This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

You’ll Never Walk Alone: A Sketch and Text Duet for
Fine-Grained Image Retrieval

Subhadeep Koley'? Ayan Kumar Bhunia'
Tao Xiang'?

Aneeshan Sain'  Pinaki Nath Chowdhury!

Yi-Zhe Song!*?

ISketchX, CVSSP, University of Surrey, United Kingdom.
%iFlyTek-Surrey Joint Research Centre on Artificial Intelligence.
{s.koley, a.bhunia, a.sain, p.chowdhury, t.xiang, y.song}l@surrey.ac.uk
https://subhadeepkoley.github.io/Sketch2Word

@) . ®) ; © with n
““ ) - floral v red |
e onm - | 258 i o e
red a shoe priv “—=— vue y
. Sketch  Text-1 Text-2 Text-3
in / With B\ n ( = |
blue \/‘_\ womnan s’ g ellow - = | -
velvet ridin Bt \{r T 'j I ,
9 e N e R inen L J
Sketch Text Ours Sketch Text Ours Baseline Text  Sketch-1 Sketch-2 Sketch-3

Figure 1. (a) Photos retrieved by our method, depicting precise control over both shape and appearance. (b) Unlike baseline sketch+text
composed retrieval framework, our method seamlessly composes the structural and contextual cues of sketch and text queries respec-
tively. (c) With a fixed sketch query, our method retrieves different images for different textual descriptions and vice-versa, depicting the
complementarity of sketch and text modalities in sketch+text-based composed image retrieval. For a fixed sketch, the visual attributes
from different textual descriptions are visibly reflected in the retrieved images while maintaining shape consistency. Similarly, fixing the
attributes provided via text, shapes of retrieved images change corresponding to different sketch queries.

Abstract

Two primary input modalities prevail in image retrieval:
sketch and text. While text is widely used for inter-category
retrieval tasks, sketches have been established as the sole
preferred modality for fine-grained image retrieval due to
their ability to capture intricate visual details. In this pa-
per, we question the reliance on sketches alone for fine-
grained image retrieval by simultaneously exploring the
fine-grained representation capabilities of both sketch and
text, orchestrating a duet between the two. The end re-
sult enables precise retrievals previously unattainable, al-
lowing users to pose ever-finer queries and incorporate at-
tributes like colour and contextual cues from text. For this
purpose, we introduce a novel compositionality framework,
effectively combining sketches and text using pre-trained
CLIP models, while eliminating the need for extensive fine-
grained textual descriptions. Last but not least, our system
extends to novel applications in composed image retrieval,
domain attribute transfer, and fine-grained generation, pro-
viding solutions for various real-world scenarios.

1. Introduction

Sketch and text represent the two most common [1 1, 59] in-
put modalities in the realm of image retrieval. The choice
between these modalities depends on the nature of the re-
trieval problem, especially when fine-grained distinctions
are required [18, 59, 60, 69]. In inter-category retrieval,
text dominates as the primary modality, exemplified by
widely-used platforms like Google Images. However, when

the challenge transitions to fine-grained image retrieval,
sketches take the spotlight [11, 59, 60]. Sketches promise
to capture fine-grained visual cues that can be cumber-
some or even impossible for text to express [11]. Research
in this domain predominantly revolves around harnessing
the unique qualities of sketches, exploring aspects such as
style [54], abstraction [32], and more [4, 18, 59].

In this paper, we question this notion that “sketch is ev-
erything” and, for the first time, simultaneously delve into
the fine-grained representation capabilities of both sketch
and text, and in turn orchestrate a duet between these two
modalities for fine-grained image retrieval. The outcome is
a novel retrieval experience where a sketch and text work
in harmony, enabling users to achieve precise retrievals that
were previously unattainable. Now, users can locate “that”
specific shoe, considering not only fine-grained pattern cues
from sketches but also incorporating attributes like colour
and texture from text (Fig. 1a). This synergy extends to sce-
narios where text offers contextual cues to a given sketch,
such as a cat holding a shoe for that matter (Fig. 1b)!

While sketch and text synergy has been studied be-
fore [11, 59], it has predominantly focused on scene-
level/category retrieval, where paired sketch and text de-
scriptions for a given scene/category are readily available
in datasets (e.g., FS-COCO [10], CM-Places [8]). Our con-
tention is that the synergy between sketches and text, while
notable, is not as pronounced in category-level retrieval as
it is for fine-grained retrieval [8, 11]. Indeed, for category-
level retrieval, one might argue the necessity of sketches,
as the descriptive power of text might already suffice [59].
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However, when the desire extends to a horse/cat with a spe-
cific pose, an accompanying sketch becomes indispensable
(as illustrated in Fig. 1b).

Our foremost challenge centres around fine-grained
compositionality, specifically investigating how sketches
and text can serve as complementary components in fine-
grained queries. Our goal is to maintain the semantics
of both modalities, ensuring, for example, that a horse
in Fig. 1b corresponds precisely to the respective sketch
and associated text, rather than any generic horse with a
woman riding. To tackle this challenge, we harness the ca-
pabilities of CLIP [51], leveraging its implicit grammatical-
composition capability. We achieve this via CLIP [51] to
create a fine-grained textual equivalent of the input sketch,
referred to as a “pseudo-word token”. This token, when
combined with text input, forms a fine-grained textual query
that seamlessly integrates both sketch and text features, al-
lowing them to work in synergy within the text domain.

The second challenge pertains to alleviating the require-
ment of collecting a dataset of fine-grained sketch and text
pairs. We also aim to emulate the inference-time distribu-
tion of text input. The key innovation lies in the hypothesis
that the fine-grained description embedded in a photo (P)
can be approximated by that of a sketch (S) plus text (T),
leading to T = P - S. This relationship illustrates how the
absence of text can be approximated by the difference sig-
nal between the photo and the sketch in the latent embed-
ding space. We incorporate this difference signal as a proxy
for the missing textual description during training to make it
inference-time equivalent through a novel compositionality
constraint. Furthermore, we utilise short phrases generated
by a lightweight GPT [0] as a neutral-text regulariser to
ensure that the synergy works without disrupting the gram-
matical structure of CLIP’s [51] language manifold.

Last but not least, in addition to addressing the chal-
lenges in fine-grained image retrieval, our system opens the
door to a range of novel applications in the field of com-
posed image retrieval such as object-sketch-based scene
image retrieval, domain attribute transfer, and sketch+text-
based fine-grained image generation.

In summary, (i) we address the challenge of fine-grained
image retrieval by leveraging the synergy between freehand
sketches and textual descriptions, extending retrieval be-
yond traditional category-level distinctions. (ii) we intro-
duce a novel compositionality framework, effectively com-
bining sketches and text using pre-trained CLIP models,
eliminating the need for extensive fine-grained textual de-
scriptions. (iii) our system unlocks novel applications like
object-sketch-based scene retrieval, domain attribute trans-
fer, and sketch+text-based fine-grained image generation.

2. Related Works

Sketch-Based Image Retrieval (SBIR). Starting at
category-level, SBIR is tasked to fetch a photo of the same

category as that of a given query sketch. Earlier deep-
learning methods [15, 39, 68, 71] generally train Siamese-
like networks [15] over a distance-metric in a cross-modal
joint embedding space [14]. Moving forward to fine-
grained SBIR (FG-SBIR), the aim is to retrieve one partic-
ular photo-instance from a gallery of same-category photos
corresponding to a query sketch. FG-SBIR has progressed
from a deep-triplet ranking-based Siamese network [70] to
further enhancements involving higher-order attention [61]
or auxiliary losses [37], and local feature alignment [67],
to name a few. While most works focus on various ap-
plications like early-retrieval [3], cross-category generali-
sation [5, 49] and even zero-shot FG-SBIR [33, 55], others
delved deeper to explore sketch-specific traits, like hierar-
chy [53], or style-diversity [54], for better retrieval. Re-
cent extensions include retrieving a scene image based on a
scene-sketch (i.e., Scene-level FG-SBIR), employing cross-
modal region associativity [9], enhanced further with text-
query [11]. Unlike existing fully-supervised sketch+text-
based methods [11, 59], relying on paired training triplets
(i.e., sketch, text, and ground truth photo), our approach al-
leviates the need for such triplets, simplifying the challenge
of collecting fine-grained sketch-text-photo dataset.

Text-Based Image Retrieval (TBIR). Over the years,
much emphasis has been paid to textual query-based image
retrieval by learning a joint embedding space via ranking
loss [19, 28, 50]. This was further augmented by cross-
modal message passing [64], hard triplet mining [20], and
one-to-many probabilistic mapping [12], to name a few.
Thanks to internet-scale paired image-text datasets TBIR
has become highly competitive and one of the most ac-
tive areas of research [51], leading to expansive techniques
like Oscar [36], CLIP [51], ALIGN [27], etc. The re-
cent paradigm of Textual Inversion [13, 21] deals with in-
verting input image(s) into a pseudo-word token in the
language space of pre-trained vision-language models for
downstream tasks like personalised image retrieval [13],
composed retrieval [2, 57], etc. Composed image retrieval
(CIR) aims to retrieve images from a combined query of
text and image pairs [1]. Existing CIR methods typically
leverage pre-trained CLIP [1, 2, 57], or resort to image-text
feature fusion [23, 25, 62, 66]. Textual inversion-based CIR
methods [2, 57] either use million-scale image dataset to
train inversion networks [57], or uses time-consuming two-
stage optimisation-based approach [2]. Nevertheless, these
image+text composed retrieval frameworks [2, 57] can not
handle the huge domain gap of sparse sketch+text com-
posed image retrieval. Our method, on the other hand, ex-
plicitly models the sketch-photo difference within itself for
fine-grained sketch+text composed multi-modal retrieval.

Sketch+Text Joint Multi-Modal Learning. While sketch
is a suitable [10] fine-grained query medium for Al sys-
tems, certain aspects fall outside its scope like qualita-

16510



tive attributes (e.g., colour, shade, etc.) [11]. Text aptly
describes these qualitative attributes (e.g., colour) which
leads to “text as query” being extensively studied [11],
albeit largely for category-level tasks (e.g., TBIR). Real-
ising this potential of sketch-text-photo association, joint
multi-modal sketch+text query was heavily used in down-
stream vision tasks. On generation, sketch-to-image mod-
els used text-as-guidance to specify class-label [24]. Simul-
taneously text-to-image diffusion models used sketches as
semantic-guidance for the encoder [44], or decoder [72], or
external classifier guidance [63], NeRF-editing [43, 45] us-
ing sketch+text conditioning [42], and sketch-conditioned
image captioning [I11]. On retrieval, the importance of
sketch+text was realised with FS-COCO [10] dataset col-
lecting scene-level sketch-text-photo dataset. Recent works
include supervised approaches of Sangkloy et al. [59] us-
ing CLIP, and Scenetrilogy [11] using conditional invertible
neural networks for sketch+text-based image retrieval. De-
spite its benefit, collecting fine-grained textual descriptions,
is quite cumbersome [10], which bottlenecks further ex-
ploration of fine-grained sketch-text-photo association for
downstream tasks till date.

3. Revisiting CLIP

CLIP [51] consists of a text encoder and an image encoder,
trained with a multi-class N-pair contrastive loss [51] on
internet-scale (~400M) image-text pair dataset, with an
aim to learn a joint-embedding space that minimises the co-
sine similarity between the matching image-text pairs while
maximising the same for random unpaired ones [51]. The
image encoder (V) usually employs a Vision Transformer
(ViT) [17], to encode an input image Z into a visual fea-
ture as i = V(Z) € RY. The text encoder (T) inputs
a sequence of words W = {w®,w?,...,w*} and applies
a lower-cased byte pair encoding (BPE), followed by a
learnable word embedding layer T, (49,152 vocab size)
[51], to convert each word w® into a word token embed-
ding w! = Ty (w') of size R?. This sequence of word
token embeddings W, = {w?, wl ... wk} is then passed
via a transformer T, to provide the final textual feature as
w = Ty(W,) € R taken from the last hidden state of the
final transformer layer.

4. Sketch-Based Composed Image Retrieval

Motivation. Combining structural cues from sketch with
additional fextual description results in a powerful query for
image retrieval. Existing works [11, 59] on such composi-
tionality usually extract sketch and text features via sepa-
rate encoders, and add or concatenate (followed by addi-
tional learnable layers) them, to obtain the composed query
feature. This has two major issues: (i) it needs sketch-
associated textual description — absent from fine-grained
SBIR datasets [58, 70], and (ii) combining the two fea-
tures naively may distort the optimal sketch-text feature

correlation needed, to correctly represent a composed se-
mantic. This compositionality is however more explicit
in the textual domain [2, 13, 57] where combining indi-
vidual words/phrases form a composed semantic, e.g., ‘a
cat’ and ‘brown’ together infers ‘a brown cat’. Following
CLIP’s rise in various downstream tasks [30, 55, 73], we
thus aim to leverage its text encoder’s input text space to
tackle sketch+text compositionality. In particular, inspired
by textual inversion literature [21], we aim to represent a
sketch as a pseudo-word token that emulates its visual con-
cept in equivalent word-embedding space, and combine its
textual description via connecting phrases like ‘with’, ‘in’,
‘and’, etc. (the full list in § Suppl.) to obtain “(pseudo-
word token) (connecting phrase) (text description)” as a
query. Passing this via CLIP’s text encoder would provide a
sketch+text composed representation, that can be compared
against gallery image features pre-computed via CLIP’s vi-
sion encoder. The goal here is to learn sketch+text compo-
sitionality via CLIP, unsupervised, without any expensive
paired textual description.

Overall Framework. Here, we aim to design a Sketch-
Based Composed Image Retrieval (SBCIR) framework har-
nessing the Vision-Language (V-L) embedding of pre-
trained CLIP [51] using only the sketch-photo pairing read-
ily available in sketch datasets [10, 58, 70], without any
annotated textual description. Accordingly, we embed the
sketch into a pseudo-word token by first passing it through
CLIP’s visual encoder V, followed by a visual-to-word con-
verter Cyaw, Which is then passed into CLIP’s text trans-
former T along with a few learnable prompts and addi-
tional textual descriptions (during inference) to obtain the
composed query embedding. Specifically, we have three
salient designs — (i) a novel compositionality constraint im-
posed via sketch/photo difference-signal to imitate the miss-
ing textual description (during training) and neutral text
(Sec. 4.2) to preserve the grammatical structure of the in-
put text-space of CLIP’s text encoder, (ii) generalisable con-
tinuous prompt-learning (Sec. 4.3) over handcrafted textual
prompts, and (iii) fine-grained matching (Sec. 4.4) between
composed query and paired photo embedding via region-
aware triplet loss and an auxiliary generative loss.

4.1. Baseline SBCIR

Conventional CLIP-based SBIR [55] maps both sketch
query and its target photo in the joint embedding space
using the visual encoder (V). On the contrary, we con-
vert a query sketch to a pseudo-word token and pass it
through CLIP’s textual encoder (Ty) to generate its rep-
resentation. In particular, given a photo P, we generate
its latent embedding (p) as p = V(P) € R**4. For a
sketch however, we generate its equivalent word embedding
as s¥ = Cyaw(V(S)) € R4 g¥ signifies the equiv-
alent language representation of the visual sketch query.
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Figure 2. A query sketch (S) is passed via CLIP’s visual encoder (V) followed by the visual-to-word converter (Cyv2w) to obtain
pseudo-word token embedding (s*). It is then appended with a learnable continuous prompt PL ¢ R®**? and passed via frozen T to
produce the final sketch embedding sT. Compositionality constraint (middle) is importantly a part of our multitask training (nof a two-
stage approach [2, 57]), where we compute sf’A (Sec. 4.2) by passing the sketch-photo difference signal A via Cy2+w and appending
as sf’Az{PL; s¥; A"}, using which Leomp is imposed. However, as this numeric signal A* does not exist in CLIP’s [51] input text
manifold, it may disrupt its grammatical syntax. Thus, we mine a set of “neutral text” (via GPT [6]) to impose a regularisation 10ss Lieg.
Apart from Lyip, we use Lrr (region-aware triplet) with s7 and photo embeddings p™/p ™~ to enforce fine-grained matching. Additionally,
a reconstruction loss Ly trains a UNet decoder (G) for further cross-modal alignment (Sec. 4.4). Furthermore, Lrr, using a pre-defined
set of standard language prompts, brings learnable prompts closer to actual English prompts for unseen set generalisation (Sec. 4.3).
Specifically, we only train the LayerNorm of V, Cyaw, P¥, and G. The testing pipeline is shown on the right. (Best view when zoomed.)

We design the visual-to-word converter network Cy 2y, us-
ing 3-Layer MLP with ReLU [46]. Inspired from prompt
learning [73, 74], we prepend a R3*“ learnable continu-
ous prompt vector P” with s* and pass this through T}
to finally obtain s? = T({PL;s*}) € R'*¢ . Baseline
SBCIR trains over triplet loss [65] to perform cross-modal
matching between sf, and positive (pT) and negative (p~)
photo features. With margin i, > 0, triplet loss aims to
minimise the distance §(, -) between s? and p™, while in-
creasing that from a random negative feature p~.

»Ctrip = max((), Hrip + 6(5%:7 p+) - 5(S€a pi)) (1)

We only train the LayerNorm parameters of V [55],
Cyaw, and P, while the rest including T remains frozen.
Consequently, we can leverage the zero-shot composition-
ality of CLIP’s text encoder T to perform SBCIR even if
no text was provided during training. During inference, we
append the word embedding of optional textual query (7)
as t = Ty (T) to form {P¥;s%;t*}, and pass it through
frozen T to get the final composed query vector.

However, baseline SBCIR has a few major limitations
— (i) most importantly, without access to paired textual de-
scriptions during training, it solely relies on the frozen CLIP
encoder [51] for zero-shot compositionality. We thus set
out to explore how we can imitate the effect of adding this
query text during training to learn the compositionality, (ii)
while CLIP [51] performs fairly well for category-level se-
mantic matching [55, 59], its off-the-shelf adaptation in the
fine-grained setting is sub-optimal as seen in certain CLIP-
based works [41, 55]. So, how can we make the cross-
modal matching more fine-grained? (iii) prompt learning is
prone to overfitting on the training set, delivering poor test-
set zero-shot performance [7]. Furthermore, vanilla prompt
learning is not robust [7] and is prone to distort the com-
posed query embedding, particularly when combined with

the optional text coming from an in-the-wild scenario.
4.2. Learning Compositionality Constraint

While our method does not rely on paired textual descrip-
tions during training, users can provide optional textual
descriptions during inference, to specify the desired addi-
tional information, which gets composed with the query
sketch to retrieve the correct image. We handle this
training-testing disparity, by hypothesising the additional
information to be equivalent to the difference between the
query sketch and its paired photo. To this end, we com-
pute the sketch-photo difference signal embedding A" =
Cy2w(|p™ —s|) and append it as {PL;s¥; A¥}, which
upon passing through Ty generates the sf’A embedding.
Here A™ could be considered as a “single vector” pseudo-
word token imitating the difference between sketch and
photo, which ideally would be substituted with real query
text during inference. Now, as per our hypothesis, we en-

force compositionality constraint Leomp (With picomp > 0)
that ensures that the distance between p* and sz’A is less
than the same between p* and s, as A% reinforces s

with additional information.
Ecomp = max(O, Heomp + 5(S€7A7 +) - 6(S€a p+)) 2

Although A enforces compositionality, this mere nu-
meric signal does not exist in CLIP’s [51] input text mani-
fold and might break its grammatical syntax. Furthermore,
this additional signal might train Cy 2y, sub-optimally, ren-
dering its output incompatible with CLIP’s input text mani-
fold. Thus, to restrict the adverse effect of A to a minimum
level, we regularise the training via a “neutral-text” set con-
taining a list of 3-5 word generic description of a freehand
sketch (e.g., “with a 1ine drawing”). To this end, we re-
place A" from composed query sz’A with any one random
phrase from the neutral-text set, to generate neutral-text
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enriched composed representation {P%;s%; N}, which
upon passing through T generates the sz’N embedding.
Here N is the word-embedding of the chosen neutral
phrase. We posit that using a generic description for a
sketch should neither enhance nor impair the composed
query. Thus, we enforce the distance between p* and sz’A

to be equivalent to the distance between p* and sf’N.

Lieg = 1672, pF) = 8(s1 ™, pH)l, 3)

We prompt a lightweight GPT [6], to generate 100 dif-
ferent 3-5 word phrases (more in § Suppl.) describing a
“freehand sketch” to form our optimum neutral text set.

4.3. Generalised Prompt Learning

Prompt learning literature [7, 73, 74] dictates that hand-
crafted fixed language prompts (e.g., “aphoto of”,
“an image of”) generalise better on unseen sets, while
learnable continuous prompts depict better performance on
seen sets used to learn it. While we are using learnable
continuous prompts PZ over handcrafted ones, we impose
a text-to-text generalisation loss that enforces the learned
prompts to be similar to a set of handcrafted language
prompts in the text embedding space, so that it generalises
beyond the seen training set. In particular, at every instance,
we randomly pick one handcrafted fixed language prompt
d; from a set of handcrafted [74] fixed language prompts
(more in § Suppl.) D and prepend its word-embedding rep-
resentation P = Ty, (d;) to s* as {P¥,s*} and pass it
via Ty to generate the fixed representation s%.. Now we
employ Lt to enforce the sketch query representation with
the learned prompts s to be similar with that of the fixed

language prompt s7. as:

Lrr = lIsf —stll, “4)

The utility of Lrr is multi-fold — (i) it alleviates seen
set overfitting, (ii) typically, learned prompts reside in the
sparse regions of the CLIP manifold [2], limiting its in-
tractability with actual query texts during inference. Reg-
ularising P” with actual language supervision suppresses
this issue, and (iii) the diverse list of fixed prompts, acts
as an additional augmentation in the language domain [7],
which reinforces the robustness of the learned prompts.

4.4. Fine-Grained Matching

Region-Aware Triplet Loss. To further improve the cross-
modal fine-grained matching, we consider the CLIP [51]
vision encoder V (employed through a vision transformer)
that breaks the input image (P) into 1" patches and passes
them via transformer layer to generate patch-wise feature
pr = V(P) € RT*4 where T is the number of patches.
To enforce region-wise associativity, we use the patch-wise
embedding p,. from all T" patches and calculate the patch-
level correlation (a) between global sketch query feature
st € R4 and p, as: a = (p, - sT) € RT*1, which

is SoftMax normalised across the patch dimension. Ev-
ery value a; denotes the associativity between the global
sketch query and patch-wise photo features. Now we take a
weighted sum across all patch embeddings to get a region-
aware photo feature as: ps = ZiTzl(ai x pt). We utilise
this region-aware embeddings p7 and p; from the positive
and the negative photo respectively to impose one additional
region-aware triplet loss Lrr with margin pgr > 0 as:

Lrr = max(0, urr + 0(s1, pF) — (s, p;))  (5)

It is noteworthy that although the Lgy acts as a proxy

to better align the joint embedding space for fine-grained
matching, we perform inference on the global feature.

Auxiliary Generator Guidance. With sketches, triplet
loss typically performs fine-grained shape matching [3, 70],
ignoring the fine-grained appearance features (e.g., colour,
texture). Being a composed retrieval framework, we aim to
encompass appearance traits along with structural ones in
the visual domain. Considering the proven efficacy of cross-
modal translation [48] in fine-grained matching, we impose
a sketch-to-photo reconstruction objective, where given the
sketch query representation, we train a simple UNet [52] de-
coder (G) to reconstruct the ground truth photo using pixel-
level 5 reconstruction loss. Please note, that the aim of L.
is not to enforce photorealistic image generation, but to im-
pose an appearance guidance.

Lie = |IP* = G, + [P = G5, %)ll, ()
To sum up, our overall training objective becomes: L
= /\lﬁtrip + )\Q»Ccomp + >\3£reg + MLt + AsLrr + A6 Lrec.
Our model employs multitask learning with multiple losses
updating the LayerNorm of V, Cyaw, PL, and G. During
inference, we discard the UNet decoder and use frozen V,
Ty, and Cy 2 to first generate a pseudo-word token from
query sketch as: s¥ = Cyaw(V(S)). We prepend P~ to
s followed by appending the tokenised representation of
the additional user-given textual description t* = T (7T)
to form the final composed query token {P%, s* t*}. This
composed query token, upon passing through T, generates
the final composed query feature sf’q. With pre-computed
visual features of the gallery images (retrieval candidates),
we perform retrieval by comparing the distance between the
gallery features and sf’q (both I, normalised).

5. Experiments

Datasets. We evaluate on the following datasets. QMUL-
ShoeV2 [70] and QMUL-ChairV2 [70] contain 2000/6730,
and 400/1800 sketches/photos respectively, with fine-
grained association. The Sketchy [58] dataset comprises
12,500 photos across 125 classes with at least 5 sketches
per photo. For scene-level retrieval, we use FS-COCO [10]
and SketchyCOCO [22] containing 10,000 and 14,081
paired sketch-text-photo triplets respectively, where images
and textual captions are sourced from MS-COCO [38]. We
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Figure 3. Top-5 fine-grained retrieval result comparison on ShoeV2/ChairV2. GT photos are green-bordered. (Zoom-in for best-view)

also use the ImageNet-R(endition) [26] image-only dataset,
which consists 30,000 images across 200 ImageNet [16]
classes and 16 domains with domain annotations.

Implementation Details. We use a pre-trained ViT-L/14
CLIP vision encoder [51] in all experiments with an embed-
ding dimension d = 768. The prompt vectors are trained
with a learning rate of 10>, keeping the encoder frozen
(except LayerNorm layers). The UNet decoder and the
visual-to-word converter are trained with a learning rate of
10~* and 10~ respectively. We train the model for 100
epochs using AdamW [40] optimiser with 0.09 weight de-
cay, and a batch size of 128. Values of A1 23 4 5 ¢ are set to
1,0.5,0.1, 0.1, 1, and 1, empirically.

Competitors. We evaluate from three perspectives — (i)
Sketch or Text-only Baselines: Here we validate the ad-
ditional accuracy gain achieved by sketch+text composi-
tion over well-studied individual sketch/text-only retrieval
paradigms. For sketch-only baselines, we use triplet loss-
based frameworks [55] of B-DINOv2 (S) and B-CLIP
(S), using DINOV2 [47] and CLIP [51] ViT-L/14 as back-
bones respectively. Given the de facto usage of pre-trained
CLIP [51] in TBIR, for text-only baselines we introduce
B-CLIP (T), which employs frozen CLIP [51] vision and
language encoder to retrieve by comparing query text fea-
ture against gallery image features. (ii) Sketch+Text Com-
posed SoTA: To judge CLIP’s off-the-shelf potential in
sketch+text composition, we employ B-CLIP (S+T) which
uses the mean of sketch and text features from CLIP’s
frozen vision and language encoders for retrieval. Now,
as most supervised sketch+text SOTA models [1, 11, 59]
train using paired textual captions, we employ SoTA im-
age captioner BLIP [35] to generate textual captions for
training images which however are often noisy, generic
and non-discriminative [35]. Among supervised SoTAs,
Combiner [1] trains a network to fuse paired image-text
features of frozen CLIP encoders [51] to generate multi-
modal query features, while TASK-former [59] merges
paired sketch and text features via element-wise addition
and trains CLIP’s vision and language encoders [51] end-
to-end. SceneTrilogy [11] models sketch-text-photo joint-

embedding by training an invertible neural network. (iii)
Unsupervised Sketch+Text Composition: Leveraging un-
labelled photos, Pic2Word [57] learns a textual-inversion
network to map input visual query into a pseudo-word to-
ken in CLIP’s textual embedding space for retrieval. Unlike
Pic2Word, SEARLE [2] generates a set of pseudo-word
tokens from unlabelled photos using optimisation-based
textual-inversion, and then uses those image-token pairs
to learn a textual-inversion network. While such methods
either train a textual-inversion network on a massive 3M
image dataset [57] or use time-consuming optimisation-
based textual-inversion for image-token pair generation [2],
we exploit pre-trained CLIP model to address sketch+text
compositionality in an unsupervised manner without any
associated textual descriptions. We adapt Combiner [1],
Pic2Word [57], and SEARLE [2], by replacing the input
image with sketch. For fairness, we keep the same train-
ing/testing paradigm for all competing methods.

Evaluation Setup. In the fine-grained setup, we aim to re-
trieve the target image using the composed query formed
by an input sketch and text. We use a train:test split of
90:10 for Sketchy [58] (following [56]), 7000:3000 for FS-
COCO [10] and 1015:210 for SketchyCOCO [22]. For
ShoeV2/ChairV2 we use 1800/300 (6051/1275) photos
(sketches) for training and the rest for testing. Notably, our
method does not use captions during training. For evalua-
tion, we manually collect fine-grained captions for each of
the test-set images of ShoeV2, ChairV2, and Sketchy. We
compose the query as {P%;s%; [text]}, where [text] de-
notes the word embedding of textual query with suitable
prepositions (e.g., ‘with’, ‘in”). We use Acc.@q to denote
the percentage of sketches with true-matched photos in the
top-q retrieved images.

5.1. Performance Analysis

Tab. 1 delineates the quantitative results while the qualita-
tive ones are shown in Fig. 3. In the fine-grained composed
retrieval setup (Tab. 1), our method outperforms baselines
and SoTAs significantly on all datasets, indicating its ef-
ficiency in seamlessly combining fine-grained sketch with
textual description. This gain is likely due to the regularisa-
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Table 1. Results for fine-grained object-level and scene-level composed retrieval.

Object-level | Scene-level
Methods
ShoeV2 ChairV2 Sketchy | FS-COCO SketchyCOCO
Acc.@5 Acc.@10 Acc.@5 Acc.@10 Acc.@5 Acc.@10 | Acc.@5 Acc.@10 Acc.@5 Acc.@10
B-CLIP (S) 9.8 17.5 16.7 18.4 6.8 11.3 59 9.7 6.8 10.2
B-DINOV2 (S) 10.2 19.4 17.9 20.2 8.5 15.1 7.6 114 9.4 122
B-CLIP (T) 9.1 16.6 15.4 17.8 5.9 10.2 5.5 10.1 6.7 10.6
B-CLIP (S+T) 19.1 30.8 30.2 323 10.1 20.2 10.2 15.4 112 20.2
Combiner [1] 24.7 40.2 357 39.9 15.7 337 11.6 22.1 15.9 322
TASK-former [59] 27.7 44.1 40.7 452 17.8 352 12.7 242 19.4 347
SceneTrilogy [11] 29.1 46.2 434 46.8 19.7 372 14.5 283 20.4 40.2
Pic2Word [57] 347 584 55.7 62.1 225 48.7 16.7 32.6 244 46.0
SEARLE [2] 38.4 64.8 60.8 66.4 253 54.2 17.7 35.9 26.0 50.4
Proposed 47.3 79.1 73.5 81.4 30.6 64.2 22.7 43.5 334 61.1
Avg. Improvement +24.7 +45.5 +38.3 +42.6 +15.9 +34.6 +11.3 +22.4 +17.8 +32.5

tion provided by our region-aware contrastive loss and gen-
erator guidance. Our closest competitors (i.e., Pic2Word
[57], and SEARLE [2]) attempt to handle composed re-
trieval by either training data-hungry textual-inversion net-
work [57] or use optimisation-based textual-inversion for
image-token pair generation followed by training an inver-
sion network [2]. Surprisingly, our method achieves the
highest Acc.@5 of 47.3 (73.5) in ShoeV2 (ChairV2) with-
out the 3M data-requirement of Pic2Word [57], or the com-
plicated two-stage approach of SEARLE [2].

Being more challenging than object-level [9], baseline
methods perform quite poorly (Tab. 1) for scene-image re-
trieval. However, thanks to the increased interaction ca-
pability (learned via compositionality constraint) of the
pseudo-word token with user-given textual queries during
inference, we surpass others with an Acc.@5 of 22.7 (33.4)
on FS-COCO (SketchyCOCO).

5.2. Downstream Tasks

Sketch+Text-based Fine-Grained Image Generation.
Apart from composed retrieval, our method is also suit-
able for sketch+text composed object image generation.
Here we replace the low-quality UNet decoder with a Style-
GAN?2 [29] generator (pre-trained on specific classes). The
composed query sf’q (acting as a latent vector [29]) upon
passing through the frozen StyleGAN2 generates output
photos. We pass sf’q via a learnable FC-layers to convert
it to the dimensions required by StyleGANZ2’s affine trans-
formation layer [29]. Fig. 4 shows a few cases of such
fine-grained generation. Notably, the semantic geometry
(e.g., shape, structure, etc.) of generated images is driven
by input sketches, whereas the high-level appearance (e.g.,
colour, shade, etc.) is mostly governed by textual descrip-
tions. Overall our method archives a lower FID [29, 34]
score of 33.4(88.5) on ShoeV2 (ChairV2) test-set images
compared to 35.85(90.21) of the current SoTA [31].
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Figure 4. Qualitative results for sketch+text composed fine-

grained generation with pre-trained StyleGAN?2 [29] models.

Object Sketch-based Scene Image Retrieval. It aims to
retrieve scene images from a single-object sketch and addi-
tional captions. Here, we use 7000(3000) and 1015(210)
train(test) sketch-photo pairs from FS-COCO and Sketchy-
COCO respectively. Since they lack single-object sketches,
we source them from Sketchy, which is their superset in
terms of classes [10]. Here, a retrieval is deemed correct if it
contains all objects that were queried in the sketch and text.
As FS-COCO/SketchyCOCO images are derived from MS-
COCO [38], we use their segmentation-map labels from
MS-COCO to create ground truth object-lists per test-set
image. During inference, we use the readily available cap-
tions of test-set images of FS-COCO/SketchyCOCO, but
remove the object-name queried via sketch (Fig. 5). Here
we compose the query like in the fine-grained composed re-
trieval setup and use Acc.@q as evaluation metric. Tab. 2
shows our method to surpass other baseline and SoTAs with
an average Acc.@$5 gain of 10.9 on FS-COCO [10].
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Figure 5. Qualitative result for object sketch-based scene image
retrieval on FS-COCO [10]. GT photos are green-bordered.

Domain Attribute Transfer. Here we perform SBIR from
a specified domain (e.g., origami), where the domain name
is additionally provided by a textual domain label. Here
we use ImageNet-R [26] dataset. This being an image-only
dataset, we source freehand sketches from the 104 common
classes from the Sketchy [58] dataset with a train:test split
of 90:10. Here, a retrieval is deemed correct, if its class and
domain name match those of the query sketch and domain
label. Due to non-uniform and noisy domain labels, we use
four domains here viz., tattoo, origami, sculpture, and paint-
ing. We compose the query as {P%;s¥;[in]; [domain]},
where [domain] denotes the word embedding of the query
domain label. Following [57], we use recall@q (r@q) as
the evaluation metric, which denotes the ratio of positive
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retrieved images in the top-q list to all relevant images for
a given query. As strict domain constraints complicate
cross-modal composed image retrieval, baseline methods
perform poorly here, with B-CLIP (S+T) attaining an aver-
age r@50 of 12.9 across four test domains (Tab. 2). Due
to their respective CLIP [51] feature composition strate-
gies, Combiner [1], Pic2Word [57] and SEARLE [2] depict
reasonable performance on ImageNet-R, while our method

achieves a notable average r@10 of 15.3.

Query Ours B-CLIP (Sketch + Text)
<

1]
tattoo
1]
origami
Qo
V< painting
17
sculpture

Figure 6. Top-3 domain attribute transfer results comparison on
ImageNet-R [26]. GT photos are green-bordered.

Table 2. Results for domain attribute transfer and object sketch-
based scene image retrieval.

Domain transfer \ Object sketch-based scene retrieval

Method:
ethods ImageNetR | FS-COCO SketchyCOCO
r@l10 r@50 ‘ Acc.@5 Acc.@10 Acc.@5 Acc.@10

B-CLIP (S+T) 2.2 12.9 4.3 7.0 10.1 26.7
Combiner [1] 8.3 19.8 10.8 21.1 16.7 30.9
TASK-former [59] 7.6 18.2 11.6 23.1 18.2 35.8
SceneTrilogy [11] 9.7 20.5 14.2 253 21.0 40.8
Pic2Word [57] 108 227 - - - -
SEARLE [2] 12.1 25.4 - - - -
Proposed 15.3 27.1 21.2 404 324 533

Avg. Improvement — +6.8 +7.1 +10.9 +21.2 +15.9 +19.4

Table 3. Ablation on design.

ShoeV2 ChairV2 FS-COCO
Methods
Acc.@5 Acc.@10 Acc.@5 Acc.@10 Acc.@5 Acc.@10
w/o Lt 41.8 71.9 68.3 71.7 17.1 38.2
W/0 Lyec 40.7 72.8 70.9 75.5 214 42.7
w/o Lrr 40.2 71.6 69.1 76.2 10.5 21.7
w/o compositionality ~ 32.5 48.2 45.7 48.9 18.4 323
Ours-full 47.3 79.1 73.5 81.4 22.7 435

5.3. Ablation on Design

o How well does s capture sketch semantics? To judge
the efficacy of pseudo-word token s* in representing visual
content of a sketch, we evaluate our trained model on re-
trieving an input sketch solely from its pseudo-word token
without additional textual description. Acc.@1 of 98.35%
on ShoeV2 fest-set sketches shows the pseudo-word to-
ken to capture visual sketch features fairly well. Although
representing fine-grained query sketches with one pseudo-
word token might be sub-optimal, experimenting with two
and three such tokens delivered similar Acc.@1 of 98.79%
and 99.11% respectively on ShoeV2. We thus stick to a
single-word token for computational ease.

e Contribution of Lry and L.: Region-aware local
features are pivotal in bridging the huge domain gap be-
tween sparse-binary sketches and pixel-dense photos. Al-
though less reflected on ShoeV2/ChairV2 results, a notable
Acc.@5 drop of 12.2 on FS-COCO (Tab. 3) for w/o Lgr
verifies its importance in the scene-level setup. Further-
more, a 13.9% drop in Acc.@5 (ShoeV2) for w/o Lyec
shows that fine-grained matching remains incomplete with-
out the proposed generator guidance.

e Impact of Lrr: Removing Text-to-Text loss plummets
Acc.@5 by 11.6% on ShoeV2 (Tab. 3), highlighting its vi-
tal role in aligning learned and English language prompts
seen by CLIP [51] during its training. This removal likely
pushes the final language embedding towards sparser parts
of CLIP language manifold [2], hindering effective commu-
nication with real-language tokens during inference [2].

e Why Compositionality Constraint? Introduced via the
novel idea of neutral text, compositionality constraint helps
preserve internal grammar of CLIP language manifold, to
allow optional user-provided query texts during inference.
On removing that, Acc.@5 drops the lowest across all
datasets (Tab. 3), proving its importance in our framework.
e On combining sketch and text: Our composed retrieval
pipeline places the query feature closer to its paired photo
in the latent retrieval space (Fig. 7), than only text/sketch-
based retrieval. The relative distances (Fig. 7 top insets)
depict that the individual text and sketch feature together
pushes the composed feature towards the paired photo.
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Figure 7. t-SNE plots showing the feature distances for text-based,
sketch-based, and composed retrieval. Compared to sketch/text-
based retrieval, combining sketch and text pushes the composed
embedding closer to the ground truth photo in the latent manifold.

Sketch+Text

6. Conclusion and Future Works

In conclusion, our exploration into the fine-grained repre-
sentation power of both sketch and text, coupled with the
orchestration of their synergistic interplay, marks a signif-
icant stride in the realm of image retrieval. By harmon-
ising sketches and text, we offer users a retrieval experi-
ence that transcends traditional category-level distinctions.
The introduction of a novel compositionality framework,
driven by pre-trained CLIP models, eliminates the need
for extensive fine-grained textual annotations. Last but not
least, our system extends its utility to diverse domains such
as sketch+text-based fine-grained image generation, object-
sketch-based scene retrieval, domain attribute transfer, etc.
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