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Abstract

Semantic, instance, and panoptic segmentation of 3D
point clouds have been addressed using task-specific mod-
els of distinct design. Thereby, the similarity of all seg-
mentation tasks and the implicit relationship between them
have not been utilized effectively. This paper presents a
unified, simple, and effective model addressing all these
tasks jointly. The model, named OneFormer3D, performs
instance and semantic segmentation consistently, using a
group of learnable kernels, where each kernel is responsi-
ble for generating a mask for either an instance or a seman-
tic category. These kernels are trained with a transformer-
based decoder with unified instance and semantic queries
passed as an input. Such a design enables training a model
end-to-end in a single run, so that it achieves top per-
formance on all three segmentation tasks simultaneously.
Specifically, our OneFormer3D ranks 1st and sets a new
state-of-the-art (+2.1 mAP50) in the ScanNet test leader-
board. We also demonstrate the state-of-the-art results in
semantic, instance, and panoptic segmentation of ScanNet
(+21 PQ), ScanNet200 (+3.8 mAP50), and S3DIS (+0.8
mIoU) datasets.

1. Introduction
3D point cloud segmentation is the task of grouping points
into meaningful segments. Such a segment may comprise
points of the same semantic category or belonging to the
same single object (an instance). Semantic- and instance-
based grouping give rise to three formulations of the seg-
mentation task: semantic, instance, and panoptic. Semantic
segmentation outputs a mask for each semantic category, so
that each point in a point cloud gets assigned with a seman-
tic label. Instance segmentation returns a set of masks of in-
dividual objects; since some regions cannot be treated as an
distinguishable object but rather serve as a background (like
a floor or a ceiling), only a part of points in a point cloud
is being labeled. Panoptic segmentation is the most gen-
eral formulation: it implies predicting a mask for each fore-
ground object (thing), and a semantic label for each back-

Semantic
Model

Instance
Model

Panoptic
Model

Semantic
SOTA

Instance
SOTA

Panoptic
SOTA

Semantic
SOTA

Instance
SOTA

Panoptic
SOTA

Unified
Model

Existing approaches

OneFormer3D, ours

Point
Cloud

Point
Cloud

Figure 1. Traditional 3D point cloud segmentation methods ad-
dress different tasks with task-specific models to achieve the best
performance. We propose OneFormer3D, a 3D segmentation
framework that tackles semantic, instance, and panoptic segmen-
tation tasks with a multi-task train-once design.

ground point (stuff ).
Despite all three 3D segmentation tasks actually imply

predicting a set of masks, they are typically solved with
models of completely different architectures. 3D seman-
tic segmentation methods rely on U-Net-like networks [6,
22, 25, 27, 34, 40, 48]. 3D instance segmentation methods
combine semantic segmentation models with aggregation
schemes based either on clustering [3, 10, 13, 21, 35, 49],
object detection [11, 15], or transformer decoders [31, 32].
3D panoptic segmentation methods [23, 38, 44] perform
panoptic segmentation in 2D images, than lift the predicted
masks into 3D space and aggregate them point-wise. The
question naturally arises: is it possible to tackle all three 3D
segmentation tasks jointly with a single unified approach?

Recenty, various ways of unifying 2D segmentation
methods have been proposed [4, 5, 41]. All these meth-
ods train a single panoptic model on all three tasks, so that
high performance is obtained without changing the network
architecture. Still, the best results are achieved when the
model is trained for each task separately. As can be ex-
pected, such a training policy results in three times larger
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time- and memory footprint: training lasts longer and pro-
duces different sets of model weights for each task. This
drawback was eliminated in a recent OneFormer [12] –
a multi-task unified image segmentation approach, which
outperforms existing state-of-the-arts in all three image seg-
mentation tasks after training on a panoptic dataset jointly.

Following the same path, we propose OneFormer3D, the
first multi-task unified 3D segmentation framework (Fig.
1). Using a well-known SPFormer [32] baseline, we add
semantic queries in parallel with instance queries in a trans-
former decoder to unify predicting semantic and instance
segmentation masks. Then, we identify the reasons for un-
stable performance of transformer-based 3D instance seg-
mentation, and resolve the issues with a novel query se-
lection mechanism and a new efficient matching strategy.
Finally, we come up with a single unified model trained
only once, that outperforms 3D semantic, 3D instance, and
3D panoptic segmentation methods – even though they are
specifically tuned for each task.

To summarize, our contributions are as follows:
• OneFormer3D – the first multi-task unified 3D segmenta-

tion framework, which allows training a single model on
a common panoptic dataset to solve three segmentation
tasks jointly;

• A novel query selection strategy and an efficient matching
strategy without Hungarian algorithm, that should be used
in combination for the best quality;

• State-of-the-art results in 3D semantic, 3D instance, and
3D panoptic segmentation in three indoor benchmarks:
ScanNet [8], ScanNet200 [28], and S3DIS [1].

2. Related Work
2.1. 3D Point Cloud Segmentation

3D Semantic Segmentation. Learning-based methods
for semantic segmentation of 3D point clouds leverage U-
Net-like models to process either 3D points (point-based)
or voxels (voxel-based). Point-based methods exploit hand-
crafted aggregation mechanisms [22, 25, 27, 34] or trans-
former blocks [40, 48] for direct processing of points.
Voxel-based methods transform a point cloud of an irreg-
ular structure to a regular voxel grid, and pass these vox-
els through dense [11] or sparse [6] 3D convolutional net-
work. Considering time- and memory efficiency, we opt
for a sparse convolutional U-Net as a backbone, and com-
bine it with a transformer decoder; to the best of our knowl-
edge, OneFormer3D is the ever-first method using such a
decoder to solve the 3D semantic segmentation task for in-
door scenes.

3D Instance Segmentation. Instance segmentation of 3D
point clouds is typically addressed with 3D semantic seg-
mentation followed by per-point features aggregation. Ear-

lier approaches can be classified into top-down proposal-
based methods [11, 15, 33, 45] or bottom-up grouping-
based methods [3, 10, 13, 21, 35]. Current state-of-the-art
results belong to recently emerged transformer-based meth-
ods, that outperform the predecessors in both accuracy [31]
and inference speed [32]. We consider SPFormer [32] as
our baseline, and extend it, so that it solves not a single 3D
instance segmentation but all three 3D segmentation tasks.

3D Panoptic Segmentation. Panoptic segmentation of
3D point clouds is an underexplored problem, with only few
existing solutions [23, 38, 44]; all of them being trained and
validated only on the ScanNet dataset. These methods apply
panoptic segmentation to a set of RGB images, lift the pre-
dicted 2D panoptic masks into 3D space, and obtain final
3D panoptic masks through aggregation. On the contrary,
our OneFormer3D does not require additional RGB data to
achieve state-of-the-art panoptic segmentation quality.

2.2. Unified 2D Image Segmentation

Unified 2D segmentation has been extensively researched
over the past years, resulting in a variety of methods pro-
posed [4, 5, 41]. K-Net [47] uses a convolutional network
with dynamic learnable instance and semantic kernels with
bipartite matching. MaskFormer [4] is a transformer-based
architecture for mask classification. It was inspired by ob-
ject detection [2], where the image is first fed to the encoder
to obtain queries, then the decoder outputs proposals based
on these queries. Mask2Former [5] extends MaskFormer
with learnable queries, deformable multi-scale attention in
the decoder, and a masked cross-attention, setting a new
state-of-the-art in all three segmentation tasks. However,
all methods mentioned above still require training the model
individually for each task to achieve the best performance.
OneFormer [12] was the pioneer 2D image segmentation
approach, that employs task-conditioned joint training strat-
egy and achieves state-of-the-art results in three segmenta-
tion tasks simultaneously with a single model. Similarly,
we build OneFormer3D for 3D point cloud segmentation.

3. Proposed Method

The general scheme of OneFormer3D is shown in Fig. 2,
with a baseline components depicted in blue and novelty
points highlighted with a red color. Our framework is in-
herited from SPFormer [32], which was originally proposed
to tackle 3D instance segmentation. SPFormer is chosen
due to its straightforward pipeline, fast inference, and small
memory footprint during both training and inference; yet,
any modern 3D instance segmentation method with a trans-
former decoder can be used instead (e.g., Mask3D [31]).

First, a sparse 3D U-net extracts point-wise features
(Sec. 3.1). Then, these features pass through a flexible
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Figure 2. The OneFormer3D framework is based on SPFormer (blue), but features a number of improvements (red). Taking a 3D point
cloud as input, our trained model solves 3D instance, 3D semantic, and 3D panoptic segmentation tasks. The dotted line depicts components
that are applied only during the training.

pooling, that obtains superpoint features through simply av-
eraging features of points in a superpoint. Superpoint fea-
tures serve as keys and values for a transformer decoder
(Sec. 3.2), that also accepts learnable semantic and instance
queries as inputs. The decoder captures superpoints infor-
mation via a cross-attention mechanism, and outputs a set
of learned kernels, each representing a single object mask of
an instance identity (from an instance query) or a semantic
region (from a semantic query). A disentangled matching
strategy is adopted to train instance kernels in an end-to-
end manner (Sec. 3.3). As a result, a trained OneFormer3D
can seamlessly solve semantic, instance, and panoptic seg-
mentation (Sec. 3.4).

3.1. Backbone and Pooling

Sparse 3D U-Net. Assuming that an input point cloud
contains N points, the input can be formulated as P ∈
RN×6. Each 3D point is parameterized with three colors
r, g, b, and three coordinates x, y, z. Following [6], we
voxelize point cloud, and use a U-Net-like backbone com-
posed of sparse 3D convolutions to extract point-wise fea-
tures P ′ ∈ RN×C .

Flexible pooling. For a greater flexibility, we implement
pooling based on either superpoints or voxels. In a super-
point pooling scenario, superpoint features S ∈ RM×C are
obtained via average pooling of point-wise features P′ ∈
RN×C w.r.t. pre-computed superpoints [18]. Without loss
of generality, we suppose that there are M superpoints in
an input point cloud. In a voxel pooling scenario, we pool
backbone features w.r.t. voxel grid. Voxelization is a triv-
ial operation with a negligible computational overhead; ac-

cordingly, it can be preferred to computationally-heavy su-
perpoint clustering in resource-constrained usage scenarios.
We refer to this superpoint-based / voxel-based pooling as
flexible pooling. This procedure transforms an input point
cloud comprised of millions of points into only hundreds
of superpoints or thousands of voxels, which significantly
reduces the computational cost of subsequent processing.

3.2. Query Decoder

A query decoder takes Kins +Ksem queries as inputs and
transforms them into Kins + Ksem kernels. Then, su-
perpoint features are convolved with these kernels to pro-
duce Kins instance and Ksem semantic masks, respectively.
The architecture of a query decoder is inherited from SP-
Former [32]: similarly, six sequential transformer decoder
layers employ self-attention on queries and cross-attention
with keys and values from superpoint features. Semantic
queries are initialized randomly, same as in existing 3D in-
stance segmentation methods [31, 32]. Instance queries are
initialized through the query selection strategy.

Query selection. State-of-the-art 2D object detection and
2D instance segmentation methods [20, 46, 51] initialize
queries using advanced strategies, usually referred to as
query selection. Specifically, input queries are initialized
with features from a transformer encoder, sampled based
on an objectness score. This score is estimated by the same
model, which is guided by an additional objectness loss
during the training. The described technique is proved to
speed up the training, while jointly improving the overall
accuracy. Yet, to the best of our knowledge, a similar ap-
proach was never applied in 3D object detection or 3D seg-
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mentation. So, we aim to close this gap with a simplified
version of query selection adapted for 3D data and a non-
transformer encoder. Particularly, we initialize queries with
backbone features after a flexible pooling. By a query selec-
tion, we randomly select only a half of initialized queries for
an extra augmentation during the training. During the infer-
ence, we initialize queries similarly, but do not filter queries
to keep all input information.

3.3. Training

To train a transformer-based method end-to-end, we need to
define a cost function between queries and ground truth ob-
jects, develop a matching strategy that minimizes this cost
function, and formulate a loss function being applied to the
matched pairs.

Cost function. Following SPFormer [32], we use a pair-
wise matching cost Cik to measure the similarity of the i-th
proposal and the k-th ground truth. Cik is derived from a
classification probability and a superpoint mask matching
cost Cmask

ik :

Cik = −λ · pi,ck + Cmask
ik , (1)

where pi,ck indicates the probability of i-th proposal be-
longing to the ck semantic category. In our experiments,
we use λcls = 0.5. The superpoint mask matching cost
Cmask
ik is a sum of a binary cross-entropy (BCE) and a Dice

loss with a Laplace smoothing:

Cmask
ik = BCE(mi,m

gt
k ) + 1− 2

mi ·mgt
k + 1

|mi|+
∣∣mgt

k

∣∣+ 1
, (2)

where mi and mgt
k are a predicted and ground truth mask of

a superpoint, respectively.

Disentangled matching. Previous state-of-the-art
2D transformer-based methods [2, 4, 5, 20] and 3D
transformer-based methods [31, 32] exploit a bipartite
matching strategy based on a Hungarian algorithm [16].
This commonly-used approach has though a major draw-
back: an excessive number of meaningful matches between
proposals and ground truth instances makes the training
process long-lasting and unstable.

On the contrary, we perform a simple trick that elim-
inates the need for resource-exhaustive Hungarian match-
ing. Since an instance query is initialized with features
of a superpoint, this instance query can be unambiguously
matched with this superpoint. We assume that a superpoint
can belong only to one instance, that gives a correspondence
between a superpoint and a ground truth object. By bringing
everything together, we can establish the correspondence
between a ground truth object, a superpoint, an instance

query, and an instance proposal derived from this instance
query. Finally, by skipping intermediate correspondences,
we can directly match an instance proposal to a ground truth
instance. The obtained correspondence disentangles the bi-
partite graph of proposals and ground truth instances, that
is why we refer to it as our disentangled matching.

Still, the number of proposals exceeds the number of
ground truth instances, so we need to filter out proposals
that do not correspond to ground truth objects to obtain a
bipartite matching. The disentangled matching trick sim-
plifies cost function optimization, as we can set the most
weights in a cost matrix to infinity:

Ĉik =

{
Cik if i-th superpoint ∈ k-th object
+∞ otherwise (3)

In a standard case, all cost matrix elements are non-infinite,
and the optimal solution can be obtained via a Hungar-
ian matching with a computational complexity of O(K3

ins).
Our disentangled matching is notably more efficient, having
a O(Kins) complexity. For a ground truth instance k, we
only need to select the proposal i with the least Ĉik. Since
there is only one non-infinite value per proposal, this oper-
ation is trivial and can be performed in a linear time.

Loss. After matching proposals with ground truth in-
stances, instance losses can finally be calculated. Classi-
fication errors are penalized with a cross-entropy loss Lcls.
Besides, for each match between a proposal and a ground
truth instance, we compute the superpoint mask loss as a
sum of binary cross-entropy Lbce and a Dice loss Ldice.

Ksem semantic queries correspond to ground truth
masks of Ksem semantic categories given in a fixed order,
so no specific matching is required. The semantic loss Lsem

is defined as a binary cross-entropy.
The total loss L is formulated as:

L = β · Lcls + Lbce + Ldice + Lsem, (4)

where β = 0.5 as in [32].

3.4. Inference

During inference, given an input point cloud, OneFormer3D
directly predicts Ksem semantic masks and Kins instance
with classification scores pi, i ∈ 1, ... Kins, where each
mask mi is a set of superpoints. Then, we convolve su-
perpoint features S ∈ RM×C with each predicted kernel
li ∈ R1×C to get a mask mi ∈ RM×1: mi = S ∗ li.
The final binary segmentation masks are obtained by thresh-
olding probability scores. Besides, for mi, we calculate a
mask score qi ∈ [0, 1] by averaging probabilities exceeding
the threshold, and use it to set an initial ranking score si:
si = pi · qi. Finally, si values are leveraged for re-ranking
predicted instances using matrix-NMS [37].
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Panoptic prediction is obtained from instance and se-
mantic outputs. It is initialized with estimated semantics,
then, instance predictions are overlaid consequently, sorted
by a ranking score in an increasing order.

4. Experiments

4.1. Experimental Settings

Datasets. The experiments are conducted on ScanNet [8],
ScanNet200 [28], and S3DIS [1] datasets. ScanNet [8] con-
tains 1613 scans divided into training, validation, and test-
ing splits of 1201, 312, and 100 scans, respectively. 3D
instance segmentation is typically evaluated using 18 object
categories. Two more categories (wall and floor) are added
for semantic and panoptic evaluation. We report results on
both validation and hidden test splits. ScanNet200 [28] ex-
tends the original ScanNet semantic annotation with fine-
grained categories with the long-tail distribution, resulting
in 198 instance with 2 more semantic classes. The train-
ing, validation, and testing splits are similar to the origi-
nal ScanNet dataset. The S3DIS dataset [1] features 272
scenes within 6 large areas. Following the standard evalua-
tion protocol, we assess the segmentation quality on scans
from Area-5, and via 6 cross-fold validation, using 13 se-
mantic categories in both settings. Following the official
[1] split, we classify these 13 categories as either structured
or furniture, and define 5 furniture categories (table, chair,
sofa, bookcase, and board) as thing, and the remaining eight
categories as stuff for panoptic evaluation.

Metrics. We use mIoU to measure the quality of 3D se-
mantic segmentation. For 3D instance segmentation, we
report a mean average precision (mAP), which is an aver-
age of scores obtained with IoU thresholds set from 50%
to 95%, with a step size of 5%. mAP50 and mAP25 denote
the scores with IoU thresholds of 50% and 25%, respec-
tively. Additionally, we calculate mean precision (mPrec),
and mean recall (mRec) for S3DIS, following the standard
evaluation protocol established in this benchmark. The ac-
curacy of panoptic predictions is assessed with the PQ score
[14]; we also report PQth and PQst, estimated for thing and
stuff categories, respectively.

Implementation Details. Our OneFormer3D is imple-
mented in MMDetection3D framework [7]. All training
details are inherited from SPFormer [32], including using
AdamW optimizer with an initial learning rate of 0.0001,
weight decay of 0.05, batch size of 4, and polynomial
scheduler with a base of 0.9 for 512 epochs. We apply the
standard augmentations: horizontal flipping, random rota-
tions around the z-axis, elastic distortion, and random scal-
ing. On ScanNet and ScanNet200, we apply graph-based

superpoint clusterization [18] and use a voxel size of 2cm.
On S3DIS, voxel size is set to 5cm due to larger scenes.

4.2. Comparison to Prior Work

We compare our OneFormer3D with previous art on three
indoor benchmarks: ScanNet [8], S3DIS [1], and Scan-
Net200 [28] in Tab. 2, 3, and 4, respectively. On the Scan-
Net validation split, we set a new state-of-the art in instance,
semantic, and panoptic segmentation tasks with a unified
approach. Specifically, the instance segmentation scores in-
crease by +2.9 mAP25, +4.4 mAP25, and +4.1 mAP com-
pared to SPFormer [32] and a more recent Mask3D [31],
which is a notable improvement. Besides, OneFormer3D
scores top-1 in the ScanNet hidden test leaderboard at 17
Nov. 2023 with 80.1 mAP50 (+2.1 w.r.t. Mask3D), and in-
credible 89.6 mAP25 (+2.1 w.r.t. TD3D [15]). At the same
time, OneFormer3D supersedes PointTransformerV2[40],
a state-of-the-art semantic segmentation method, by +1.2
mIoU. Panoptic segmentation has not been investigated
so extensively as the other two segmentation tasks, so
this track is represented with few baselines demonstrating
mediocre performance. Respectively, the improvement here
is especially tangible: OneFormer3D outperforms TUPPer-
Map by +21.0 PQ, hitting as high as 71.2.

Method Presented at
Box Box

mAP25 mAP50

VoteNet [26] ICCV’19 58.6 33.5
PBNet [49] ICCV’23 69.3 60.1
FCAF3D [29] ECCV’22 71.5 57.3
SoftGroup [35] CVPR’22 71.6 59.4
TR3D [30] ICIP’23 72.9 59.3
CAGroup3D [36] NeurIPS’22 75.1 61.3
OneFormer3D 76.9 65.3

Table 1. Comparison of existing 3D object detection methods on
the ScanNet validation split.

Besides, we adopt OneFormer3D to 3D object detection
by enclosing predicted 3D instances with tight axis-aligned
3D bounding boxes. The comparison with existing 3D ob-
ject detection methods in presented in Tab. 1. As can be
seen, OneFormer3D achieves +4.0 mAP50 w.r.t. a strong
CAGroup3D[36] baseline, setting a new state-of-the-art in
3D object detection with 65.1 mAP50 with no extra training.

On S3DIS dataset, our unified approach demonstrates
state-of-the-art results on all segmentation tasks, in both
Area-5 and 6-fold cross-validation benchmarks. Here, the
most significant gain is achieved in instance segmentation
on 6-fold cross-validation, with +1.5 mAP50 and +1.2 mAP
w.r.t. Mask3D. In both benchmarks, we outperform state-
of-the-art TD3D and Mask3D in terms of mPrec50 and
mRec50. Despite we find these metrics less representative
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Method Presented at
Instance Semantic Panoptic

mAP25 mAP50 mAP mIoU PQ PQth PQst

Validation split
3D-SIS [11] CVPR’19 35.7 18.7
GSPN [45] CVPR’19 53.4 37.8 19.3
NeuralBF [33] WACV’23 71.1 55.5 36.0
PointGroup [13] CVPR’20 71.3 56.7 34.8
OccuSeg [9] CVPR’20 71.9 60.7 44.2
DyCo3D [10] CVPR’21 72.9 57.6 35.4
SSTNet [21] ICCV’21 74.0 64.3 49.4
HAIS [3] ICCV’21 75.6 64.4 43.5
DKNet [41] ICCV’22 76.9 66.7 50.8
SoftGroup [35] CVPR’22 78.9 67.6 45.8
PBNet [49] ICCV’23 78.9 70.5 54.3
TD3D [15] WACV’24 81.9 71.2 47.3
ISBNet [24] CVPR’23 82.5 73.1 54.5
SPFormer [32] AAAI’23 82.9 73.9 56.3
Mask3D [31] ICRA’23 83.5 73.7 55.2
PointNet++ [25] NeurIPS’17 53.5
PointConv [39] CVPR’19 61.0
PointASNL [43] CVPR’20 63.5
KPConv [34] ICCV’19 69.2
PointTransformer [48] ICCV’21 70.6
PointNeXt-XL [27] NeurIPS’22 71.5
MinkUNet [6] CVPR’19 72.2
PointMetaBase-XXL [22] CVPR’23 72.8
Stratified Transformer [17] CVPR’22 74.3
PointTransformerV2 [40] NeurIPS’22 75.4
SceneGraphFusion [38] CVPR’21 31.5 30.2 43.4
PanopticFusion [23] IROS’19 33.5 30.8 58.4
TUPPer-Map [44] IROS’21 50.2 47.8 71.5
OneFormer3D (ours) 86.4 78.1 59.3 76.6 71.2 69.6 86.1

Hidden test split at 17 Nov. 2023
NeuralBF [33] WACV’23 71.8 55.5 35.3
DyCo3D [10] CVPR’21 76.1 64.1 39.5
PointGroup [13] CVPR’20 77.8 63.6 40.7
SSTNet [21] ICCV’21 78.9 69.8 50.6
HAIS [3] ICCV’21 80.3 69.9 45.7
DKNet [41] ICCV’22 81.5 71.8 53.2
ISBNet [24] CVPR’23 83.5 75.7 55.9
SPFormer [32] AAAI’23 85.1 77.0 54.9
SoftGroup [35] CVPR’22 86.5 76.1 50.4
Mask3D [31] ICRA’23 87.0 78.0 56.6
TD3D [15] WACV’24 87.5 75.1 48.9
OneFormer3D (ours) 89.6 80.1 56.6

Table 2. Comparison of the existing segmentation methods on ScanNet. Our OneFormer3D sets the new state-of-the art in all segmentation
tasks: instance, semantic, and panoptic.

than mAP, we report them to fairly compare with previ-
ous methods, and to maintain consistency of the established
evaluation protocol.

We also demonstrate the top 3D instance segmenta-
tion quality on the ScanNet200 validation split, achieving
at least +3 in mAP25, mAP50, and mAP. To the best of

our knowledge, no panoptic segmentation results on Scan-
Net200 and S3DIS has been reported so far, so we provide
our scores as a basis for the future research in this field.
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Method
Instance Semantic Panoptic

mAP50 mAP mPrec50 mRec50 mIoU PQ PQth PQst

Area-5 validation
PointGroup [13] 57.8 61.9 62.1
DyCo3D [10] 64.3 64.2
SSTNet [21] 59.3 42.7 65.5 64.2
DKNet [41] 70.8 65.3
HAIS [3] 71.1 65.0
TD3D [15] 65.1 48.6 74.4 64.8
SoftGroup [35] 66.1 51.6 73.6 66.6
PBNet [49] 66.4 53.5 74.9 65.4
SPFormer [32] 66.8 72.8 67.1
Mask3D [31] 71.9 57.8 74.3 63.7
SegGCN [19] 63.6
MinkUNet [6] 65.4
PAConv [42] 66.6
KPConv[34] 67.1
PointTransformer [48] 70.4
PointNeXt-XL [27] 70.5
PointTransformerV2 [40] 71.6
Stratified Transformer [17] 72.0
OneFormer3D (ours) 72.0 58.7 79.7 73.0 72.4 62.2 58.4 65.5

6-fold cross-validation
PointGroup [13] 64.0 69.6 69.2
HAIS [3] 73.2 69.4
SSTNet [21] 67.8 54.1 73.5 73.4
DKNet [41] 75.3 71.1
TD3D [15] 68.2 56.2 76.3 74.0
SoftGroup [35] 68.9 54.4 75.3 69.8
SPFormer [32] 69.2 74.0 71.1
PBNet [49] 70.6 59.5 80.1 72.9
Mask3D [31] 74.3 61.8 76.5 66.2
PointNet++ [25] 56.7
MinkUNet [6] 69.1
KPConv [34] 70.6
PointTransformer [48] 73.5
PointNeXt-XL [27] 74.9
OneFormer3D (ours) 75.8 63.0 82.3 74.1 75.0 68.5 61.5 74.5

Table 3. Comparison of existing segmentation methods on S3DIS. Our OneFormer3D sets the new state-of-the art in all segmentation
tasks: instance, semantic, and panoptic.

Method
Instance Semantic Panoptic

mAP25 mAP50 mAP mIoU PQ PQth PQst

PointGroup[13] 24.5
PointGroup + LGround[28] 26.1
TD3D[15] 40.4 34.8 23.1
Mask3D[31] 42.3 37.0 27.4
MinkUNet[6] 25.0
MinkUNet + LGround[28] 28.9
OneFormer3D (ours) 45.4 40.8 30.6 30.1 31.2 30.7 78.6

Table 4. Comparison of existing segmentation methods on the ScanNet200 validation split. Our OneFormer3D sets the new state-of-the
art in all segmentation tasks: instance, semantic, and panoptic.
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QS Matching mAP25 mAP50 mAP

SPFormer, baseline
Hungarian 82.9 73.9 56.3

OneFormer3D, ours
Hungarian 84.4 75.6 58.0

✓ Hungarian 84.6 75.9 58.1
✓ disentangled 86.4 78.1 59.3

Table 5. Comparison of query initialization and matching strate-
gies on the ScanNet validation split. QS is our query selection.

4.3. Ablation Studies

Query selection & disentangled matching. First, we ab-
late key novel components of our pipeline on the Scan-
Net validation split, and report the results in Tab. 5. In
this study, we only compare instance segmentation metrics,
since both ablated components do not affect semantic seg-
mentation. SPFormer [32] uses random query initialization
and Hungarian matching strategy; we evaluate it with the
same backbone for a fair comparison. Evidently, our reim-
plementation with joint instance and semantic training has
a minor gain over the baseline. Besides, our query selec-
tion scheme does not improve the quality if combined with
the baseline bipartite matching scheme. But, the synergy
of these two modifications allows for the state-of-the-art re-
sults, improving mAP25, mAP50, and mAP by at least +1.3.

Pretraining and pooling. Previous state-of-the-art meth-
ods [3, 31, 32, 35] use pretraining to achieve the highest
scores on S3DIS, as this dataset is fairly small, with 272
scenes in total. Following the best practices, we pre-train
our OneFormer3D on ScanNet, which gives significant per-
formance boost: +8.0 mAP50 and +10.2 mIoU (Tab. 6).
When being pretrained on ScanNet, OneFormer3D and SP-
Former demonstrate comparable results. We also leverage a
large scale synthetic Structured3D [50] dataset for pretrain-
ing, which is an order of magnitude larger than ScanNet,
with as many as 21835 scenes. In this experiment, benefits
from using a larger amount of training data exceed the pos-
sible negative effect of a domain gap: the best results are
achieved with pretraining on a mixture of real and synthetic
data, bringing at least +11.5 in both mAP50 and mIoU.

Besides, we investigate how our flexible pooling affects
the final performance. To this end, we switch it off by re-
placing superpoints with voxels of 5cm. According to the
Tab. 6, the gain is at least of +1.2 in both mAP50 and
mIoU. Yet, we should mention that superpoint clustering
takes almost a half of the entire inference time, so removing
it causes at least two times speed-up and eliminates the need
to select and tune such an algorithm for each dataset.

Pretrain on
Pooling Instance

mAP50

Semantic
mIoUScan- Struc-

Net tured3D

SPFormer, baseline
✓ superpoint 66.8

OneFormer3D, ours
voxel 60.5 59.1

✓ voxel 68.5 69.3
✓ superpoint 67.1 68.1

✓ voxel 65.1 66.2
✓ ✓ voxel 72.0 72.4

Table 6. Ablation study of pretraining and feature pooling on
S3DIS Area 5. We demonstrate the benefits of pretraining on the
mixture of real ScanNet and synthetic Structured3D data.

Instance Semantic Instance Semantic Panoptic
queries queries mAP50 mIoU PQ

✓ 78.1
✓ 72.8

✓ ✓ 78.1 76.6 71.2

Table 7. Benefits of joint instance-semantic training on ScanNet
validation split. Not only OneFormer3D allows panoptic segmen-
tation for free, but also improves semantic segmentation.

Joint training. Training a single unified model but three
reduces the training time three times, but, more importantly,
it also improves segmentation metrics. As can be seen from
Tab. 7, instance segmentation accuracy remains unchanged,
while the accuracy of semantic predictions grows by as
much as +3.4 mIoU. We assume that using a large trans-
former decoder causes overfitting for a semantic segmen-
tation task, but adding an extra instance segmentation task
serves as a regularization and reduces the overfitting, hence
improving semantic scores. For instance segmentation, the
improvement is negligible, mainly because semantic anno-
tations for all non-stuff classes can be derived from instance
one, so adds limited new information for model training.

5. Conclusion
In this paper, we proposed a novel transformer-based
framework, OneFormer3D, that unifies three 3D point
cloud segmentations tasks: instance, semantic, and panop-
tic. Trained only once on a panoptic dataset, OneFormer3D
consistently outperforms existing segmentation approaches
– even though they are trained separately on each task.
We also identified the weaknesses of existing transformer-
based 3D instance segmentation methods, and addressed
them with a novel query selection and disentangled
matching strategies. In extensive experiments on ScanNet,
ScanNet200, and S3DIS, OneFormer3D established a
new state-of-the-art in all three 3D segmentation tasks.
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