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Abstract

Current approaches for 3D scene graph prediction rely

on labeled datasets to train models for a fixed set of known

object classes and relationship categories. We present

Open3DSG, an alternative approach to learn 3D scene

graph prediction in an open world without requiring labeled

scene graph data. We co-embed the features from a 3D scene

graph prediction backbone with the feature space of pow-

erful open world 2D vision language foundation models.

This enables us to predict 3D scene graphs from 3D point

clouds in a zero-shot manner by querying object classes

from an open vocabulary and predicting the inter-object

relationships from a grounded LLM with scene graph fea-

tures and queried object classes as context. Open3DSG is

the first 3D point cloud method to predict not only explicit

open-vocabulary object classes, but also open-set relation-

ships that are not limited to a predefined label set, making

it possible to express rare as well as specific objects and

relationships in the predicted 3D scene graph. Our exper-

iments show that Open3DSG is effective at predicting ar-

bitrary object classes as well as their complex inter-object

relationships describing spatial, supportive, semantic and

comparative relationships.

1. Introduction

3D scene graphs are an emergent graph-based representa-

tion facilitating various 3D scene understanding tasks. In

contrast to other more object-centric 3D scene representa-

tions, the key advantage of 3D scene graphs is the ability to

also represent relationships between scene entities, such as

for instance objects in a room. These relationships can be

useful for a variety of different downstream tasks in com-

puter vision or robotics, such as place recognition, change

detection, task planning and more [1, 26, 34, 44, 53]. How-

ever, the exploitation of 3D scene graphs is limited by their

availability.

Given their complexity and high-level abstraction, 3D
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Figure 1. Open3DSG. We present Open3DSG the first approach

for learning to predict open-vocabulary 3D scene graphs from 3D

point clouds. The advantage of our method is that it can be queried

and prompted for any instance in the scene, such as the TV and

Wall, to predict fine-grained semantic descriptions of objects and

relationships. By considering all instance pairs in the scene, we can

reconstruct a complete explicit open-vocabulary 3D scene graph.

scene graphs are hard to predict by learned models. The

state-of-the-art (SOTA) methods for 3D scene graph pre-

diction are limited to a fixed set of object and relationship

labels provided by small-scale datasets. This reduces their

effectiveness in downstream applications, which often re-

quire semantic reasoning on concepts extending beyond a

rather narrow scope of training data. Furthermore, one of

the most useful properties of scene graphs is their ability

to represent relationships between scene entities. There are

multiple ways of describing a relationship between two ob-

jects, e.g. spatial, comparative, semantic, etc. The relevance

of the type of relationship is dictated by the downstream

task. However, in a closed-set supervised training setting

this choice is made and fixed in advance.

Open-vocabulary 3D scene understanding methods pro-

pose a solution towards these challenges by training a model

not on a fixed label set but rather aligning the 3D model

with 2D foundation models [14, 15, 18, 20, 31, 41]. By do-

ing so, e.g. with foundation models such as CLIP [33], the

3D model can express nearly the same broad vocabulary
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that these vision language models (VLMs) were trained on.

However, while these 2D models are very capable of pre-

dicting single objects or higher-level concepts, they do not

perform well in modeling compositional structures such as

relationships or attributes [50, 52]. This limitation makes it

challenging to adopt 2D VLMs for scene graph predictions

where compositional relationships are the core part.

In this paper, we demonstrate that intuitive CLIP-like

approaches are ill-suited for open-vocabulary relationship

prediction. To this end, our key idea is to combine the ad-

vantages of VLMs with large language models (LLMs), that

have proven to be better at understanding compositional con-

cepts [16], to predict open-vocabulary 3D scene graphs.

We highlight the following three contributions:

• We are the first to present a method to create an inter-

active graph representation of a scene from a 3D point

cloud, which can be queried for objects and prompted for

relationships during inference time.

• We show how such a representation can be converted into

an explicit open-vocabulary 3D scene graph. Thus effec-

tively proposing the first open-vocabulary scene graph

prediction approach from 3D point cloud data.

• Our proposed approach shows promising results on the

closed-set benchmark 3DSSG [44], proving success in

modeling compositional concepts in an open-vocabulary

manner.

2. Related Work

3D scene graph prediction. 3D scene graphs were first

proposed by Armeni et al. [2] as a hierarchical structure

to combine entities such as buildings, rooms, objects and

cameras into a unified structure. Following their inception,

subsequent works improved upon the estimation of such

hierarchical 3D scene graphs for large-scale environments

[17, 36, 37]. Other 3D scene graph approaches rather fo-

cus on predicting local semantic inter-object relationships

and building a graph of objects [21, 44–48, 55, 58]. The

applications of these 3D scene graphs are plentiful, with

uses in aligning 3D scans [38], reconstructing and gener-

ating 3D scenes [9, 22], forecasting scene change [26], or

even task planning over 3D scene graphs [1, 34]. However,

none of these approaches consider the topic of open vo-

cabulary in the context of 3D scene graphs. Cheng et al.

are the first to model an implicit scene graph representa-

tion for planning in navigation tasks which they call OVSG

[4] – an open-vocabulary 3D scene graph model – however

they do not predict any open-vocabulary relationships from

sensor data and are reliant on human descriptions which

are encoded in the scene graph using a language model for

open-vocabulary lookup and matching. Another approach

to explore open-vocabulary 3D scene graphs is Concept-

Graphs [13] which is concurrent work to ours. Concept-

Graphs utilizes 2D VLMs and captioning models to predict

scene graphs with queryable nodes and stored summarized

image captions for edges. However, they do not provide ex-

tensive evaluations for their predicted scene graphs, limiting

themselves to a qualitative evaluation of spatial relationships

with Amazon Turk. We identify that the core difference of

our approach to ConceptGraphs and OVSG, is that we learn

to predict 3D scene graphs directly from raw point clouds,

which brings numerous advantages such as being able to

predict 3D scene graphs at test time without requiring infer-

ence from computationally expensive VLMs and when only

3D scans are available. We also predict explicit semantic

relationships as part of our method and do not have to store

multiple captions per edge that describe the relationship.

Open-vocabulary 3D scene understanding. The recent

success of 2D vision language models as open-vocabulary

methods such as CLIP [33], ALIGN [19], or ImageBind [12]

have motivated the process of adapting these foundation

models for 3D scene understanding tasks such as seman-

tic/instance segmentation or 3D open-vocabulary detection.

One of the earliest lines of approaches [14, 15, 57, 59] and

also ConceptGraphs [13] explore annotation-free 3D recog-

nition by combining CLIP with a 3D detection head using

available RGB-D images with known poses. However, these

approaches can suffer from inaccurate 2D-3D projections

and occlusion artifacts. Furthermore, RGB-D images with

known poses are not always available. Therefore, more re-

cently approaches such as OpenScene [31], LERF [20] and

others [18, 28, 41, 56] aim to distill the knowledge of those

2D vision language models into a 3D architecture with the

advantage that these approaches do not rely on available

2D images when performing inference on 3D data. After

the distillation, these approaches demonstrate impressive

open-vocabulary results and unique abilities such as local-

izing rare objects in large 3D scans. However, their accu-

racy on closed vocabulary benchmarks still falls short of

fully-supervised methods that are specifically trained on one

dataset.

However, in contrast to our goal, none of these 3D scene

understanding approaches has attempted to model 3D rela-

tionships which are hard to learn and distill based on their

compositional nature.

Compositionality in vision-language models. While

vision-language models show impressive performances in

zero-shot image retrieval or image classification [12, 19,

33, 43, 54], they lack complex compositional understand-

ing. Yuksekgonu et al. [52] and Yamada et al. [50] identified

that contrastive vision-language pre-trained models such as

CLIP [33] tend to collapse to a bag-of-words representation,

which cannot disentangle multi-object concepts. To this end,

a number of benchmarks have surfaced to examine the com-

positional reasoning capabilities of current vision language

models [16, 29, 42, 52]. Yet, attempts to improve compo-

sitional understanding of contrastive vision-language pre-
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Figure 2. Open3DSG overview. Given a point cloud and RGB-D images with their poses, we distill the knowledge of two vision-language

models into our GNN. The nodes are supervised by the embedding of OpenSeg [11] and the edges are supervised by the embedding of the

InstructBLIP [7] vision encoder. At inference time, we first compute the cosine similarity between object queries encoded by CLIP [33] and

our distilled 3D node features to infer the object classes. Then we use the edge embedding as well as the inferred object classes to predict

relationships for pairs of objects using a Qformer & LLM from InstructBLIP.

trained models by utilizing additional data, prompting, mod-

els, losses and/or hard negatives [3, 10, 30, 35, 40, 52] yield

only marginal improvements on these benchmarks. Further-

more, it is unclear whether these models achieve these im-

provements by actually acquiring compositional understand-

ing or by exploiting biases in these benchmarks as indicated

in [16].

Predicting relationships in a scene graph requires compo-

sitional understanding. In this paper, we approach this prob-

lem by shifting from a discriminative zero-shot approach to

a generative approach using an LLM.

3. Method

The overall goal of our approach is to distill the knowledge

of 2D vision-language models into a 3D graph neural net-

work (GNN) to predict open-vocabulary 3D scene graphs in

a 2-step process. We first construct an initial graph represen-

tation (Sec. 3.1), and in parallel, we extract vision-language

features from aligned 2D images (Sec. 3.2). These features

are then aligned to the ones extracted via the 3D GNN

(Sec. 3.3), so that we can predict the same language-aligned

features from 3D data only. At inference time, we perform

a two-step prediction for objects and relationships. First,

we predict object classes via a cosine similarity between

the distilled features and open-vocabulary queries encoded

by CLIP [33]. Then, we predict inter-object relationships

by providing the learned relationship feature vector and the

predicted object classes as context for a LLM (Sec. 3.4). An

overview of our method is shown in Fig. 2.

3.1. Scene graph construction

Given a point cloudP of a scene with class-agnostic instance

segmentation M provided by an off-the-shelf instance seg-

mentation method such as Mask3D [39] or the dataset itself,

we extract each object point cloud Pi containing instance i
using the mask Mi. Further, we extract point clouds Pij of

the instance pair ⟨i, j⟩ ∈ |M| × |M|, by selecting all points

falling within the union of their respective bounding boxes

Bij = Bi ∪ Bj .

We construct an initial graph with node features φn and

edge features φe. Each point set Pi is fed into a shared Point-

Net [32] to extract features for object nodes. Every point set

Pij is concatenated with a mask which is equal to 1 if the

point corresponds to object i, 2 if the object corresponds to

object j, and 0 otherwise. The concatenated feature vector

is then fed into another shared PointNet to extract features

for predicate edges.

The extracted node and edge features are then arranged

as triplets tij = ⟨φn,i, φe,ij , φn,j⟩ in a graph structure. This

initial feature graph is passed into a GNN that processes the

triplets tij and propagates the information through the graph

φ
(k)
n,i , φ

(k)
e,ij , φ

(k)
n,j = G(φn,i, φe,ij , φn,j) (1)

where G(·) is a GNN and φ
(k)
n,i , φ

(k)
e,ij , φ

(k)
n,j are the refined

features after k iterations of the GNN.

3.2. 2D feature extraction

Frame selection. The first step for aligning our 3D GNN

with the 2D vision-language models is to extract 2D fea-
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Figure 3. Supervision feature extraction. For each instance in the 3D point cloud, we select the top k frames for object and predicate

supervision. For objects, we encode the frames using OpenSeg [11] and aggregate the computed features over the projected points. For

predicates, we identify object pairs in the frame, crop the image at multiple scales and compute the image feature with the BLIP [7] image

encoder. The features are aggregated over all crops. Finally, both object and predicate features are fused across the multiple views.

tures from the available 2D images and project them onto the

constructed 3D feature graph. Selecting high-quality frames

where the desired objects are visible is crucial to obtain ro-

bust and high-quality features. To achieve this, we utilize the

same class-agnostic instance mask already used before to se-

lect a small subset of frames containing each pair of objects

to be aligned with nodes and edges in the produced graph.

To estimate whether an object of instance i is visible

in frame k, we use the camera’s intrinsic I and extrinsics

(Rk|tk) to project all points Pi onto the image plane of

frame k. We define the projection of a single point pi be-

longing to instance i projected into frame k with pik =
(u, v, w)T = projk(pi) = I·(Rk|tk)·pi where we represent

pi in homogeneous coordinates. We consider a point falling

into the image plane if u/w falls in the interval [0,W − 1]
and likewise if v/w falls in the interval [0, H − 1], where

W and H are the image width and height dimension re-

spectively. Furthermore, we discard each point pik that is

occluded from the point of view of frame k, for which the

inequality w − dk > tocc is satisfied, where dk is the mea-

sured depth for pixel (u, v), w is the estimated depth of the

object instance for the same pixel, and tocc is a fixed thresh-

old hyperparameter. We denote the set of projected points

passing the validity checks as Pik. Subsequently, we com-

pute a visibility percentage as

vis(i, k) =
|Pik|

|Pi|
(2)

expressing the ratio of object points that are successfully

projected onto the image frame. From the projected

points, we can estimate their bounding box in the image as

boxik = [minx(Pik),miny(Pik),maxx(Pik),maxy(Pik)].
Following this projection routine, each object instance i can

be projected onto multiple frames. To ensure high-quality

visual features, we choose a subset of high-quality frames

by rejecting low-quality ones based on the condition

vis(i, k) > tvis ∨ A(boxik) > tbox (3)

where tvis and tbox are hyperparameters, and A(·) computes

the area of the given bounding box. We consider the bound-

ing box area as an additional condition since large objects,

such as floor or wall, might cover a huge portion of the scene,

leading to a low visibility percentage for the current frame.

In the end, we choose the top-k frames with the highest qual-

ity. For relationship frame selection, the process is similar,

but we consider two object instances Pi and Pj simultane-

ously and a candidate frame has to satisfy Eq. (3) for both

objects. The process of selecting both object and relation-

ship frames is shown in Fig. 3 box 1.

Object feature computation. In order to achieve a coher-

ent language-aligned object feature, we decide to leverage

a VLM and collect the extracted features in a single repre-

sentation. We choose OpenSeg [11] over CLIP [33], since

the latter returns a global feature vector for the entire im-

age or provided crop. This might also include extracted fea-

tures regarding other parts of the image that are not relevant,

while OpenSeg outputs pixel-wise embeddings. We provide

an ablation for the advantages of using OpenSeg in Tab. 3.

Thus, limiting the collected features to the ones related to

the object improves our results. Consequently, from the se-

lected top-k images we use OpenSeg to compute pixel-wise

language-aligned features for object i and we compute a
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global language-aligned embedding for the object by aggre-

gating pixel-embeddings of the projected pixels Pik using

average-pooling. This step can be observed in box 2a. in

Fig. 3.

Relationship feature computation. Similar to extracting

per-object features, we also want to extract a global

language-aligned feature embedding for relationships

between two objects. Again we make use of VLM and

decide to use InstructBLIP [7] since we identify in Sec. 2

that CLIP-like models are ill-suited to express composi-

tional knowledge. Thus we use a BLIP-like model which

visual feature embedding can be grounded with language

to attend to the desired subjects. Given the top-k images

where both object instance i and j are visible, we crop

the image to the union of their respective bounding boxes

boxk
ij = boxik ∪ boxjk. Then, we encode the crop at multi-

ple scales using the BLIP image encoder from InstructBLIP

to align the features with the InstructBLIP language model.

Providing multiple scales of the same crop has been shown

beneficial to provide important context information in [20]

and [41]. The embedded crops are then aggregated using

average-pooling. This step can be observed in Fig. 3 box 2b.

Feature aggregation. To provide a more robust and view-

independent visual feature for objects and relationships, we

average-pool all the global object features, and all the global

relationship features previously extracted from each of the

top-k frames. This results in two new global robust visual

features: f 2D
o,i for object i, and f 2D

r,ij for relationship between

objects i and j. The set of all the object features and rela-

tionship features are denoted by F2D
o = {f 2D

o,1, ..., f
2D
o,N} and

F2D
r = {f 2D

r,1, ..., f
2D
r,M} respectively.

3.3. Graph distillation

The projected 2D object F2D
o and predicate F2D

r features can

be directly used to predict 3D scene graphs if camera pose,

depth and color images are available. However, in some cir-

cumstances, only 3D meshes or point clouds are provided.

Furthermore, the fused 2D features can suffer from occlu-

sions or prediction inconsistencies, resulting in noisy fea-

tures. Therefore, we choose to distill the knowledge of the

2D vision-language models into a 3D network that operates

on point clouds. To the best of our knowledge, the most suit-

able way to predict scene graph from 3D data is to leverage

a GNN architecture.

Specifically, given a point cloud P , we construct a

graph G as defined in Sec. 3.1. We use the GNN ar-

chitecture with message passing as proposed in [44]

to output vision-language-aligned object node features

as F3D
o = {f 3D

o,1, ..., f
3D
o,N} with N being the number

of nodes, and relationship edge encoding features as

F3D
r = {f 3D

r,1, ..., f
3D
r,M} with M being the number of edges.

To enforce the vision-language alignment for our 3D

graph features, we define a training objective using a co-

sine similarity loss between the 2D vision-language features

and the 3D features for nodes and edges

L = 1− cos(F2D
o ,F3D

o ) + 1− cos(F2D
r ,F3D

r ). (4)

Using this training objective, we distill the broad knowledge

from the 2D vision-language foundation models into our 3D

GNN. The process is depicted in Fig. 2.

After the distillation, the 3D graph features live in the

same embedding space of the 2D vision-language founda-

tion models.

3.4. Prediction and filtering

2D-3D Feature fusion. At inference time, we can perform

open-vocabulary 3D scene graph prediction using only the

distilled 3D features. However, if 2D images are available,

we choose to fuse the 2D and 3D features in f 2D3D
o,i and f 2D3D

r,ij

by average pooling the two for each feature pair 2D-3D.

This is inspired by Peng et al. who observed in [31] that

2D features are beneficial to predict small objects, while

3D features yield good predictions for large objects with

distinctive shapes. From this 2D-3D ensemble, we can infer

node object classes and inter-object relationships in a two-

step manner. First, we predict the object class of each node,

and then using the inferred object classes we predict the

relationship label on the edge between the classes.

Node prediction. As the first step to predict full open-

vocabulary 3D scene graphs, we infer the object class la-

bel of each node from an open-vocabulary of arbitrary text

prompts. These text prompts are encoded using the CLIP

[33] text encoder to get the text features T = {t1, ..., tN},

which are aligned with the OpenSeg [11] vision model and

where N is the number of candidate classes. To classify

the object class, we compute the cosine similarity between

the candidate text prompts and the 2D-3D ensemble graph

embedding and choose the class with the highest similarity

score to the node feature:

argmaxn cos(f
2D3D
o,i , tn). (5)

Relationship prediction. Following the prediction of the

node classes in an open-vocabulary manner, the second step

predicts relationships informed by the object predictions

from the first step.

Contrastive vision-language models such as CLIP [33]

have been shown to have a poor compositional understand-

ing of the world [16, 29, 50, 52] resulting in limited accuracy

when used for tasks such as relationship prediction. Thus,

querying predicates for the scene graph edges in a similar

manner as we have done for our node prediction will yield

poor results. We provide experimental results to this hypoth-

esis in the Tab. 1.
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To solve this issue we exploit generative VLMs, which

are grounded via a specific task. These models usually pro-

duce outputs that perform better on VQA benchmarks or

benchmarks where it is required to have compositional rea-

soning [7, 23, 24]. However, a big drawback of deploying

a generative approach is that restricting the output to a de-

sired answer is not straightforward. To this end, Instruct-

BLIP [7] is uniquely designed to give more output con-

trol using prompting. The InstructBLIP model consists of

a vision transformer (ViT) encoder followed by a Qformer,

which receives context from learnable tokens, a user prompt

and the output of the ViT. The Qformer fuses and projects

this information to the token space of a pre-trained LLM

which is again conditioned on a user prompt.

We change the input to the Qformer such that instead

of receiving the vision features from the ViT, we provide

our 2D-3D distilled ensemble features from Sec. 3.3 coming

from our graph neural network. To infer an accurate rela-

tionship grounded for a specific subject-object relation, we

use the object class predictions from the first step to refine a

template query to only output a relationship description for

these two objects.

The output of the scene-conditioned Qformer is fed into

the LLM which is prompted to output a relationship de-

scription for the subject-object pair in the graph, given the

same conditioned query. This process is done in parallel for

all edges in the scene graph to predict relationships for all

subject-object pairs. The final result is an open-vocabulary

3D scene graph with open-vocabulary objects as well as

open-vocabulary relationships.

4. Experiments

4.1. Experimental Setup

Datasets. The choice of training data is generally fixed for

other 3D scene graph methods. The 3DSSG dataset [44] is

at the time of writing this paper, the only dataset that pro-

vides semantic scene graph labels aligned with a 3D scene.

This forces other methods [21, 44, 47, 55] to train and test

on this rather small 3D dataset. In contrast, our method can

be trained independently from scene graph labels on a 3D

dataset that provides a 3D representation with posed 2D im-

ages, including their depth. While 3DSSG provides high-

quality 3D point clouds and scene graphs, the provided por-

trait images have a low FOV, leading to a suboptimal 2D fea-

ture extraction. Therefore, we choose ScanNet [6], a similar

indoor dataset, which provides image frames with acceptable

FOVs and high-quality point clouds. However, since 3DSSG

is the only dataset to provide ground truth scene graph la-

bels, we evaluate our distilled model quantitatively on it.

Baseline methods. Given the challenging nature of open-

vocabulary 3D scene graph prediction, our method is the first

true open-vocabulary 3D scene graph method, that not only

models open-vocabulary objects, but also open-vocabulary

relationships from 3D point clouds. Therefore, no compa-

rable method exists. As the first open-vocabulary 3D scene

graph prediction method we compare against the first closed-

vocabulary semantic 3D scene graph estimation method

3DSSG [44]. Further we compare against the current state-

of-the-art [22, 47]. Additionally, we devise some open-

vocabulary baseline methods for a fair comparison of our

method. The first baseline is a naive CLIP-based approach,

where we try to predict relationships directly with CLIP

[33]. The second baseline we propose is a CLIP-based al-

ternative to our method, where we predict objects and pred-

icates in a 2-step manner directly from 2D images, querying

first objects and then relationships using CLIP. This baseline

is meant to highlight the advantage of using InstructBLIP for

relationship prediction. We also evaluate the performance of

NegCLIP [52] which is supposed to have improved compo-

sitional understanding. The third open-vocabulary baseline

is similar to the concurrent work ConceptGraphs [13] and

utilizes a caption-based approach directly from 2D images.

We use OpenSeg [11] and BLIPv2 [24] to predict objects

and their image captions, from which we extract objects and

relationships for evaluation.

For further insights into our devised baselines, the reader

is referred to our supplementary work.

Metrics. Designing metrics to quantitatively evaluate the

capabilities of open-vocabulary methods is a current prob-

lem. So far, the best approach remains evaluating an open-

vocabulary method on closed-vocabulary metrics. In our

case, we choose the commonly used top-k recall metric

(R@k) [27] for scene graphs. Following [44, 45, 49, 51, 55],

we evaluate objects and predicates individually and relation-

ships as subject-predicate-object triplets. Additionally, we

provide a class-wise evaluation using the stricter mean recall

metric (mR@k) [5].

Label mapping. To evaluate our method on a fixed-

vocabulary benchmark, we provide object text queries from

the class label set of 3DSSG, which comprises 160 classes.

We compute the cosine similarity and choose the top-k pre-

dictions based on their cosine similarities. However, since

we predict relationships in a generative manner, we cannot

provide fixed queries for our relationship prediction. The

LLM will output the most likely and best descriptive rela-

tionship given the context as well as subject and object. To

map this to the fixed label set, we employ BERT [8], a small

language model with well-structured word embeddings. It

encodes the output of the LLM and the target relationship

labels set and computes the cosine similarity from which

we select the top-k most likely candidates. We reason that

BERT has a well-structured word embedding space and is

a good look-up approach to finding the most fitting syn-
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onyms from the 27 relationship classes from the 3DSSG

[44] dataset, which contains spatial, supportive, semantic,

and comparative relationships labels.

4.2. Closed­set 3D scene graph prediction

Comparisons with fully-supervised and zero-shot meth-

ods. In Tab. 1 we compare our new zero-shot open-

vocabulary 3D scene graph prediction approach with both

fully-supervised as well as other zero-shot baselines on the

3DSSG [44] dataset. We outperform all our supervised base-

lines on object, predicate and relationship prediction. We

demonstrate that a naive CLIP-based approach is ill-suited

for relationship prediction, but also a two-step approach sim-

ilar to our method by combining OpenSeg [11] and CLIP

[33] or even NegCLIP [52] does not yield significant im-

provements. The caption-based approach also achieves con-

siderably lower performances compared to our method. This

is likely due to the poor quality of the 2D frames within the

3DSSG dataset, which negatively affects the caption-based

approach which only uses 2D information for inference. In

contrast, our approach uses a 2D-3D ensemble, where the

distilled 3D features can compensate for the poor or missing

2D features.

Similar to other open-vocabulary approaches [31, 41],

there is a noticeable gap to the state-of-the-art fully-

supervised approaches. However, our zero-shot open-

vocabulary approach is surprisingly competitive with the

fully-supervised approach from a few years ago [44].

Impact of class occurrence. Fully-supervised methods are

heavily biased by what they observe during training. Train-

ing samples of classes that are observed in a higher fre-

quency are generally learned more effectively than rarer

classes. In literature, there are multiple ways to alleviate

this problem. Most scene graph methods [22, 44, 46] for

instance, uses a focal loss [25] to solve the problem of class

imbalance in the training set. As a zero-shot approach, our

method is less susceptible to class imbalance. To evaluate

this, we compare in Tab. 2 the mR@k recall of our first

open-vocabulary method with recent 3D scene graph meth-

ods on the most common head classes, moderately common

body classes and rare tail classes. We observe that while

fully supervised methods demonstrate impressive accuracy

on common object and predicate classes, their recall drops

drastically for rare tail classes. In contrast, our zero-shot

method reports consistent results across all classes, achiev-

ing on-par results with current fully supervised methods for

all object and predicate classes averaged and outperforming

the fully supervised methods on tail-end object classes by a

considerable margin. This demonstrates the core advantage

of our zero-shot open-vocabulary approach that it performs

robustly on a wide variety of objects and predicates.

Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

Fully-supervised

3DSSG [44] 0.68 0.78 0.89 0.93 0.40 0.66

SGFN [47] 0.70 0.80 0.97 0.99 0.85 0.87

SGRec3D [22] 0.80 0.87 0.97 0.99 0.89 0.91

VL-SAT [46] 0.78 0.86 0.98 0.99 0.90 0.93

Zero-shot open-vocabulary

CLIP (naive) [33] 0.35 0.42 0.09 0.19 0.02 0.04

OpenSeg [11] + CLIP [33] 0.38 0.45 0.10 0.23 0.05 0.07

OpenSeg [11] + NCLIP [52] 0.38 0.45 0.10 0.20 0.05 0.08

OpenSeg [11] + Cap. [24] 0.38 0.45 0.50 0.58 0.30 0.32

Open3DSG (Ours) 0.57 0.68 0.63 0.70 0.64 0.66

Table 1. Closed-vocabulary evaluation on 3DSSG. We com-

pare our method with both zero-shot and fully-supervised base-

lines for 3D scene graph prediction. Overall, the zero-shot ap-

proaches perform worse than the fully-supervised methods. How-

ever, Open3DSG achieves comparable results to the first supervised

3D scene graph prediction method 3DSSG.

Labels Head Body Tail All

Objects R@5

3DSSG [44] 10
5 0.88 0.45 0.06 0.30

SGRec3D [22] 10
5 0.92 0.78 0.24 0.45

VL-SAT [46] 10
5 0.92 0.73 0.31 0.46

Open3DSG 0 0.60 0.50 0.42 0.45

Predicates R@3

3DSSG [44] 10
5 0.94 0.83 0.41 0.57

SGRec3D [22] 10
5 0.97 0.96 0.65 0.69

VL-SAT [46] 10
5 0.99 0.94 0.58 0.75

Open3DSG 0 0.38 0.29 0.57 0.37

Table 2. Frequency based class evaluation. Here we compare the

prediction performances for objects and predicates based on their

frequency in the training set. Even though the fully-supervised

approaches are trained specifically on this dataset, we can handle

the less-common / long-tail classes much better.

4.3. Ablation studies

Is our knowledge distillation effective? In the top part of

Tab. 3 we ablate the effectiveness of the feature distillation

from the VLMs to our graph neural network. We compare

results on 3DSSG [44] for our distilled 2D-3D ensemble

method with a distilled 3D only method when posed im-

ages are not available and with a 2D only method where we

directly use the 2D VLM features for 3D scene graph pre-

diction. While the 2D method already shows good results,

only when combining 2D and 3D features we reach the best

performance of object and predicate prediction.

What if we have ground truth objects? Our relationship

prediction using the LLM from InstructBLIP is conditioned

on the queried objects from the OpenSeg embedding. There-

fore, the correctness of the relationship prediction is influ-
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Figure 4. Qualitative open-vocabulary 3D scene graph predictions. We show the top-1 predictions on ScanNet [6] from Open3DSG. The

nodes are queried using the 3DSSG [44] 160 class label set, while the edges are generated directly from the graph-conditioned LLM.

enced by the accuracy of the object querying. To evaluate

both modules decoupled from each other, we provide the

ground truth labels to InstructBLIP from which the LLM

predicts the relationship. In the bottom part of Tab. 3, we

observe that this has only a minimal impact, indicating that

our method is robust towards slightly incorrectly predicted

object nodes.

What if we use CLIP instead of OpenSeg? We choose

OpenSeg [11] as our 2D object feature extractor. A popular

alternative is CLIP. In the bottom part of Tab. 3 we show

experimentally that using OpenSeg as the 2D object feature

extractor yields better results compared to CLIP.

What if we learn predicates supervised? While the

3DSSG [44] contains over 160 annotated object classes, the

number of categorized predicates is below 50 and most re-

lated works only evaluate on 27 or fewer distinct predicates

[22, 44, 47, 55]. Therefore, given the comparably small vo-

cabulary of predicates, we choose to fine-tune our model on

27 fixed predicate classes with only a few labels per class

(˜100). In the bottom part of Tab. 3, we observe that fine-

tuning on 3DSSG improves predicate prediction with our

model. Additionally, we observe synergy effects for object

prediction. Hence, our VLM distillation training can also be

an effective pre-training strategy when labels are scarce.

4.4. Qualitative Results

In Fig. 4, we provide qualitative results from our open-

vocabulary 3D scene graph prediction approach for two dif-

ferent scenes from ScanNet [6]. We show the top-1 predic-

tion for nodes and edges but filter edges where objects are

further apart than 0.5m. The predicted object class labels

are overall predicted correct and very specific, such as mi-

crowave or dining chair. The relationships between objects

are generally correct as well with a diverse set of predicates

such as next to, attached to, under, above. The advantages of

our open-vocabulary prediction are especially good to see

for the predictions such as ”tv mounted on wall” or ”mi-

crowave build into kitchen cabinet”.

4.5. Limitations

The experiments conducted in this paper demonstrate the

Object Predicate

R@5 mR@5 R@3 mR@3

Open3DSG 2D 0.37 0.37 0.67 0.19

Open3DSG 3D 0.46 0.25 0.60 0.33

Open3DSG 2D-3D 0.57 0.45 0.63 0.37

Open3DSG 2D-3D w/ CLIP 0.48 0.32 0.59 0.32

Open3DSG 2D-3D + GT Objs 1.00 1.00 0.64 0.38

Open3DSG 2D-3D + Supv. Rels. 0.59 0.46 0.76 0.44

Table 3. Ablation study. 3D scene graph prediction with different

input modalities, object VLM, privileged ground-truth information

and supervised fine-tuning.

potential and advantages of open-vocabulary 3D scene graph

methods. We observe that while predicting open-vocabulary

objects shows great potential, predicting open-vocabulary

relationships remains a challenging problem.

Furthermore, the evaluation setup for systematically eval-

uating open-vocabulary 3D scene graph methods still re-

mains an open problem. While closed-vocabulary evalua-

tions are valuable, they cannot highlight the huge potential

of open-vocabulary methods such as ours.

5. Conclusion

This paper introduces a new approach to learning seman-

tic 3D scene graphs in an open-vocabulary manner from

3D point cloud data. Our method distills 2D VLMs into

a 3D graph neural network thus creating a graph-based

and language-aligned scene representation which can be

queried and prompted to create an explicit open-vocabulary

scene graph. To tackle the problem of lacking compositional

knowledge in traditional VLMs, we split the relationship

prediction into two steps, where we first query objects in

a scene using CLIP and prompt relationships in a second

step from the inferred objects using an LLM decoder. Our

proposed approach shows promising results when evalu-

ated on a closed-set benchmark and qualitative results con-

firm the open-vocabulary nature of our method. In future

work, we see potential in improving relationship prediction

even further to achieve even better and more reliable open-

vocabulary 3D scene graph predictions that can be useful for

many downstream tasks.
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