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Figure 1. Teaser. We present LightIt, a method for explicit lighting control of text-guided image generation. Given a normal map of the
desired geometry and light direction with a solid angle, we introduce a method to predict direct shading, which is then used to generate
high-quality images with coherent lighting.

Abstract

We introduce LightIt, a method for explicit illumination
control for image generation. Recent generative methods
lack lighting control, which is crucial to numerous artis-
tic aspects of image generation such as setting the overall
mood or cinematic appearance. To overcome these limi-
tations, we propose to condition the generation on shad-
ing and normal maps. We model the lighting with single
bounce shading, which includes cast shadows. We first train
a shading estimation module to generate a dataset of real-
world images and shading pairs. Then, we train a control
network using the estimated shading and normals as input.
Our method demonstrates high-quality image generation
and lighting control in numerous scenes. Additionally, we
use our generated dataset to train an identity-preserving re-
lighting model, conditioned on an image and a target shad-
ing. Our method is the first that enables the generation of
images with controllable, consistent lighting and performs
on par with specialized relighting state-of-the-art methods.

*Research done during internship at Adobe.

1. Introduction
Generative imaging has significantly evolved over recent
years. Diffusion models have shown outstanding capabili-
ties to learn strong priors on large-scale real-image datasets.
When used in conjunction with joint language-image em-
beddings, they have been successfully used for high-quality
text-driven image generation. However, as these methods
do not model light transport explicitly, the lighting in the
produced images is uncontrollable and often inconsistent
[3, 9]. However, lighting is an essential component of most
images; without explicit control, artists rely on tedious and
uncertain prompt engineering to try to control it.

Recent methods [13, 24, 50] have introduced control for
various aspects of the generated images, for instance, depth
or normals can be used to guide the geometry. Fine-grained
control over the placement of generated objects can already
be achieved [23, 37] and diffusion inversion enables modi-
fication of generated images [38, 43]. However, none of the
methods can provide consistent and explicitly controllable
lighting, which is the essence of photo-realistic images.

Diffusion models achieve incredible performance when
trained on large datasets. However, the lack of real-world
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lighting datasets is a major obstacle hindering progress on
lighting control. Obtaining the lighting of a scene is a
time-consuming task, requiring the decomposition of its ap-
pearance into lighting and material properties. However,
we hypothesize that diffusion models do not require fine-
grained lighting information, thus simplifying the required
decomposition. Our analysis demonstrates that estimated
single-bounce shading maps provide sufficient information
and can be automatically obtained from real-world images.

In this work, we propose a single-view shading estima-
tion method to generate a paired image and shading dataset.
Given a single input image—either captured or generated—
our model predicts a 3D density field, in which we trace rays
toward a light to obtain cast shadows. Together with the
estimated normals, giving us the cosine term, we predict
single-bounce shading maps. This method notably allows
us to generate shading maps for arbitrary lighting directions
from a single image. Given outdoor panoramas, from which
we can obtain the light direction, we thus generate a paired
dataset of images and their shading. This dataset enables us
to provide lighting control to the image generation process,
which we also condition on normals to guide geometry.

As an additional application of our proposed illumina-
tion model, we further propose a relighting module condi-
tioned on an input image and a target shading. Thanks to the
strong natural image prior of Stable Diffusion (SD) [34], we
obtain better generalization to real-world samples compared
to methods from the literature trained on synthetic data. In
summary, our main contributions are:
• We generate a paired image-shading dataset using

our single-view, density field-based lighting estimation
model, enabling single-bounce shading estimation for ar-
bitrary lighting directions.

• We introduce lighting conditioning for controllable and
coherent image generation using a diffusion-based model.

• We propose an identity-preserving relighting diffusion
module utilizing the image prior for better generalization.

2. Related Work
Lighting controlled image generation. Generative imag-
ing is a recent field that started to receive attention with the
invention of GANs [7, 31]. However, one of the main chal-
lenges is the lack of control over the image generation pro-
cess. To address this issue, methods such as StyleGAN [16]
have been developed to provide control handles.

Recently, diffusion-based models were proposed to per-
form generative imaging [11, 29, 34, 38], enabling photo-
real outputs from text prompts and democratizing genera-
tive imaging to the masses. As artists experimented with
this new tool and explored its capabilities [49], the need for
more control over the generation process arose. In partic-
ular, ControlNet [50] and T2I-Adapter [24] were recently
proposed to allow users to control the generated image us-

ing a variety of modalities at the cost of image quality [18].
However, no approach exists for explicitly controlling the
lighting of the generated imagery.
Relighting. Image relighting has traditionally been per-
formed using classical approaches such as image-based ren-
dering [4] or shape from shading [1]. The emergence of
deep learning brought novel relighting approaches, initially
using style transfer [6, 15, 22] or image-to-image transla-
tion [14, 39, 51]. Specialized relighting methods have be-
gun with Xu et al. [47] that learns a relighting function
from five images captured under predetermined illumina-
tion. Sengupta et al. [36] proposes to replace the traditional
acquisition techniques with a regular monitor and camera
setup. We encourage the reader to read the excellent review
in [40] about rendering-based relighting.

Closer to our work, scene relighting methods both multi-
view [26–28] and single-view [8, 48] generally use a com-
bination of geometric and shading priors with a neural net-
work to produce relit results. Outdoor NeRF-based relight-
ing methods [35, 45] have been recently proposed, bringing
the power of this implicit volumetric representation to re-
lighting. Close in spirit to our shading model, OutCast [8]
proposes to use depth and a large 3D CNN to process depth
features sampled in image space to implicitly predict ray
intersection. Our method builds on several of these ideas
to propose a scene relighting approach combining volumet-
ric scene representation, and explicit shadow ray-marching
with diffusion-based image generation.

3. Method
Our method adds lighting control to the image generation
process of a diffusion-based model. We develop a shad-
ing estimation method (Sec. 3.1) and generate a dataset of
paired real images and shading maps (Sec. 3.4) to train a
control module for SD [34] (Sec. 3.2). Our dataset enables
additional applications, such as relighting (Sec. 3.3).

3.1. Shading estimation

To control the illumination of generated images, we aim to
provide lighting information to the diffusion model. Esti-
mating the shading from a single image is a challenging task
even in the presence of depth estimation [8]. Inspired by
Outcast [8], we develop a lightweight model to estimate di-
rect shading, i.e. single-bounce illumination, from a single
input image, which provides information about both shad-
ing and cast shadows. We show this pipeline in Fig. 2.

Specifically, we train a shading estimation model, which
takes an image, a light direction, and a solid angle as in-
put. A small 2D CNN (FeatureNet) first encodes the im-
age to obtain a set of features. Then, using a pre-trained
depth estimator (Sec. 3.4), we unproject these features to
a multi-plane representation in Normalized Device Coordi-
nates (NDC). Given a pixel’s depth, the features are linearly
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Figure 2. Shading Estimation. We estimate the direct shading of a single image. (i) We predict image features (FeatureNet) and unproject
them to a 3D feature grid in NDC space. (ii) We predict a density field from the features (DensityNet). (iii) Given the sun’s direction and
solid angle, we trace rays toward the lightsource to obtain a coarse shadow map. (iv) Using the shadows and N-dot-L shading information,
we predict a coarse shading map (ShadingNet). (v) We refine the shading map to get our direct shading (RefinementNet).

distributed between the two planes closest to the depth.
A small 3D CNN (DensityNet) processes the multi-plane

and predicts a 3D density field. We render a cast shadow
map for the light direction and angle using volumetric ray-
marching. Finally, a 2D CNN (ShadingNet) transforms this
shadow map and an N-dot-L cosine term map into coarse
direct shading. To further improve the shading estimation
quality, we apply a refinement module, which uses the input
image and the predicted coarse shading.

We train our model on synthetic pairs of rendered images
and shadings using an l2 loss. To better guide the training,
we add an l2 loss on the predicted depth and the expected
depth of the density field from the camera. When only a
depth map is available, we use the N-dot-L shading image
instead of the RGB image, which our method is robust to.

3.2. Lighting-conditioned diffusion

Our main goal is to provide explicit lighting control to a
pre-trained diffusion model. Inspired by ControlNet [50],
we train an additional module that provides control signals
to the intermediate features of SD [34], as depicted in Fig. 3.

We use lighting information represented as direct shad-
ing maps as conditioning, which we concatenate to the nor-
mal map to provide geometric information to the model.
Similarly to ControlNet [50], our control modules contain
zero convolutions to introduce the control gradually.

During training, we keep SD [34] fixed and optimize
only our control module consisting of a Residual Control
Encoder and Decoder (RCE, RCD) and a Lighting Control
network. We found that using the architecture of Control-
Net [50] is prone to ignoring part of the control signal. In-
deed as mentioned in the original paper, the controls tend to
be picked up suddenly. We believe this might be due to low
gradients early on as the encoder does not provide a mean-
ingful signal to the control module. To avoid this issue, we
develop a more stable encoder module, RCE, and next to
the diffusion noise prediction loss we additionally supervise
the training with an l2 loss on the control reconstruction ob-
tained with our RCD. RCE and RCD use residual blocks for
more stable control flow and the reconstruction loss ensures

Figure 3. Model Overview. To generate lighting-controlled im-
ages, we train a light control module similar to [50], conditioned
on normal and shading estimation. We use a custom Residual
Control Encoder to encode the control signal for the ControlNet.
Adding a Residual Control Decoder with a reconstruction loss en-
sures the full control signal is present in the encoded signal.

that the full control signal is provided to the light control
module. During inference, we do not need the RCD.

3.3. Relighting Application

Besides controllable image generation, our lighting repre-
sentation and dataset can also be employed for relighting
applications. Relighting methods are usually trained on
synthetic data leading to domain gap or on limited paired
real data [40]. Adding relighting capability to pre-trained
diffusion models opens up a novel way of utilizing pre-
trained image priors. To achieve this, we propose to con-
dition the generation on an input image and a target shading
as opposed to normals and shading for the generation task.

Dataset. To avoid training on synthetic renderings leading
to domain gap, we use predicted relit images (Fig. 4). Given
cropped images and random lighting conditions, we use our
shading estimation method to generate target coarse shading
maps and predict relit images with OutCast [8].

Training. To avoid inheriting the artifacts of OutCast, we
use the relit images as input and target the real image as
output. This way, our output domain is real-world images,
and our model is able to utilize the strong prior of SD [34].
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3.4. Dataset

We use the Outdoor Laval Dataset [12], which consists of
real-world HDR panoramas encoded as a latitude-longitude
map. Given the full panorama, we determine the Sun’s di-
rection by detecting the brightest pixel in the panorama im-
age and transforming it to an angular direction, which helps
our shading estimation. Our dataset contains 51250 sam-
ples of LDR images and text prompts with corresponding
estimated normal and shading maps, as shown in Fig. 4.
Image We crop 250 images of resolution 512 × 512 from
each panorama. For each image, we use randomized camera
parameters with varying field-of-view, elevation, and roll
angles, as described in our supplemental. We normalize the
images to have 0.5 mean intensity.
Depth and Normal As a first step in our dataset generation,
we estimate the per-pixel surface normals of each image.
To this end, we use the same depth estimator as OutCast
[8], dubbed DepthNet. In summary, it is a segformer-based
depth estimator [46] trained on the datasets proposed in [5,
17, 20, 25, 33, 42, 44]. The model was trained using the
loss function proposed in [41]. We project this estimated
depth to a point cloud using xi = 1

f uizi, where ui is the
pixel’s image coordinates, f is the focal length in pixels,
and zi is the estimated depth at pixel i. We perform the
same operation on yi to obtain p⃗i = [xi, yi, zi]. Finally,
we obtain the per-pixel normal by computing the discrete
derivative over the point cloud, as

n⃗ =
∂p⃗

∂x
× ∂p⃗

∂y
. (1)

We experimentally compared this approach to directly es-
timating surface normals, and the former provided a more
robust estimation. We hypothesize that the larger corpus of
publicly available depth maps datasets yields a better depth
estimator, explaining this improved performance.

At test time, we experimented with swapping our depth
estimator with MiDaS [2, 32] and achieved similar image
generation results, when a plausible depth map is obtained.
Shading A simple lighting representation is to employ the
depth map as geometry and determine the N-dot-L shading.
While this conceptually simple representation is straight-
forward to implement from a depth map alone, it does not
consider cast shadows. Thus, we use our shading estimation
method (Sec. 3.1) to obtain refined direct shading maps.
Prompt To maintain the textual capabilities of our model,
we include text prompts for each sample in our dataset. We
use BLIP-2 [19] to automatically caption the images.

4. Experiments
4.1. Image Synthesis

For image synthesis, our inputs consist of a shading map
(Sec. 3.4) and optionally a normal map (Sec. 3.4). These

Figure 4. Dataset Generation Pipeline. We generate a dataset
using the Outdoor Laval dataset [12]. We randomly crop images
from the panoramas and automatically predict normal, shading,
and caption (Sec. 3.4). For our relighting experiments (Sec. 3.3),
we extend the dataset with relit images using OutCast [8].

maps can be estimated from either a guidance image or any
text-to-image pipeline. . All evaluations are performed on
real images from our test set or in-the-wild images, never
seen in training. We want to emphasize that, to the best of
our knowledge, our method is the first to achieve this degree
of lighting control on diffusion-based generative imaging.
Training. We optimize our control module with the
AdamW [21] optimizer for two epochs using a learning rate
of 1e-5 with a control reconstruction weight of 1.
Inference. We employ the DDPM sampler [11] for 1000
steps for quantitative and in-domain queries. For custom
text prompts and styles, we use DDIM sampler [38] with
100 steps and a guidance scale of 7 and early control stop-
ping at timestep 200 to avoid overruling the text guidance.

4.1.1 Lighting Consistency.

We first qualitatively evaluate our method’s capability to
produce the desired lighting across various text prompts,
provided in Fig. 5. As can be seen, our method produces
consistent, convincing shading across various styles follow-
ing the target shading well.

We also evaluate the lighting consistency of our model
with a user study on 42 participants shown in Tab. 1. The
study contains images both from our test set and in the wild
using the predicted text prompt from our dataset and also
manually prepared ones. The users are presented with the
input maps along with generated images of our method and
SD [34] and are asked to answer three questions: 1) which
image corresponds the best to the lighting input, 2) which
image matches best the input text prompt, and 3) which im-
age has the best overall quality. This user study reveals that
our method not only follows the desired lighting well but is
also preferred more in terms of image quality and textural
alignment. Lighting is an essential part of the perceptual
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Figure 5. Image Synthesis with Consistent Lighting. Our generated images feature consistent lighting aligned with the target shading
for diverse text prompts.

Table 1. Perceptual Image Generation Quality. We perform a
user study to assess the quality of the generated images. Since
there exists no other method capable of explicit lighting control,
we compare against SD [34]. The users are provided two images
generated with SD [34] and our method using the same prompt.
We report the perceptual quality regarding the image (I-PQ), light-
ing (L-PQ), and text alignment (T-PQ). Thanks to better lighting,
our results are preferred in every aspect, not just in lighting.

L-PQ ↑ I-PQ ↑ T-PQ ↑
SD 4.43 39.14 44.14
Ours 95.57 60.86 55.86

image quality. SD [34] is not enforced to produce physi-
cally consistent lighting, leading to perceptually degraded
images compared to ours.

4.1.2 Lighting Controllability

In Fig. 6, we show examples of novel lighting on images
from our test set. Our results correctly follow the user-
defined lighting (insets) shown in the surface shading.

In Fig. 7, we show examples of novel image generation
with controlled lighting on in-the-wild inputs. Specifically,
the normal and shading maps of the top three rows come
from images taken from the internet1, while the two bot-
tom rows were entirely generated from a text prompt using
Stable Diffusion. We then ran our normal estimation and
coarse shading estimation approach on each image entirely
automatically. In this setup, each lighting was generated in-
dependently, without care for identity preservation; only the
initial noise was fixed to mitigate discrepancies.

1We obtained the licenses for their use.

Table 2. Relighting Evaluation. We quantitatively compare our
relighting method to OutCast on geometry (PSNR), image qual-
ity (FID, I-PQ) and lighting quality (L-PQ), where PQ refers to
perceptual quality from our user study. The shadows are usually
stronger for OutCast [8], leading to a slightly higher perceptual
score. Our method achieves consistent relighting with more real-
istic image quality.

PSNR ↑ FID ↓ L-PQ ↑ I-PQ ↑
OutCast 19.79 ± 4.39 71.08 54.27 36.47
Ours - w/o RCD 20.24 ± 3.29 76.28 - -
Ours 20.44 ± 3.34 64.18 45.74 63.53

4.2. Image Relighting

Our lighting representation and proposed dataset enable
additional lighting-related applications, such as relighting.
For this task, we use an input image and a target shading
map as conditioning. We compare against our reimplemen-
tation of OutCast [8] using our shading estimation.
Training. We use our extended dataset (Sec. 3.3) and use
the OutCast [8] relit image with the source shading as con-
ditioning and the original image as target. We train this
model for six epochs using the process described in Sec. 4.1.
Inference. We use the DDPM sampler with 1000 steps and
produce the text prompts automatically using BLIP-2 [19].
Evaluation. We first validate our relighting model qual-
itatively on in the wild images compared against OutCast
[8] in Fig. 8. OutCast provides very competitive results;
however, being trained on synthetic data limits its general-
ization to real data. Regions originally in shadow notably
suffer from noise amplification. In contrast, our diffusion-
based model provides visually pleasing results.

We evaluate quantitatively in Tab. 2. We perform a cycle
relighting experiment on our test set and predict the origi-
nal real image from OutCast [8] relit images (PSNR). Our
method already outperforms OutCast without our proposed
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Figure 6. In-Domain Image Synthesis with Controllable Lighting. We can synthesize images under various lighting conditions.

RCD module (Sec. 3.2), thanks to the diffusion prior. In ad-
dition, our full method produces more natural images with
the best FID score [10]. We further evaluate the percep-
tual quality (PQ) with a user study performed by 17 people.
The users were asked to evaluate the lighting consistency
(L-PQ) and the overall image quality and realism (I-PQ) be-
tween our method and OutCast. OutCast usually provides
stronger shadows that are perceptually slightly more consis-
tent. However, aligned with the FID, our method produces
significantly more realistic results according to the users.

4.3. Ablations

4.3.1 Image Synthesis

Does the model need cast shadows? Our key design
choice is to provide information about cast shadows to the
model. We argue that simpler lighting representation is in-
sufficient because the latent space of a pre-trained diffusion
model does not encode consistent global illumination. We
qualitatively compare against a similar but simpler setup in
Fig. 10, where the conditioning is an N-dot-L shading map
without any cast shadow. Notably, our model can infer the
overall lighting also with N-dot-L shading but fails to gen-
erate realistic shadows. In contrast, using direct shading of-
fers much more appealing results with fine-grained shadow
control. We provide more examples in our supplemental.

We provide quantitative results in Tab. 3. We consider
the estimated shading quality (L-PSNR) and the angular er-
ror between dominant light directions (L-AE). Using direct
shading outperforms N-dot-L with a high margin.
Does the model need normals? Although most of the

Table 3. Control Consistency. We estimate the shading (L) and
normal (N) of generated images on our test set and compare them
against the control signal in image space (PSNR) and in angular er-
ror measured in degrees (AE). Conditioning on our direct shading
(DS) achieves the best lighting quality; however, it does not en-
sure consistent normals (Fig. 11). Providing normals to the model
helps with minimal cost of the lighting quality.

L-PSNR ↑ L-AE ↓ N-PSNR ↑ N-AE ↓
N-dot-L Shading 6.43 ± 2.20 37.23 ± 23.79 16.45 ± 2.53 21.76 ± 9.96
Direct Shading (DS) 13.04 ± 3.57 27.30 ± 19.13 17.30 ± 2.75 18.73 ± 9.54
DS + Normals (Ours) 12.69 ± 3.52 28.59 ± 20.46 17.47 ± 2.72 18.28 ± 9.28

geometry can be inferred from our direct shading map,
shadow regions do not provide any signal. When the in-
cident light is away from a surface normal cos(n⃗ · l⃗) ≤ 0
(attached shadow) or the light is occluded by some geome-
try (cast shadow) results in a uniform region of null values.
Without additional geometric information, the model gener-
ates random geometric detail in those regions. We showcase
this in Fig. 11, where the model without normal generates a
flat wall devoid of features in the shadow region, while our
method correctly generates the expected door and windows.

We quantitatively evaluate the effect of normal condi-
tioning on our test set in Tab. 3. Using normals improves
the normal consistency in the shadow regions.

4.3.2 Image Relighting

Does our architecture help identity preservation? Iden-
tity preservation is a crucial aspect of image relighting. Un-
fortunately, we have witnessed that diffusion-based image
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Figure 7. Out-of-Domain Image Synthesis with Controllable Lighting. Our method learns to control the generation process yet main-
tains the prior of SD [34]. We show various scenes and styles under changing lighting conditions. The first three images were obtained with
estimated normal of real-world images, while for the last two, we used images generated with SDXL [30]. See supplemental for details.
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Input OutCast [8] Ours
Figure 8. Relighting of Real-World Images. We train a relight-
ing network and evaluate it on real-world images. Utilizing the
diffusion prior helps the generalization to real samples, especially
for shading disambiguation.

Input

ControlNet [50] w/ Control Decoder Ours

Figure 9. Identity Preservation. We ablate the effect of our con-
trol architecture on relighting. ControlNet [50] - left - is prone to
ignoring part of the control signal, the wall turns reddish and the
shadow gets softened. Our Control Decoder - middle - with con-
trol reconstruction loss helps. Our full residual architecture - right
- takes another step and achieves high consistency.

editing generally exhibits issues in identity preservation, es-
pecially in reproducing colors. Directly training ControlNet
[50] on our task produces changes in wall tint, for example,
as shown in Fig. 9. We hypothesize that information per-
taining to identity is lost in the encoder. which ensures that
the feature map injected into the denoising U-Net keeps in-
formation to maintain the control signal.

Tab. 2 quantitatively showcases the importance of our
RCD (Sec. 3.2), where the image quality increases to an
FID of 64.18 when our method is used without it.

4.4. Limitations and Future Work

Our work assumes directional lighting, which is suitable for
outdoor scenes. However, our shading estimation method
enables tracing rays in arbitrary directions. Adapting our
method to point and other light sources is an exciting avenue
for future research. Furthermore, our shading estimation
requires lighting direction for the best results. Combining

Direct

N-dot-L

w/ N-dot-L Input Shading Ours

Figure 10. Effect of Lighting Representation. We show that cast
shadows provide essential information for the generation process.
We compare our method against a simple N-dot-L shading con-
ditioning, which provides only coarse lighting information to the
model, leading to inconsistent lighting with less control.

Sh
ad

in
g

N
or

m
al

w/o Normals Ours

Figure 11. Effect of Normal Conditioning. Without normal con-
ditioning, it is impossible for the model to infer geometry in the
shadowed regions.

our method with a robust lighting estimation would allow
training on much larger datasets.

5. Conclusion

Recent diffusion-based generative imaging techniques have
shown impressive text-to-image capabilities, producing
breathtaking images on a whim. However, their control-
lability is limited, and adjusting important details such as
lighting requires careful prompt engineering. In this work,
we present a novel approach to explicitly control the illumi-
nation of images generated by a diffusion model. Our ap-
proach uses our direct shading representation, which con-
tains both shading and shadow information. The shading
map can be automatically computed from an existing pic-
ture or a generated image. Our method achieves high-
quality results compared to existing methods while main-
taining user-defined lighting. We believe that our method
paves the way to increase the editability of diffusion-based
generative imaging approaches.
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George Drettakis. Free-viewpoint indoor neural relighting
from multi-view stereo. ACM Transactions on Graphics
(TOG), 40(5):1–18, 2021. 2

[29] Ryan Po, Wang Yifan, Vladislav Golyanik, Kfir Aberman,
Jonathan T. Barron, Amit H. Bermano, Eric Ryan Chan, Tali
Dekel, Aleksander Holynski, Angjoo Kanazawa, C. Karen
Liu, Lingjie Liu, Ben Mildenhall, Matthias Nießner, Björn
Ommer, Christian Theobalt, Peter Wonka, and Gordon Wet-
zstein. State of the art on diffusion models for visual com-
puting. CoRR, abs/2310.07204, 2023. 2

[30] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: improving latent diffusion models
for high-resolution image synthesis. CoRR, abs/2307.01952,
2023. 7, 1

[31] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 2
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