+λ4LLBS, (4)

where λ1 = 0.8, λ2 = 0.2, λ3 = 1.0, λ4 = 1000 for
all scenes in the experiments. We employ the Adam op-
timizer [53] with a learning rate of 10−3, coupled with a
cosine learning rate schedule.

We initialize the center of the Gaussians, µ, at the
canonical-posed SMPL mesh vertices (so we have the same
number of Gaussians as the SMPL vertices at the begin-
ning of the optimization). We pretrain the feature triplane
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and the MLPs to output RGB color as [0.5, 0.5, 0.5], opacity
o = 0.1, ∆µ = 0, rotation R so that z-axis of the Gaussians
align with the corresponding SMPL vertex normal, scale S
as the average incoming edges’ lengths, and LBS weights
W as those from SMPL (since the Gaussians lie exactly
on the SMPL vertices). The pretraining takes 5000 itera-
tions (1 minute on a GeForce 3090Ti GPU). We use an up-
sampled version of SMPL with nv =110, 210 vertices and
nt =220, 416 faces. Note that the SMPL mesh and LBS
weights are only used in the initialization and regulariza-
tion, i.e., they are not used during testing.

During the optimization, similar to the standard 3DGS,
we clone, split, and prune Gaussians, every 600 iterations,
based on their loss gradient and opacity. They are impor-
tant steps to avoid local minima during the optimization. To
clone and split, we simply add additional entries in µ by
repeating existing centers (cloning) and randomly sampling
within the Gaussians with respect to their current shapes
(i.e., R and S) (splitting). To prune a Gaussian, we remove
it from µ. Since the new Gaussians’ centers are close to the
original ones on the triplane, their features are similar and
thus the new Gaussians have similar shape as the originals,
allowing the optimization to proceed normally. To make the
split Gaussians smaller, we record a base scale s ∈ R+ for
each Gaussian. The base scale is initialized as 1 and every
time a Gaussian is split, we divide the base scale by 1.6.
The actual scale of the Gaussian is s multiplied with the
MLP estimate S. The entire optimization takes 12K iter-
ations, and 30 minutes on a GeForce 3090Ti GPU. At the
end of the optimization, the human is represented by 200K
Gaussians on average.

Test-time rendering. Importantly, after the optimization,
the 3D Gaussians can be explicitly constructed, allowing
direct animation of the human Gaussians using the LBS
weights. In other words, we do not need to evaluate the
triplane and MLPs to render new human poses. This is a
big advantage compared to methods that represent human
as implicit neural fields.

4. Experiments
4.1. Datasets

NeuMan Dataset [7] consists of six videos, each lasting
between 10 to 20 seconds, featuring a single individual
captured using a mobile phone. The camera pans through
the scenes, facilitating multi-view reconstruction. The se-
quences are denoted as Seattle, Citron, Parking, Bike, Jog-
ging, and Lab. Following the approach outlined in [7],
we split frames into 80% training frames, 10% validation
frames, and 10% test frames.

ZJU-MoCap Dataset [9] consists of videos of a human
captured in a lab using multi-view capture setup. To align

with the methodology in [8,14], we select six subjects (377,
386, 387, 392, 393, 394) showcasing diverse motions. We
employed images captured by ”camera 1” as input and uti-
lized the other 22 cameras for evaluation. The camera ma-
trices, body pose, and segmentation provided by the dataset
were directly applied in our evaluation process. Since the
dataset is captured in a light stage studio, we only optimize
the human Gaussians.

4.2. Qualitative Results

State-of-the-art Comparison. We show the qualitative
results of our method in Fig. 3 and compare it with
Vid2Avatar [6] and NeuMan [7]. The results are shown
from the test samples of the NeuMan dataset [7] that are
not seen during training. In the scene background re-
gions, HUGS shows better reconstruction quality than both
Vid2Avatar and NeuMan. Vid2Avatar shows blurry scene
reconstruction with several artifacts. In contrast, NeuMan
shows better scene reconstruction quality but misses fine
details such as the house numbers (zoomed-in) in the first
row, the wooden plank (zoomed-in) in the second row and
the cupboard (zoomed-in) in the third row. In comparison,
HUGS shows better reconstruction quality and preserves
these fine details as shown in the zoomed-in regions.

In the human regions, Vid2Avatar shows artifacts in the
hand region (row 1) and blurry reconstruction in the feet
(row 2) and arm region (row 3). In contrast, NeuMan gets
better details of the feet regions in some cases (row 2) and
introduces artifacts in hands (row 2) and feet (row 3) re-
gions in other cases. In comparison, our method preserves
the details around hand and feet and shows better recon-
struction quality. Furthermore, our method also preserves
the structure around clothing (row 1) where the wrinkles
are reconstructed well while preserving the structure of the
zipper (zoomed-in) around it compared to previous work.

In summary, we note that HUGS shows better recon-
struction quality of both the scene and the human as com-
pared to previous methods while being orders of magnitude
faster to train and render (see §4.3 for speed comparison).
We will provide additional qualitative results with videos in
the Supp. Mat.

Canonical Human Shapes. In Fig. 5, we show the recon-
struction of the human in the canonical space. We note that
our method captures fine details around the feet and hands
of the human which look noisy in the case of NeuMan [7].
Furthermore, we note that our method preserves rich details
on the face. This enables us to achieve high reconstruction
quality during the animation phase.

Disentanglement of the Human and the Scene. HUGS
allows for a disentangled represenation of the human and
the scene by storing their Gaussian features separately. This
allows us to move the human to different scenes. In Fig. 4,
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a) Ground truth

a) Ground truth b) HUGS (Ours) c) NeuMan d) Vid2Avatar

Ground Truth HUGS (ours) NeuMan [7] Vid2Avatar [6]
Figure 3. Qualitative results comparing HUGS (ours) with NeuMan and Vid2Avatar with full human (left) and zoomed-in regions (right)
for each of the methods. HUGS shows better reconstruction quality especially around hands, feet and clothing wrinkles.

Figure 4. Rendering obtained by transferring the Human Gaussians to a different scene. Top-left corner shows the original scene in which
the human was captured.

we show the composition of human captured in one scene
into a different scene. We show additional video results in
the supplemental material.

4.3. Quantitative Results

We compare the performance of our method with NeRF-
T [54], HyperNeRF [55], NeuMan [7] and Vid2Avatar [6].
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Seattle Citron Parking Bike Jogging Lab

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF-T [54] 21.84 0.69 0.37 12.33 0.49 0.65 21.98 0.69 0.46 21.16 0.71 0.36 20.63 0.53 0.49 20.52 0.75 0.39

HyperNeRF [55] 16.43 0.43 0.40 16.81 0.41 0.56 16.04 0.38 0.62 17.64 0.42 0.43 18.52 0.39 0.52 16.75 0.51 0.23
Vid2Avatar [6] 17.41 0.56 0.60 14.32 0.62 0.65 21.56 0.69 0.50 14.86 0.51 0.69 15.04 0.41 0.70 13.96 0.60 0.68

NeuMan [7] 23.99 0.78 0.26 24.63 0.81 0.26 25.43 0.80 0.31 25.55 0.83 0.23 22.70 0.68 0.32 24.96 0.86 0.21

HUGS 25.94 0.85 0.13 25.54 0.86 0.15 26.86 0.85 0.22 25.46 0.84 0.13 23.75 0.78 0.22 26.00 0.92 0.09

Table 1. Comparison of HUGS (ours) with previous work on test images of the NeuMan dataset [7] using PSNR, SSIM and LPIPS metrics.
HUGS achieves state-of-the-art performance across every category with the exception of PSNR on the Bike sequence.

Seattle Citron Parking Bike Jogging Lab

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Vid2Avatar [6] 16.90 0.51 0.27 15.96 0.59 0.28 18.51 0.65 0.26 12.44 0.39 0.54 16.36 0.46 0.30 15.99 0.62 0.34

NeuMan [7] 18.42 0.58 0.20 18.39 0.64 0.19 17.66 0.66 0.24 19.05 0.66 0.21 17.57 0.54 0.29 18.76 0.73 0.23

HUGS 19.06 0.67 0.15 19.16 0.71 0.16 19.44 0.73 0.17 19.48 0.67 0.18 17.45 0.59 0.27 18.79 0.76 0.18

Table 2. Comparison of HUGS (ours) with previous work on the NeuMan dataset [7] over human-only regions cropped using a tight
bounding box. Performance is evaluated on PSNR, SSIM and LPIPS metrics.

377 386 387 392 393 394

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeuralBody [9] 29.11 0.97 0.04 30.54 0.97 0.05 27.00 0.95 0.06 30.10 0.96 0.05 28.61 0.96 0.06 29.10 0.96 0.05
HumanNerf [8] 30.41 0.97 0.02 33.20 0.98 0.03 28.18 0.96 0.04 31.04 0.97 0.03 28.31 0.96 0.04 30.31 0.96 0.03

InstantNVR [56] 31.36 0.98 0.03 33.53 0.98 0.03 28.11 0.96 0.05 32.03 0.97 0.04 29.55 0.96 0.05 31.46 0.97 0.04
MonoHuman [14] 30.77 0.98 0.02 32.97 0.97 0.03 27.93 0.96 0.03 31.24 0.97 0.03 28.46 0.96 0.03 28.94 0.96 0.04

HUGS 30.80 0.98 0.02 34.11 0.98 0.02 29.29 0.97 0.03 31.36 0.97 0.03 29.80 0.97 0.03 30.54 0.97 0.03

Table 3. Comparison of HUGS (ours) with the previous work on the ZJU Mocap dataset [9]. Performance is evaluated on PSNR, SSIM
and LPIPS metric. HUGS achieves state-of-the-art performance across all scenes and all metrics.

NeuMan [7] HUGS (ours)

Figure 5. Visualization of Human in canonical Da-pose for HUGS
(ours) showing qualitative improvements over NeuMan [7].

In Table 1, we evaluate the reconstruction quality on
the NeuMan dataset [7] on three different metrics –
Peak Signal-to-Noise Ration (PSNR), SSIM [50] and
LPIPS [57]. NeRF-T and HyperNeRF are general dynamic
scene reconstruction methods and do not specialize for hu-
mans. Therefore, they show poor reconstruction quality. On
the other hand, NeuMan and Vid2Avatar employ special-
ized models for the human and the scene. NeuMan em-
ploys a NeRF-based [26] approach for both scene and hu-
man modeling. Vid2Avatar utilizes an implicit SDF model
and volume rendering for scene and human representation.
Therefore, both NeuMan and Vid2Avatar show improved
reconstruction quality. In comparison, our method achieves
state-of-the-art performance across all the scenes and met-

rics except PSNR on the Bike sequence where we show
competitive performance.

In Table 2, we further evaluate the reconstruction error
but only on the regions containing the human. We first take
a tight crop around the human region in the ground truth
image. This crop is used over all the predictions, and the re-
construction error is evaluated over the cropped samples. It
should be noted that we take rectangular crops of the region
and do not use any segmentation mask since reconstruction
metrics are highly sensitive to masks. Under this evalua-
tion, we show state-of-the-art performance across all scenes
and metrics except PSNR on the Jogging sequence where
we show competitive performance.

In addition, we evaluate our method using the ZJU-
MoCap dataset [9] in Table 3. We compare with recent pre-
vious work that report their evaluation on this dataset which
include NeuralBody [9], HumanNerf [8], InstantNVR [56],
and MonoHuman [14].

Speed. In Fig. 6, we compare the training and render-
ing time of our method with previous work. The use of
3DGS [15] speeds up our training and rendering times by a
significant margin. We note that HUGS is 96× faster than
Vid2Avatar and 336× faster than NeuMan training within
30 minutes. At rendering time, we do not rely on MLPs
and only use the LBS weights, enabling higher frame rate.
Our method achieves 60 FPS outperforming NeuMan by
∼7600× and Vid2Avatar by ∼3800×. For human-only op-
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PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o LBS 18.47 0.66 0.16 19.00 0.70 0.16 19.13 0.72 0.19 19.73 0.68 0.18 17.29 0.58 0.27 18.80 0.76 0.18

w/o Densify 18.91 0.65 0.16 17.18 0.68 0.18 19.00 0.71 0.21 19.92 0.67 0.19 17.63 0.57 0.26 18.98 0.76 0.18

w/o Lh 18.87 0.67 0.16 17.31 0.67 0.19 17.76 0.70 0.23 19.63 0.68 0.19 18.23 0.60 0.26 18.75 0.76 0.19

w/o Triplane 18.70 0.65 0.15 17.12 0.67 0.17 18.78 0.69 0.19 19.52 0.66 0.18 17.60 0.56 0.25 18.91 0.74 0.19

HUGS 19.06 0.67 0.15 19.16 0.71 0.16 19.44 0.73 0.17 19.48 0.67 0.18 17.45 0.59 0.27 18.79 0.76 0.18

Table 4. Ablation study. The performance is evaluated over human-only bounding box regions using PSNR, SSIM and LPIPS metrics.

Figure 6. Timing comparison for training in hours and rendering in
milliseconds. y-axis is on log-scale. HUGS outperforms previous
methods by an order of magnitude.

a) HUGS b) w/o LBS c) w/o Densify d) w/o e) w/o Triplane

Figure 7. Ablation study showing the visualization of details cap-
tured in the human canonical shape under different ablations of
our method.

timization performed in ZJU-MoCap dataset, our method
takes 8min to train while InstantNVR reports 5min. Even
though our method is slightly slower to train, it operates in
realtime with 60 FPS during test time, whereas InstantNVR
achieves 0.5 FPS. We benchmark all the methods on a sin-
gle GeForce 3090Ti GPU.

In summary, our model demonstrates efficiency in both
training and rendering, delivering superior results compared
to existing methods. Our model not only outperforms estab-
lished NeRF and implicit-SDF based models but does so at
orders of magnitude faster speeds.

4.4. Ablation Experiments

We show the effect of ablating over our method in Fig. 7.
We note that removing LBS from our full model results in
floating artifacts that are mainly introduced in the corner re-
gion or the body. We also experiment by keeping the num-
ber of Human Gaussians to be fixed by disabling densifica-
tion. This results in floaters around the edges (row 1, on the

side of the shirt) since noisy Gaussians are not culled and
large Gaussians are not split.

Furthermore, we examine the effect of removing the loss
on the human pixels Lh. This results in loss of fine details in
the human region as evident from the reconstruction of the
shoes (row 2). In addition, removing the triplane+MLP and
directly optimizing the 3DGS parameters results in noisy
estimates. Please refer to supplemental material for a de-
tailed ablation and analysis of our contributions.

In Table 4, we show quantitative results on the NeuMan
dataset by evaluating over only the human-regions by crop-
ping it using a tight bounding box. We evaluate rendering
quality using PSNR, SSIM and LPIPS metrics.

5. Conclusion
We have proposed HUGS, a new method for novel-view

and novel-pose synthesis of a human embedded in the scene
by bringing a deformable model into the Gaussian Splatting
framework. The method is able to reconstruct human and
scene representations from in-the-wild monocular videos
containing a small number of frames (50-100). HUGS en-
ables fast training (in 30 mins) and rendering (60 FPS),
100× faster than the previous methods [6, 7], while at the
same time significantly improving rendering quality as mea-
sured by PSNR, SSIM and LPIPS metrics.

Limitations and Future Work. HUGS is limited by the
underlying shape model SMPL [4] and linear blend skin-
ning that may not capture the general deformable structure
of loose clothing such as dresses. In addition, HUGS is
trained on in-the-wild videos that do not cover the pose-
space of the human body. Future work will aim to alleviate
these problems by modeling non-linear clothing deforma-
tion. In addition, the lack of data maybe alleviated by learn-
ing an appearance prior on human-poses using generative
approaches such as GNARF [10] and AG3D [11] or by dis-
tilling from image diffusion models [58, 59]. Furthermore,
our model does not account for environment lighting that
may effect the composition of the human in a different scene
with a different environment light which can be addressed
by factoring out an illumination representation [60, 61].
Acknowledgements: We thank Angelos Katharopoulos,
Thomas Merth, Raviteja Vemulapalli, Barry Theobald, and
Skyler Seto for their feedback on the manuscript and Wei
Jiang for providing the details on NeuMan experiments.
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