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Our Results

Figure 1. Top-left: Comparison of images generated by our method with SGDM [81], ControlNet [90], and T2I-Adapter [55]. Top-right:
A set of photos generated by our method. Bottom: While existing methods [55, 90] generate realistic images from pixel-perfect edgemaps,
they perform sub-optimally for freehand abstract sketches. (Best view when zoomed in.)

Abstract
This paper unravels the potential of sketches for dif-

fusion models, addressing the deceptive promise of direct
sketch control in generative AI. We importantly democra-
tise the process, enabling amateur sketches to generate
precise images, living up to the commitment of “what
you sketch is what you get”. A pilot study underscores
the necessity, revealing that deformities in existing mod-
els stem from spatial-conditioning. To rectify this, we pro-
pose an abstraction-aware framework, utilising a sketch
adapter, adaptive time-step sampling, and discriminative
guidance from a pre-trained fine-grained sketch-based im-
age retrieval model, working synergistically to reinforce
fine-grained sketch-photo association. Our approach op-
erates seamlessly during inference without the need for tex-
tual prompts; a simple, rough sketch akin to what you and
I can create suffices! We welcome everyone to examine re-
sults presented in the paper and its supplementary. Contri-
butions include democratising sketch control, introducing
an abstraction-aware framework, and leveraging discrim-
inative guidance, validated through extensive experiments.

1. Introduction
This paper is dedicated to unlocking the full potential of
your sketches to control diffusion models [24, 25, 61]. Dif-
fusion models [16, 24, 25, 61] have made a significant im-
pact, empowering individuals to unleash their visual cre-
ativity – consider prompts like “astronauts riding a horse
on Mars” and other “creative” ones of your own! While
prevailing in text-to-image generation [16, 61, 64], recent
works [55, 81, 90] have started to question the expres-
sive power of text as a conditioning modality. This shift
has led to an exploration of sketches – a modality that of-
fers a degree of fine-grained control that is unparalleled by
text [13, 70], resulting in generated content of closer resem-
blance. The promise is “what you sketch is what you get”.

This promise is, however, deceptive. Current works (e.g.,
ControlNet [90], T2I-Adapter [55]) predominantly focus on
curated edgemap-like sketches – you better sketch like a
trained artist, otherwise “what you get” will literally be re-
flecting deformities captured in your (“half-decent”) sketch
(Fig. 1). The primary goal of this paper is to democratise
sketch control in diffusion models, empowering real am-
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ateur sketches to generate photo-precise images, ensuring
that “what you get” aligns with your intended sketch, re-
gardless of how well you drew it! To achieve this, we draw
insights from the sketch community [37, 38, 65, 67, 87] and
introduce, for the first time, an awareness of sketch abstrac-
tion (as a result of varying drawing skills) into the genera-
tive process. This novel approach permits sketches of differ-
ent abstraction levels to guide the generation process while
maintaining output fidelity.

We conduct a pilot study to reaffirm the necessity of
our research (Sec. 4). In which, we identify that the de-
formed output of existing sketch-conditional diffusion mod-
els stems from their spatial-conditioning approach – they
directly translate sketch contours into the output photo
domain, therefore producing deformed output. Conven-
tional means of controlling the influence of spatial sketch-
conditioning on the final output via weighing factors [55,
81] or sampling tricks [90], however, require careful tuning.
Reducing output deformity by assigning less weight to the
sketch-conditioning often makes the output more coherent
with the textual description, thus reducing its fidelity to the
guiding sketch; yet, assigning higher weight to the textual
prompt introduces lexical ambiguity [71]. On the contrary,
avoiding lexical ambiguity by assigning a higher weight to
the guiding sketch almost always produces deformed and
non-photorealistic outputs [55, 81, 90]. Last but not least,
the sweet spot between the conditioning weights is different
for different sketch instances (as seen in Fig. 2).

As such, our goal is to craft an effective sketch-
conditioning strategy that not only operates without any tex-
tual prompts during inference but is also abstraction-aware.
At the core of our work is a sketch adapter that transforms
an input sketch into its equivalent textual embedding, di-
recting the denoising process of the diffusion model via
cross-attention. Through the use of a smart time-step sam-
pling strategy, we ensure the adaptability of the denoising
process to the abstraction level of the input sketch. Addi-
tionally, by capitalising on the pre-trained knowledge of an
off-the-shelf [66] fine-grained sketch-based image retrieval
(FG-SBIR) model, we incorporate discriminative guidance
into our system for fine-grained sketch-photo association.
Unlike widely used external classifier-guidance [16], our
proposed discriminative guidance mechanism does not re-
quire any specifically trained classifier capable of classify-
ing both noisy and real data. Lastly, even though our infer-
ence pipeline does not rely on textual prompts, we use syn-
thetically generated textual prompts during training to learn
the sketch adapter with the limited sketch-photo paired data.

Our contributions are: (i) we democratise sketch control,
enabling real amateur sketches to generate accurate images,
fulfilling the promise of “what you sketch is what you get”.
(ii) we introduce an abstraction-aware framework that over-
comes limitations of text prompts and spatial-conditioning.

(iii) we leverage discriminative guidance through a pre-
trained FG-SBIR model for fine-grained sketch-fidelity. Ex-
tensive experiments validate the effectiveness of our method
in addressing existing limitations in this domain.

2. Related Works
Diffusion Models for Vision Tasks. Diffusion mod-
els [24, 25, 74] have now become the gold-standard for
different controllable image generation frameworks like
DALL-E [57], Imagen [64], T2I-Adapter [55], Control-
Net [90], etc. Besides image generation, several methods
like Dreambooth [63], Imagic [32], Prompt-to-Prompt [22],
SDEdit [52], SKED [54] extend it for realistic image edit-
ing. Beyond image generation and editing, diffusion model
is also used in several downstream vision tasks like recog-
nition [43], semantic [2] and panoptic [84] segmentation,
image-to-image translation [79], medical imaging [15], im-
age correspondence [78], retrieval [39], etc.

Sketch for Visual Content Creation. Following its suc-
cess in sketch-based image retrieval (SBIR) [3, 11, 66],
sketches are now being used in other downstream tasks
like saliency detection [6], augmented reality [50, 51],
medical image analysis [35], object detection [14], class-
incremental learning [4], etc. Apart from the plethora
of sketch-based 2D and 3D image generation and editing
frameworks [21, 36, 47, 54, 55, 60, 81, 82, 90], sketches are
also getting significant traction in other visual content cre-
ation tasks like animation generation [73] and inbetween-
ing [72], garment design [12, 46], caricature generation
[10], CAD modelling [44, 88], anime editing [28], etc.

Sketch-to-Image (S2I) Generation. Prior GAN-based
S2I models typically leverage either contextual loss [49],
multi-stage generation [19], etc. or performs latent map-
ping [36, 60] on top of pre-trained GANs. Among
diffusion-based frameworks, PITI [82] trains a dedicated
encoder to map the guiding sketch to the pre-trained dif-
fusion model’s latent manifold, SDEdit [52] sequentially
adds noise to the guiding sketch and iteratively denoise it
based on a text prompt, while SGDM [81] trains an MLP
that maps the latent feature of the noisy images to the guid-
ing sketches in order to force the intermediate noisy images
to closely follow the guidance sketches. Among more re-
cent multi-conditional (e.g., depth map, colour palate, key
pose, etc.) frameworks, ControlNet [90] learns to control
a frozen diffusion model by creating a trainable copy of
its UNet encoders and connects it with the frozen model
with zero-convolution [90], while T2I-Adapter [55] learns
an encoder to extract features from the guidance signal (e.g.,
sketch) and conditions the generation process by adding the
guidance features with the intermediate UNet features at
each scale. While existing methods can generate photore-
alistic images from precise edgemaps, they struggle with
abstract freehand sketches (see Fig. 1). Furthermore, it is
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Figure 2. Images generated by T2I-Adapter [55] for different sketch-guidance factors (ω ∈ [0, 1]). Determining the optimum ω to obtain
an ideal balance (green-bordered) between photorealism and sketch-fidelity requires manual intervention and is sample-specific. A high
value of ω works well for less deformed sketches, while the same for an abstract sketch produces deformed outputs and vice-versa.

noteworthy that almost all of the diffusion-based S2I mod-
els [52, 55, 81, 82, 90] rely heavily on highly-engineered
and detailed textual prompts.

3. Revisiting Diffusion Model (DM)
Overview. Diffusion models comprises two complemen-
tary random processes viz. “forward” and “reverse” [25]
diffusion. Forward diffusion process iteratively adds Gaus-
sian noise of varying magnitude to a clean training image
x0 ∈ Rh×w×3 for t time-steps to yield a noisy image
xt ∈ Rh×w×3 as:

xt =
√
ᾱtx0 + (

√
1− ᾱt)ϵ (1)

where, ϵ∼N (0, I), t∼U(0, T ), and {αt}T1 is a pre-defined
noise schedule with ᾱt =

∏t
i=1 αi [25]. Reverse diffu-

sion process trains a modified denoising UNet [62] Fθ(·),
that estimates the input noise ϵ ≈ Fθ(xt, t) from the noisy
image xt at each time-step t. Fθ being trained with an l2
loss [25] can reverse the effect of the forward diffusion pro-
cedure. During inference, starting from a random 2D noise
xT sampled from a Gaussian distribution, Fθ is applied it-
eratively (for T time-steps) to denoise xt at each time-step t
to get a cleaner image xt−1, eventually leading to a cleanest
image x0 of the original target distribution [25].

The unconditional denoising diffusion process could be
made “conditional” by influencing the Fθ with auxiliary
conditioning signals d (e.g., textual description [58, 61, 64],
etc.). Thus, Fθ(xt, t, d) could perform denoising on xt

while being guided by d via cross-attention [61].

Latent Diffusion Model. Unlike standard diffusion mod-
els [16, 25], Latent Diffusion Model [61] (a.k.a. Stable
Diffusion–SD) performs denoising diffusion on the latent
space for faster and more stable training [61]. SD first trains
an autoencoder (consists of an encoder E(·) and a decoder
D(·) in series) to convert the input image x0 ∈ Rh×w×3 to
its latent representation z0 = E(x0) ∈ Rh

8 ×
w
8 ×d. Later,

SD trains a modified denoising UNet [62] ϵθ(·) to perform
denoising directly on the latent space. The textual prompt d
upon passing through a CLIP textual encoder [56] T(·) pro-
duces the corresponding token-sequence that influences the

intermediate feature maps of the UNet via cross-attention
[61]. SD trains with an l2 loss as:

LSD = Ezt,t,d,ϵ(||ϵ− ϵθ(zt, t,T(d))||22) (2)

During inference, SD discards E(·), directly sampling a
noisy latent zT from a Gaussian distribution [61]. It then
estimates noise from zT iteratively for T iterations via ϵθ
(conditioned on d) to obtain a clean latent ẑ0. The frozen
decoder generates the final image as: x̂0 = D(ẑ0) [61].

4. What’s wrong with Sketch-to-Image DM?
Recent controllable image generation methods like Control-
Net [90], T2I-Adapter [55], etc. offer extreme photorealism,
supporting different conditioning signals (e.g., depth map,
label mask, edgemap, etc.) However, conditioning the same
from sparse freehand sketches is often sub-optimal (Fig. 1).
Sketch vs. Other Conditional Inputs. Sparse and binary
freehand sketches while good for providing fine-grained
spatial cues [6, 14, 89], often depict significant shape-
deformity [17, 23, 65] and hold far less contextual infor-
mation [79] than other pixel-perfect conditioning signals
like depth maps, normal maps, or pixel-level segmentation
masks. Hence, conditioning from freehand sketches is non-
trivial and needs to be handled uniquely unlike the rest of
the pixel-perfect conditioning signals.
Sketch vs. Text Conditioning: A Trade-off. Previous S2I
diffusion models [55, 81, 90] exhibit two major challenges.
Firstly, quality of generated outputs being highly depen-
dent on precise and accurate textual prompts [90], incon-
sistencies or lack of suitable prompts can negatively impact
(Fig. 3) the results [55, 90]. Secondly, ensuring a balance
between the influence of sketch and text-conditioning on
the final output requires manual intervention, which can be
challenging. Adjusting the weighting of these factors of-
ten results in a trade-off between output’s coherence with
the text and fidelity to the sketch [55]. In some cases, giv-
ing higher weight to text can lead to lexical ambiguity [71],
while prioritising sketch tends to produce distorted and non-
photorealistic results [55, 81]. Achieving photorealistic out-
put from existing S2I DMs [55, 81] thus demands meticu-

7206



lous fine-tuning of these weights, where the optimal balance
varies for different sketch instances as seen in Fig. 2.

Sketch SGDM ControlNet T2I-Adapter Ours
Figure 3. Passing null prompt (i.e., “ ”) in existing [55, 81, 90]
sketch-conditioned DMs significantly distorts the output quality.

Problems with Spatial-Conditioning for Sketches. We
identify that the deformed and non-photorealistic (e.g.,
edge-bleeding in Fig. 2) outputs of existing sketch-
conditional DMs [55, 81, 90] are primarily a consequence
of their spatial-conditioning approach. T2I-Adapter [55]
directly integrates the spatial features of the conditioning-
sketch into the UNet encoder’s feature maps, while Control-
Net [90] applies this to skip connections and middle blocks.
SGDM [81], on the other hand, projects the latent features
of noisy images to spatial edgemaps guiding the denois-
ing process towards following the edgemaps. Addition-
ally, these models are trained and tested with synthetically-
generated [7, 76, 83] edgemaps/contours rather than real
freehand sketches. Instead, we aim to devise an effective
conditioning strategy for real freehand sketches while en-
suring that the output faithfully captures an end-users’ se-
mantic intent [36] without any deformities.

5. Proposed Methodology
Overview. We aim to eliminate spatial sketch-conditioning
by converting the input sketch into an equivalent fine-
grained textual embedding, thereby preserving users’
semantic-intent without pixel-level spatial alignment. Con-
sequently, our method would alleviate issues pertaining to
spatial distortions (e.g., deformed shapes, edge-bleeding,
etc.) while maintaining fine-grained fidelity to the input
sketch. We introduce three salient designs (Fig. 4) – (i) fine-
grained discriminative loss for maintaining the fine-grained
sketch-photo correspondence (Sec. 5.2). (ii) guiding our
training process with textual prompts (not used during infer-
ence), as a means of super-concept preservation (Sec. 5.3).
Finally, (iii) unlike the uniform time-step (t) sampling of
prior arts [81, 90], we introduce a sketch-abstraction-aware
t-sampling (Sec. 5.4). For a highly abstract sketch, a higher
probability is assigned to larger t and vice-versa.

5.1. Sketch Adapter
Aiming to mitigate the evident disadvantages (Sec. 4) of
direct spatial-conditioning approach of existing sketch-
conditional diffusion models (e.g., ControlNet [90], T2I-
Adapter [55], etc.), we take a parallel approach to “sketch-
condition” the generation process via cross-attention. In
that, instead of treating the input sketches spatially, we
encode them as a sequence of feature vectors [42] as an
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Tweedie's
formula (Eq. 4)

"a black and white cat
sitting beside a brick wall"

Figure 4. Our overall training pipeline. (More in the text.)

equivalent fine-grained textual embedding. Direct spatial-
conditioning enforces the model to remember the contex-
tual information rather than understanding it [85]. This
results in a direct translation of the strong sketch features
(e.g., stroke boundaries) into the output photo. To over-
come this, we aim to increase the hardness of the problem
by compressing the spatial sketch input to a bottlenecked-
representation via sketch adapter.

In particular, given a sketch s, we use a pre-trained
CLIP [56] ViT-L/14 image encoder V(·) to generate its
patch-wise sketch embedding s = V(s) ∈ R257×1024. Our
sketch adapterA(·) consists of 1-dimensional convolutional
and vanilla attention [80] modules followed by FC layers.
The convolutional and FC layers handle the dimension mis-
match between text and sketch-embedding (i.e., R257×1024

→ R77×768), whereas the attention module tackles the large
sketch-text domain gap. The patch-wise sketch embedding
s upon passing through A(·) generates the equivalent tex-
tual embedding as ŝ = A(s) ∈ R77×768. Now replacing
the textual conditioning in Eq. (2) with our sketch adapter
conditioning, the modified loss objective becomes:

LSD = Ezt,t,s,ϵ(||ϵ− ϵθ(zt, t,A(V(s)))||22) (3)

Once trained, the sketch adapter efficiently converts an
input sketch s into its equivalent textual embedding ŝ, which
through cross-attention controls the denoising process of
SD [61]. Nonetheless, conditioning solely via the proposed
sketch adapter poses multiple challenges – (i) sparse free-
hand sketches and pixel-perfect photos depict a huge do-
main gap. The standard l2 loss [61] of a text-to-image dif-
fusion model is not enough to ensure a fine-grained match-
ing between sketch and photo. (ii) training a robust sketch
adapter from the limited available sketch-photo pairs is dif-
ficult. Consequently, during training, we aim to use pseudo
texts as a learning signal to guide the training of our sketch
adapter. Please note, our inference pipeline does not in-
volve any textual prompts. (iii) the sketch adapter treats
all sketch samples equally regardless of their abstraction
levels. While this equal treatment might suffice for dense
pixel-level conditioning, it might be inadequate for sparse
sketches, as different sketches depicting different abstrac-
tion levels are not semantically-equal [5, 86].
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5.2. Fine-Grained Discriminative Learning
To ensure a fine-grained matching between sparse freehand
sketches and pixel-perfect photos, we utilise a pre-trained
fine-grained (FG) SBIR model [66] Fg(·). A photo sits
close to its paired sketch in a pre-trained FG-SBIR model’s
discriminative latent embedding space compared to other
unpaired ones [66]. Previous attempts at guiding the dif-
fusion process with external discriminative models include
classifier-guidance [16] that require a pre-trained fixed-class
classifier capable of classifying both noisy and real data [16]
to guide the denoising procedure [16]. However, as our
frozen FG-SBIR model is not trained on noisy data, it re-
quires a clean image at each t, to perform in an off-the-shelf
manner. Now, for each t, as the denoiser estimates that noise
ϵt ≈ ϵθ(zt, t,A(V(s))), which was added to z0 to get zt
during forward diffusion, we can use Eq. (1) to recreate z0
from ϵt. Specifically, we utilise Tweedie’s formula [34] to
estimate [1, 40, 85] the clean latent image ẑ0 from the tth-
step noisy latent zt in a single-step for efficient training as:

ẑ0(zt) :=
zt −

√
1− ᾱt ϵθ(zt, t,A(V(s)))√

ᾱt
(4)

ẑ0 upon passing through SD’s [61] frozen VAE decoder
D(·) approximates the clean image x̂0 (Sec. 3). To learn
the sketch adapter A, we use a discriminative SBIR loss
that calculates cosine similarity δ(·, ·) between s and x̂0 as:

LSBIR = 1− δ (Fg(s) · Fg(x̂0)) (5)

5.3. Super-concept Preservation Loss
An inherent complementarity exists between sketch and text
[13]. A textual caption of an image can correspond to mul-
tiple plausible photos in the embedding space. Adding a
sketch with it however, narrows down the scope to a par-
ticular image [13, 70] (i.e., fine-grained). We posit that
a textual description being less fine-grained than a sketch
[13, 75, 85], acts as a super-concept of the corresponding
sketch. Although we do not use any textual prompt during
inference, we aim to use them during training of our sketch
adapter. Text-to-image diffusion models being trained on a
large corpus of text-image pairs [61], implicitly hold supe-
rior text-to-image generation capability (although not fine-
grained [18]). We thus aim to use this super-concept knowl-
edge from textual descriptions to distil the large-scale text-
to-image knowledge of a pre-trained SD to train our sketch-
adapter with limited sketch-photo paired data.

As our sketch-photo (s, p) dataset [69] lacks paired tex-
tual captions, we use a pre-trained state-of-the-art image
captioner [45] to synthetically generate caption d for every
ground truth photo p. Then, at each t, the noise predicted
through text-conditioning (T(d)) acts as a reference to cal-
culate a regularisation loss to learn the sketch adapter A as:

Lreg = ||ϵθ(zt, t,T(d))− ϵθ(zt, t,A(V(s)))||22 (6)

5.4. Abstraction-aware Importance Sampling
Existing literature [26, 27, 55, 85] indicates that during the
denoising process, high-level semantic structures of the out-
put image tend to manifest in the early stages, while finer
appearance details emerge later. Synthetic pixel-perfect
conditioning signals (e.g., depth map [59], key pose [8],
edgemap [7], etc.) exhibit minimal subjective abstrac-
tion [23]. In contrast, human-drawn freehand sketches ex-
hibit varying abstraction levels, influenced by factors like
skill, style, and subjective interpretation [65, 67]. Thus,
uniform time-step sampling [27] for abstract sketches may
compromise output generation quality and sketch-fidelity.
Hence, we propose adjusting the time-step sampling proce-
dure based on the input sketch’s abstraction level [87]. For
highly abstract sketches, we skew the sampling distribution
to emphasise the later t values that govern the high-level
semantics in the output. Instead of sampling the time-step
from uniform distribution t∼U(0, T ), we sample from:

Sω(t) =
1

T

(
1− ω cos

πt

T

)
(7)

where, Sω(·) is our abstraction-aware t-sampling func-
tion, where increasing or decreasing ω ∈ (0, 1], controls
the skewness of this sampling probability density function.
Pushing ω towards 1 increases the probability of sampling
a larger t value (Fig. 5). We aim to make this skewness-
controlling ω value sketch-abstraction specific.
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Figure 5. Abstraction-aware t-sampling function for different ω.

Now the question remains as to how we can quantify
the abstraction level of a freehand sketch. Taking inspi-
ration from [87], we design a CLIP [56]-based (a generic
classifier) sketch classifier with a MagFace [53]-based loss
where the l2-norm of a sketch feature a ∈ [0, 1], denotes
how closely it sits from its respective class-centre. While
a → 1 represents edgemap-like less abstract sketches, a
→ 0 denotes highly-abstract and deformed ones. We posit
that edgemaps being less deformed (i.e., easier to clas-
sify), will implicitly stay close to their respective class cen-
tres in the latent space. Whereas, freehand sketches being
highly abstract and deformed (i.e., harder to classify), will
be placed away from their corresponding class centres. We
thus train the sketch classifier with sketches and synthesised
[9] edgemaps of the associated photos from Sketchy [69],
using our classification loss:

Labs = −log
es cos(θyi+m(si))

es cos(θyi+m(si)) +
∑

j ̸=yi
es cos θj

+ λgg(si) (8)
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where s is a global scalar value, θyi is the cosine similar-
ity between extracted global visual feature (from CLIP [56]
visual encoder) of the ith sketch sample si = V(si) ∈ Rd

with l2-normalisation, and jth class centre wj ∈ Rd com-
puted from ground truth class labels by CLIP [56] text en-
coder. m(si) is the magnitude-aware margin parameter
m(si) = (um−lm)

(ua−la)la+lm
, where lm, um denotes the lower

and upper bounds of the margin, and la, ua denotes that
of the feature magnitude. g(si) is a hyper-parameter (λg)-
controlled regularisation term (see [53] for more details).
With the trained classifier, given a sketch s, the scalar ab-
straction score a ∈ [0, 1] is given by the l2-norm of the ex-
tracted sketch feature V(s). To keep parity with ω, we com-
plement a to get the sketch instance-specific ω ← (1 − a),
followed by empirically clipping ω in the range [0.2, 0.8].

In summary, we train the sketch adapter A(·) using
sketch-abstraction-aware t-sampling with a total loss of
Ltotal=λ1LSD+λ2LSBIR+λ3Lreg. During inference, we com-
pute the abstraction score of the input sketch, taking l2-
norm of classifier feature. Based on the abstraction level,
we perform t-sampling. The input sketch passing through
A controls the diffusion procedure and generates the output.

6. Experiments
Dataset and Implementation Details. We train and
evaluate our model on the Sketchy dataset [69] containing
12, 500 images from 125 categories with at least 5 sketches
per image with fine-grained association. For training and
evaluation, we split this dataset in 90:10. We use Stable
Diffusion v1.5 [61] in all experiments with a CLIP [56] em-
bedding dimension d = 768. The sketch adapter is trained
with a learning rate of 10−4, keeping the SD model, FG-
SBIR backbone, and CLIP encoders frozen. We train our
model for 50 epochs using AdamW [48] optimiser with 0.09
weight decay, and batch size of 8. Values of λ1,2,3 are set to
1, 0.5, and 0.1, empirically.
Evaluation Metrics. Following [36, 55, 90], we quanti-
tatively evaluate the generation quality and sketch-fidelity
with four metrics – Frechèt Inception Distance-InceptionV3
(FID-I) [31] and CLIP (FID-C) [41] calculates the simi-
larity between generated and real images using pre-trained
InceptionV3 [77] and CLIP [56] ViT-B/32 models respec-
tively. Lower values of FID-I and FID-C depict better gen-
eration quality. We measure the output image’s fidelity to
the input sketch using Fine-Grained Metric (FGM) [36]
which computes the cosine similarity between them via a
pre-trained FG-SBIR model [66], where a higher value de-
notes better fine-grained correspondence. Additionally, we
also perform a human study to collect Mean Opinion Score
(MOS) [29]. Here, we asked 25 non-artist users to draw 40
sketches each, and rate the generated photos on a discrete
scale (interval=0.5) of [1, 5] (worst to best) based on output
photorealism and sketch-fidelity. For each method, we com-

pute the final MOS by averaging all its 1000 MOS values.

Competitors. We compare against different diffusion and
GAN-based state-of-the-art (SoTA) S2I models and two
baselines. (i) Sketch-only Baselines: To alleviate the neces-
sity of text, B-Classification first trains a prompt learning-
based sketch classifier [33] that classifies every sketch into
one of the predefined classes. From predicted class labels,
it forms a textual prompt (i.e., “a photo of [CLASS]”) to
generate images using a frozen text-to-image SD model
[61]. Given the input sketches, B-Captioning first gener-
ates detailed captions using a pre-trained image captioner
[45] from their paired photos, which are then used to gen-
erate images from a frozen SD model [61]. (ii) SoTAs:
Among diffusion-based SoTAs, we compare with Control-
Net [90], T2I-Adapter [55], SGDM [81], and PITI [82].
We also compare qualitatively against two GAN-based S2I
paradigms viz. Pix2Pix [30] and CycleGAN [91]. While
we train ControlNet [90], T2I-Adapter [55], and PITI [82]
on the entire Sketchy [69] train set, we train pix2pix [30],
and CycleGAN [91] individually for each of the depicted
classes (Fig. 6) from scratch with Sketchy [69] sketch-
photo pairs. We only perform a qualitative comparison
with SGDM [81] by taking the results directly from the pa-
per, as their model weights/code are unavailable. Notably,
for diffusion-based SoTAs [55, 82, 90], we use an addi-
tional fixed textual prompt “a photo of [CLASS]”, replac-
ing [CLASS] with class-labels of respective input sketches.

6.1. Performance Analysis & Discussion
Result Analysis. Among GAN-based methods, pix2pix
[30] and CycleGAN [91] depict visible deformities (Fig. 6)
mostly due to their weaker [16] GAN-based generator,
compared to an internet-scale pre-trained SD model [61].
Among diffusion-based SoTAs, although SGDM [81] gen-
erates plausible colour schemes and styles, outputs ex-
hibit substantial deformations (Fig. 1). A similar observa-
tion can be made for PITI [82], where generated images
look non-photorealistic with pronounced edge-adherence
(Fig. 6). Whereas, edge-bleeding (Fig. 6) is quite frequent
for T2I-Adapter [55]. ControlNet [90] surpasses PITI [82],
SGDM [81], and T2I-Adapter [55] in terms of photoreal-
ism but mostly follows the input sketch boundaries (Fig. 6).
Contrarily, images generated by our method are more pho-
torealistic with fewer deformities, capturing semantic-intent
without transmitting edge boundaries in the output. Quan-
titative results presented in Tab. 1 show B-Caption to sur-
pass B-Classification (by 0.11 FGM) thanks to the com-
paratively higher [45] generalisation potential of the cap-
tioning model [45] than the generic sketch classifier [33].
Nonetheless, our method exceeds these baselines both in
terms of generation quality and sketch-fidelity with an FID-
C of 16.20 and FGM of 0.81. Due to its superior condi-
tioning strategy, ControlNet [90] achieves the lowest FID-I
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Sketch Ourspix2pix CycleGAN ControlNet T2I-Adapter PITI

Figure 6. Qualitative comparison with SoTA sketch-to-image generation models on Sketchy [69]. For ControlNet [90], T2I-Adapter [55],
and PITI [82], we use the fixed prompt “a photo of [CLASS]”, with [CLASS] replaced with corresponding class-labels of the input sketches.

among all prior SoTAs (Tab. 1). Although less pronounced
in terms of FID-I/FID-C, our method offers the highest fine-
grained sketch-fidelity with 23.45% FGM improvement of
over ControlNet [90]. Finally, thanks to the photorealistic
generation quality and fine-grained sketch correspondence,
our method surpasses competitors in terms of MOS value
from user-study with an average 1.36± 0.2 point improve-
ment. Notably, unlike ours, image generation via diffusion-
based competitors needs textual prompts, the absence of
which results in much worse output quality (Fig. 3).

Table 1. Benchmarks on the Sketchy [69] dataset.

Methods FID-I ↓ FID-C ↓ FGM ↑ MOS ↑
µ± σ

ControlNet [90] 26.68 21.22 0.62 3.68±0.2
T2I-Adapter [55] 26.94 18.92 0.56 3.11±0.6
PITI [82] 84.71 25.85 0.23 2.64±0.3

B-Classification 28.93 19.01 0.36 3.13±0.2
B-Captioning 28.31 18.81 0.47 3.21±0.4
Proposed 25.07 16.20 0.81 4.52±0.1

Generalisation Potential. As our method alleviates the di-
rect spatial influence of input sketches in the denoising pro-
cess, it enables generalisation across multiple dimensions.
Fig. 7 shows that our sketch-adapter trained on Sketchy,
generalises well on random sketch samples from TU-Berlin
[17] and QuickDraw [20] datasets, on synthetically gener-
ated [7] edgemaps, and to different stroke-styles. Further-
more, as our sketch adapter does not distort the original
text-to-image pre-training of the frozen SD model, the same
adapter could be used to perform sketch-conditional gener-
ation from other versions of the SD model (Fig. 8).

Figure 7. Examples showing generalisation potential across dif-
ferent datasets (left) and stroke-styles (right).

Sketch SD v1.5 SD v1.4 Sketch SD v1.5 SD v1.4

Figure 8. Illustration of cross-model generalisation. Our method
trained with SD v1.5 [61], performs well on other unseen SD vari-
ants (e.g., v1.4) without further fine-tuning.

Robustness and Sensitivity. Amateur freehand sketching
often introduces irrelevant and noisy strokes [5]. We thus
demonstrate our model’s resilience to such strokes by pro-
gressively adding them during inference, and assessing its
performance. On the other hand, to judge our model’s sta-
bility against partially-complete sketches, we render input
sketches at {25, 50, 75, 100}% prior to generation. As our
method is devoid of direct spatial-conditioning, outputs re-
main relatively stable (Fig. 9) even for spatially distorted
sketches (e.g., noisy or partially-complete).
Fine-grained Semantic Editing. Harnessing the large-
scale pre-training of the frozen SD model [61], our method
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Figure 9. Examples depicting the effect of adding noisy strokes
(left) and generation from partially-completed sketches (right).

Sketch Ours Edits Ours Sketch Ours Edits Ours

Figure 10. Our method seamlessly transfers local semantic edits
on input sketches into output photos. (Best view when zoomed in.)

enables fine-grained semantic editing. Here, fixing the gen-
eration seed, and performing local semantic edits in the
sketch-domain produces seamless edited images (Fig. 10).

6.2. Ablation on Design
[i] Importance of Sketch Adapter. Our sketch adapter
(Sec. 5.1) converts an input sketch to its corresponding tex-
tual equivalent embedding. To judge its efficacy, we replace
it with simple convolutional and FC-layers converting the
R257×1024 sketch embedding to equivalent R77×768 textual
embedding. Although less pronounced in FID scores, the
FGM score plummets substantially (49.38%) in case of w/o
Sketch adapter (Tab. 2), indicating the significance of the
proposed adapter in maintaining high sketch-fidelity.
[ii] Why Discriminative Learning? Fine-grained discrim-
inative loss (Eq. 5) helps the conditioning process by dis-
tilling knowledge learned inside a pre-trained FG-SBIR
model. As seen in Tab. 2, a noticeable FGM drop (44.44%)
for w/o Discriminative learning indicates that fine-grained
sketch-conditioning is incomplete without explicit discrim-
inative learning via LSBIR.
[iii] Does Abstraction-aware Importance Sampling
help? Unlike existing sketch-conditional DMs, we take
freehand sketch abstraction into account via abstraction-
aware t-sampling. Omitting it results (Tab. 2) in a sharp
increase in FID-I scores (26.64%). We hypothesise that in
absence of the proposed adaptive t-sampling, the system
treats all sketches equally, regardless of their abstraction
level, resulting in sub-optimal performance.
[iv] Impact of Super-concept Preservation. Although
our inference procedure does not use any textual prompt,
we employ them during our training process to facilitate
the preservation of super-concepts. Eliminating this again
destabilises the system causing an additional 15.06% and
17.28% decline in FID-C and FGM scores (Tab. 2). This
justifies our incorporation of synthetic text prompts during
training, as it aligns well with the original text-to-image
generation objective of the pre-trained SD model [61]. Vi-
sual ablation results are presented in Fig. 11.

Sketch Only sketch
adapter

+ Abs.-aware  
t-sampling

+ Super-concept
preservation

+ FG disc.
learning

Figure 11. Visual ablation of different design components.

Table 2. Ablation on design.

Methods FID-I ↓ FID-C ↓ FGM ↑

w/o Sketch adapter 29.23 20.34 0.41
w/o Discriminative learning 29.14 19.97 0.45
w/o Super-concept preservation 27.21 18.64 0.67
w/o Abs.-aware t-sampling 31.75 23.17 0.55

Ours (SD v1.4) 26.12 17.09 0.77
Ours-full 25.07 16.20 0.81

6.3. Failure Cases & Future Works
Despite showcasing superior generation quality without sig-
nificant deformations, our method has a few limitations. For
Instance, it sometimes struggles to determine the correct
class of the input due to categorical-ambiguity, especially
when two different objects look very similar shape-wise
(Fig. 12) in their abstract and deformed sketch forms (e.g.,
apple vs. pear, guitar vs. violin). In future, we aim to extend
our method with the flexibility to include additional class
labels. The sketch+label composed-conditioning [68] might
mitigate the categorical-ambiguity of confusing classes.

Apple Sketches Pear Sketches

Zebra Sketches Horse Sketches

Figure 12. Failure cases where sketches from certain classes (e.g.,
zebra) produce images from other similar-looking classes (e.g.,
horse) or vice-versa. Please note that we do not use text prompts.

7. Conclusion
Our work takes a significant step towards democratising
sketch control in diffusion models. We exposed the lim-
itations of current approaches, showcasing the deceptive
promise of sketch-based generative AI. By introducing an
abstraction-aware framework, featuring a sketch adapter,
adaptive time-step sampling, and discriminative guidance,
we empower amateur sketches to yield precise, high-fidelity
images without the need for textual prompts during infer-
ence. We welcome the community to scrutinise our results.
Please refer to the demo video for a detailed real-time com-
parison with state-of-the-arts.
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