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Abstract

Diffusion models are generative models with impressive
text-to-image synthesis capabilities and have spurred a new
wave of creative methods for classical machine learning
tasks. However, the best way to harness the perceptual
knowledge of these generative models for visual tasks is
still an open question. Specifically, it is unclear how to
use the prompting interface when applying diffusion back-
bones to vision tasks. We find that automatically gener-
ated captions can improve text-image alignment and sig-
nificantly enhance a model’s cross-attention maps, lead-
ing to better perceptual performance. Our approach im-
proves upon the current state-of-the-art (SOTA) in diffusion-
based semantic segmentation on ADE20K and the cur-
rent overall SOTA for depth estimation on NYUv2. Fur-
thermore, our method generalizes to the cross-domain set-
ting. We use model personalization and caption mod-
ifications to align our model to the target domain and
find improvements over unaligned baselines. Our cross-
domain object detection model, trained on Pascal VOC,
achieves SOTA results on Watercolor2K. Our cross-domain
segmentation method, trained on Cityscapes, achieves
SOTA results on Dark Zurich-val and Nighttime Driving.
Project page: vision.caltech.edu/TADP/ Code
page: github.com/damaggu/TADP

1. Introduction
Diffusion models have set the state-of-the-art (SOTA) for
image generation [32, 35, 38, 52]. Recently, a few works
have shown diffusion pre-trained backbones have a strong
prior for scene understanding that allows them to perform
well in advanced discriminative vision tasks, such as se-
mantic segmentation [17, 53], monocular depth estimation
[53], and keypoint estimation [28, 43]. We refer to these
works as diffusion-based perception methods. Unlike con-
trastive vision language models (e.g., CLIP) [22, 26, 31],
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Figure 1. Text-Aligned Diffusion Perception (TADP). In TADP,
image captions align the text prompts and images passed to
diffusion-based vision models. In cross-domain tasks, target do-
main information is incorporated into the prompt to boost perfor-
mance.

generative models have a causal relationship with text, in
which text guides image generation. In latent diffusion
models, text prompts control the denoising U-Net [36],
moving the image latent in a semantically meaningful di-
rection [5].

We explore this relationship and find that text-image
alignment significantly improves the performance of
diffusion-based perception. We then investigate text-target
domain alignment in cross-domain vision tasks, finding that
aligning to the target domain while training on the source
domain can improve a model’s target domain performance
(Fig. 1).

We first study prompting for diffusion-based perceptual
models and find that increasing text-image alignment im-
proves semantic segmentation and depth estimation perfor-
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mance. We find that unaligned text prompts can introduce
semantic shifts to the feature maps of the diffusion model
[5] and that these shifts can make it more difficult for the
task-specific head to solve the target task. Specifically,
we ask whether unaligned text prompts, such as averag-
ing class-specific sentence embeddings ([31, 53]), hinder
performance by interfering with feature maps through the
cross-attention mechanism. Through ablation experiments
on Pascal VOC2012 segmentation [14] and ADE20K [55],
we find that off-target and missing class names degrade im-
age segmentation quality. We show automated image cap-
tioning [25] achieves sufficient text-image alignment for
perception. Our approach (along with latent representation
scaling, see Sec. 4.1) improves performance for semantic
segmentation on Pascal and ADE20k by 4.0 mIoU and 1.7
mIoU, respectively, and depth estimation on NYUv2 [42]
by 0.2 RMSE (+8% relative) setting the new SOTA.

Next, we focus on cross-domain adaptation: can ap-
propriate image captioning help visual perception when
the model is trained in one domain and tested on a dif-
ferent domain? Training models on the source domain
with the appropriate prompting strategy leads to excellent
unsupervised cross-domain performance on several bench-
marks. We evaluate our cross-domain method on Pascal
VOC [13, 14] to Watercolor2k (W2K) and Comic2k (C2K)
[21] for object detection and Cityscapes (CS) [9] to Dark
Zurich (DZ) [39] and Nighttime (ND) Driving [10] for se-
mantic segmentation. We explore varying degrees of text-
target domain alignment and find that improved alignment
results in better performance. We also demonstrate using
two diffusion personalization methods, Textual Inversion
[16] and DreamBooth [37], for better target domain align-
ment and performance. We find that diffusion pre-training
is sufficient to achieve SOTA (+5.8 mIoU on CS!DZ, +4.0
mIoU on CS!ND, +0.7 mIoU on VOC!W2k) or near
SOTA results on all cross-domain datasets with no text-
target domain alignment, and including our best text-target
domain alignment method further improves +1.4 AP on Wa-
tercolor2k, +2.1 AP on Comic2k, and +3.3 mIoU on Night-
time Driving.
Overall, our contributions are as follows:

• We propose a new method using automated caption
generation that significantly improves performance on
several diffusion-based vision tasks through increased
text-image alignment.

• We systematically study how prompting affects
diffusion-based vision performance, elucidating the
impact of class presence, grammar in the prompt, and
previously used average embeddings.

• We demonstrate that diffusion-based perception effec-
tively generalizes across domains, with text-target do-
main alignment improving performance, which can be
further boosted by model personalization.

2. Related Work
2.1. Diffusion models for single-domain vision tasks
Diffusion models are trained to reverse a step-wise forward
noising process. Once trained, they can generate highly re-
alistic images from pure noise [32, 35, 38, 52]. To con-
trol image generation, diffusion models are trained with text
prompts/captions that guide the diffusion process. These
prompts are passed through a text encoder to generate text
embeddings that are incorporated into the reverse diffusion
process via cross-attention layers.

Recently, some works have explored using diffusion
models for discriminative vision tasks. This can be done
by either utilizing the diffusion model as a backbone for
the task [17, 28, 43, 53] or through fine-tuning the diffu-
sion model for a specific task and then using it to generate
synthetic data for a downstream model [2, 50]. We use the
diffusion model as a backbone for downstream vision tasks.

VPD [53] encodes images into latent representations and
passes them through one step of the Stable Diffusion model.
The cross-attention maps, multi-scale features, and output
latent code are concatenated and passed to a task-specific
head. Text prompts influence all these maps through the
cross-attention mechanism, which guides the reverse dif-
fusion process. The cross-attention maps are incorporated
into the multi-scale feature maps and the output latent rep-
resentation. The text guides the diffusion process and can
accordingly shift the latent representation in semantic di-
rections [1, 5, 16, 18]. The details of how VPD uses the
prompting interface are described in Sec. 3. In short, VPD
uses unaligned text prompts. In our work, we show how
aligning the text to the image by using a captioner can sig-
nificantly improve semantic segmentation and depth esti-
mation performance.

2.2. Image captioning
CLIP [31] introduced a novel learning paradigm to align
images with their captions. Shortly after, the LAION-5B
dataset [41] was released with 5B image-text pairs; this
dataset was used to train Stable Diffusion. We hypothe-
size that text-image alignment is important for diffusion-
pretrained vision models. However, images used in ad-
vanced vision tasks (like segmentation and depth estima-
tion) are not naturally paired with text captions. To obtain
image-aligned captions, we use BLIP-2 [25], a model that
inverts the CLIP latent space to generate captions for novel
images.

2.3. Diffusion models for cross-domain vision tasks
A few works explore the cross-domain setting with diffu-
sion models [2, 17]. Benigmim et al. [2] use a diffusion
model to generate data for a downstream unsupervised do-
main adaptation (UDA) architecture. In [17], the diffusion
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backbone is frozen, and the segmentation head is trained
with a consistency loss with category and scene prompts
guiding the latent code towards target cross-domains. Sim-
ilar to VPD, the category prompts consist of token embed-
dings for all classes present in the dataset, irrespective of
their presence in any specific image. The consistency loss
forces the model to predict the same output mask for all the
different scene prompts, helping the segmentation head be-
come invariant to the scene type. Instead of using a consis-
tency loss, we train the diffusion model backbone and task
head on the source domain data with and without incorpo-
rating the style of the target domain in the caption. We find
that better alignment with the target domain (i.e., target do-
main information included in the prompt) results in better
cross-domain performance.

2.4. Cross-domain object detection
Cross-domain object detection can be divided into multi-
ple subcategories, depending on what data / labels are at
train / test time available. Unsupervised domain adaptation
objection detection (UDAOD) tries to improve detection
performance by training on unlabeled target domain data
with approaches such as self-training [11, 44], adversarial
distribution alignment [54] or generating pseudo labels for
self-training [23]. Cross-domain weakly supervised object
detection (CDWSOD) assumes the availability of image-
level annotations at training time and utilizes pseudo label-
ing [21, 30], alignment [51] or correspondence mining [19].
Recently, [46] used CLIP [31] for Single Domain General-
ization, which aims to generalize from a single domain to
multiple unseen target domains. Our text-based method de-
fines a new category of cross-domain object detection that
tries to adapt from a single source to an unseen target do-
main by only having the broad semantic context of the target
domain (e.g., foggy/night/comic/watercolor) as text input to
our method. When we incorporate model personalization,
our method can be considered a UDAOD method since we
train a token based on unlabeled images from the target do-
main.

3. Methods
Stable Diffusion [35]. The text-to-image Stable Diffusion
model is composed of four networks: an encoder E , a condi-
tional denoising autoencoder (a U-Net in Stable Diffusion)
✏✓, a language encoder ⌧✓ (the CLIP text encoder in Stable
Diffusion), and a decoder D. E and D are trained before
✏✓, such that D(E(x)) = x̃ ⇡ x. Training ✏✓ is composed
of a pre-defined forward process and a learned reverse pro-
cess. The reverse process is learned using LAION-400M
[40], a dataset of 400 million images (x 2 X) and captions
(y 2 Y ). In the forward process, an image x is encoded
into a latent z0 = E(x), and t steps of a forward noise pro-
cess are executed to generate a noised latent zt. Then, to

learn the reverse process, the latent zt is passed to the de-
noising autoencoder ✏✓, along with the time-step t and the
image caption’s representation C = ⌧✓(y). ⌧✓ adds infor-
mation about y to ✏✓ using a cross-attention mechanism, in
which the query is derived from the image, and the key and
value are transformations of the caption representation. The
model ✏✓ is trained to predict the noise added to the latent
in step t of the forward process:

LLDM := EE(x),y,✏⇠N (0,1),t

h
k✏�✏✓(zt, t, ⌧✓(y))k22

i
, (1)

where t 2 {0, ..., T}. During generation, a pure noise la-
tent zT and a user-specified prompt are passed through the
denoising autoencoder ✏✓ for T steps and decoded D(z0) to
generate an image guided by the text prompt.

Diffusion for Feature Extraction. Diffusion backbones
have been used for downstream vision tasks in several re-
cent works [17, 28, 43, 53]. Due to its public availabil-
ity and performance in perception tasks, we use a modi-
fied version (see Sec. 4.1) of the feature extraction method
in VPD. An image latent z0 = E(x) and a conditioning
C are passed through the last step of the denoising process
✏✓(z0, 0, C). The cross-attention maps A and the multi-scale
feature maps F of the U-Net are concatenated V = A� F

and passed to a task-specific head H to generate a predic-
tion p̂ = H(V ). The backbone ✏✓ and head H are trained
with a task-specific loss LH(p̂, p).

Average EOS Tokens. To generate C, previous meth-
ods [17, 53] rely on a method from CLIP [31] to use aver-
aged text embeddings as representations for the classes in a
dataset. A list of 80 sentence templates for each class of in-
terest (such as “a <adjective> photo of a <class name>”)
are passed through the CLIP text encoder. We use B to de-
note the set of class names in a dataset. For a specific class
(b 2 B), the CLIP text encoder returns an 80 ⇥ N ⇥ D

tensor, where N is the maximum number of tokens over all
the templates, and D is 768 (the dimension of each token
embedding). Shorter sentences are padded with EOS to-
kens to fill out the maximum number of tokens. The first
EOS token from each sentence template is averaged and
used as the representative embedding for the class such that
C 2 R|B|⇥768. This method is used in [17, 53], we denote
it as Cavg and use it as a baseline. For semantic segmen-
tation, all of the class embeddings, irrespective of presence
in the image, are passed to the cross-attention layers. Only
the class embedding of the room type is passed to the cross-
attention layers for depth estimation.

3.1. Text-Aligned Diffusion Perception (TADP)
Our work proposes a novel method for prompting diffusion-
pretrained perception models. Specifically, we explore dif-
ferent prompting methods G to generate C. In the single-
domain setting, we show the effectiveness of a method
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Figure 2. Overview of TADP. We test several prompting strategies and evaluate their impact on downstream vision task performance. Our
method concatenates the cross-attention and multi-scale feature maps before passing them to the vision-specific decoder. In the blue box,
we show three single-domain captioning strategies with differing levels of text-image alignment. We propose using BLIP [25] captioning
to improve image-text alignment. We extend our analysis to the cross-domain setting (yellow box), exploring whether aligning the source
domain text captions to the target domain may impact model performance by appending caption modifiers to image captions generated in
the source domain and find model personalization modifiers (Textual Inversion/Dreambooth) work best.

that uses BLIP-2 [25], an image captioning algorithm,
to generate a caption as the conditioning for the model:
G(x) = ỹ ! C. We then extend our method to the cross-
domain setting by incorporating target domain information
to C = C + M(P)s, where M is a caption modifier that
takes target domain information P as input and outputs
a caption modification M(P)s and a model modification
M(P)✏✓ . In Sec. 4, we analyze the text-image interface
of the diffusion model by varying the captioner G and cap-
tion modifier M in a systematic manner for three differ-
ent vision tasks: semantic segmentation, object detection,
and monocular depth estimation. Our method and experi-
ments are presented in Fig. 2. Following [53], we train our
ADE20k segmentation and NYUv2 depth estimation mod-
els with fast and regular schedules. On ADE20k, we train
using 4k steps (fast), 8k steps (fast), and 80k steps (normal).
For NYUv2 depth, we train on a 1-epoch (fast) schedule and
a 25-epoch (normal) schedule. For implementation details,
refer to Appendix D.

4. Results
4.1. Latent scaling
Before exploring image-text alignment, we apply latent
scaling to encoded images (Appendix G of Rombach et al.
[35]). This normalizes the image latents to have a standard
normal distribution. The scaling factor is fixed at 0.18215.
We find that latent scaling improves performance using Cavg
for segmentation and depth estimation (Fig. 3). Specifically,
latent scaling improves ⇠0.8% mIoU on Pascal, ⇠0.3%
mIoU on ADE20K, and a relative ⇠5.5% RMSE on NYUv2
Depth (Fig. 3).

Method Avg TA LS G OT mIoUss

VPD(R) [53] X X X 82.34
VPD(LS) X X X X 83.06
Class Embs X X 82.72
Class Names X X 84.08
TADP-0 X X 86.36
TADP-20 X X 86.19
TADP-40 X X 87.11
TADP(NO)-20 X 86.35

TADP-Oracle X 89.85

Table 1. Prompting for Pascal VOC2012 Segmentation. We
report the single-scale validation mIoU for Pascal experiments.
(R): Reproduction of VPD, Avg: EOS token averaging, LS: La-
tent Scaling, G: Grammar, OT: Off-target information. For our
method, we indicate the minimum length of the BLIP caption with
TADP-X and nouns only with (NO).

4.2. Single-domain alignment
Average EOS Tokens. We scrutinize the use of average
EOS tokens for C (see Sec. 3). While average EOS tokens
are sensible when measuring cosine similarities in the CLIP
latent space, it is unsuitable in diffusion models, where the
text guides the diffusion process through cross-attention. In
our qualitative analysis, we find that average EOS tokens
degrade the cross-attention maps (Fig. 4). Instead, we ex-
plore using CLIP to embed each class name independently
and use the tokens corresponding to the actual word (not
the EOS token) and pass this as input to the cross-attention
layer:

GClassEmbs(B) = concat(CLIP(b)|b 2 B) ! CClassEmbs (2)
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Figure 3. Effects of Latent Scaling (LS) and BLIP caption min-
imum length. We report mIoU for Pascal, mIoU for ADE20K,
and RMSE for NYUv2 depth (right). (Top) Latent scaling im-
proves performance on Pascal ⇠0.8 mIoU (higher is better), ⇠0.3
mIoU, and ⇠5.5% relative RMSE (lower is better). (Bottom)
We see a similar effect for BLIP minimum token length, with
longer captions performing better, improving ⇠0.8 mIoU on Pas-
cal, ⇠0.9 mIoU on ADE20K, and ⇠0.6% relative RMSE.

Second, we explore a generic prompt, a string of class
names separated by spaces:

GClassNames(B) = {‘ ’ + b|b 2 B} ! CClassNames (3)

These prompts are similar to the ones used for averaged
EOS tokens Cavg w.r.t. overall text-image alignment but
instead use the token corresponding to the word represent-
ing the class name. We evaluate these variations on Pascal
VOC2012 segmentation. We find that CClassNames improves
performance by 1.0 mIoU, but CClassEmbs reduces perfor-
mance by 0.3 mIoU (see Tab. 1). We perform more in-depth
analyses of the effect of text-image alignment on the dif-
fusion model’s cross-attention maps and image generation
properties in Appendix A.

TADP. To align the diffusion model text input to the im-
age, we use BLIP-2 [25] to generate captions for every im-
age in our single-domain datasets (Pascal, ADE20K, and
NYUv2).

GTADP(x) = BLIP-2(x) ! CTADP(x) (4)

BLIP-2 is trained to produce image-aligned text captions
and is designed around the CLIP latent space. How-
ever, other vision-language algorithms that produce cap-
tions could also be used. We find that these text captions
improve performance in all datasets and tasks (Tabs. 1, 2,
3). Performance improves on Pascal segmentation by ⇠4%
mIoU, ADE20K by ⇠1.4% mIoU, and NYUv2 Depth by a
relative RMSE improvement of 4%. We see stronger effects
on the fast schedules for ADE20K with an improvement of
⇠5 mIoU at (4k), ⇠2.4 mIoU (8K). On NYUv2 Depth, we
see a smaller gain on the fast schedule ⇠2.4%. All numbers
are reported relative to VPD with latent scaling.

Method #Params FLOPs Crop mIoUss mIoUms

self-supervised pre-training
EVA [15] 1.01B - 8962 61.2 61.5
InternImage-L [48] 256M 2526G 6402 53.9 54.1
InternImage-H [48] 1.31B 4635G 8962 62.5 62.9

multi-modal pre-training
CLIP-ViT-B [33] 105M 1043G 6402 50.6 51.3
ViT-Adapter [8] 571M - 8962 61.2 61.5
BEiT-3 [49] 1.01B - 8962 62.0 62.8
ONE-PEACE [47] 1.52B - 8962 62.0 63.0

diffusion-based pre-training
VPDA32 [53] 862M 891G 5122 53.7 54.6
VPD(R) 862M 891G 5122 53.1 54.2
VPD(LS) 862M 891G 5122 53.7 54.4
TADP-40 (Ours) 862M 2168G 5122 54.8 55.9
TADP-Oracle 862M - 5122 72.0 -

Table 2. Semantic segmentation with different methods
for ADE20k. Our method (green) achieves SOTA within the
diffusion-pretrained models category. The results of our oracle in-
dicate the potential of diffusion-based models for future research
as it is significantly higher than the overall SOTA (highlighted in
yellow). See Tab. 1 for a notation key and Tab. S1 for fast schedule
results.

Method RMSE# �1 " �2 " �3 " REL # log10 #
default schedule

SwinV2-L [27] 0.287 0.949 0.994 0.999 0.083 0.035
AiT [29] 0.275 0.954 0.994 0.999 0.076 0.033
ZoeDepth [3] 0.270 0.955 0.995 0.999 0.075 0.032
VPD [53] 0.254 0.964 0.995 0.999 0.069 0.030

VPD(R) 0.248 0.965 0.995 0.999 0.068 0.029
VPD(LS) 0.235 0.971 0.996 0.999 0.064 0.028
TADP-40 0.225 0.976 0.997 0.999 0.062 0.027

fast schedule, 1 epoch

VPD 0.349 0.909 0.989 0.998 0.098 0.043
VPD(R) 0.340 0.910 0.987 0.997 0.100 0.042
VPD(LS) 0.332 0.926 0.992 0.998 0.097 0.041
TADP-0 0.328 0.935 0.993 0.999 0.082 0.038

Table 3. Depth estimation in NYUv2. We find latent scaling
accounts for a relative gain of ⇠ 5.5% on the RMSE metric. Ad-
ditionally, image-text alignment improves ⇠ 4% relative on the
RMSE metric. A minimum caption length of 40 tokens performs
the best.We also explore adding a text-adapter (TA) to TADP, but
find no significant gain. See Table 1 for a notation key.

We perform some ablations to analyze what aspects of
the captions are important. We explore the minimum token
number hyperparameter for BLIP-2 to explore if longer cap-
tions can produce more useful feature maps for the down-
stream task. We try a minimum token number of 0, 20, and
40 tokens (denoted as CTADP-N) and find small but consis-
tent gains with longer captions, resulting on average 0.75%
relative gain for 40 tokens vs. 0 tokens (Fig. 3). Next, we
ablate the Pascal CTADP-20 captions to understand what in the
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Figure 4. Cross-attention maps for different types of prompting (before training). We compare the cross-attention maps for four
types of prompting: oracle, BLIP, Average EOS tokens, and class names as space-separated strings. The cross-attention maps for different
heads at all different scales are upsampled to 64x64 and averaged. When comparing Average Template EOS and Class Names, we see
(qualitatively) averaging degrades the quality of the cross-attention maps. Furthermore, we find that class names that are not present in the
image can have highly localized attention maps (e.g., ‘bottle’). Further analysis of the cross-attention maps is available in Sec. A, where
we explore image-to-image generation, copy-paste image modifications, and more.

caption is necessary for the performance gains we observe.
We use NLTK [4] to filter for the nouns in the captions.
In the CTADP(NO)-20 nouns-only caption setting, we achieve
86.4% mIoU, similar to 86.2% mIoU with CTADP-20 (Tab. 1),
suggesting nouns are sufficient.

Oracle. This insight about nouns leads us to ask if an
oracle caption, in which all the object class names in an
image are provided as a caption, can improve performance
further. We define B(x) as the set of class names present in
image x.

GOracle(x) = {‘ ’ + b|b 2 B(x)} ! COracle(x) (5)

While this is not a realistic setting, it serves as an approx-
imate upper bound on performance for our method on the
segmentation task. We find a large improvement in per-
formance in segmentation, achieving 89% mIoU on Pascal
and 72.2% mIoU on ADE20K. For depth estimation, multi-
class segmentation masks are only provided for a smaller
subset of the images, so we cannot generate a comparable
oracle. We perform ablations on the oracle captions to eval-
uate the model’s sensitivity to alignment. For ADE20K,
on the 4k iteration schedule, we modify the oracle captions

by randomly adding and removing classes such that the re-
call and precision are at 0.5, 0.75, and 1.0 (independently)
(Tab. S2). We find that both precision and recall have an
effect, but recall is significantly more important. When re-
call is lower (0.50), improving precision has minimal im-
pact (<1% mIoU). However, precision has progressively
larger impacts as recall increases to 0.75 and 1.00 (⇠3%
mIoU and ⇠7% mIoU). In contrast, recall has large impacts
at every precision level: 0.5 - (⇠6% mIoU), 0.75 - (⇠9%
mIoU), and 1.00 - (⇠13% mIoU). BLIP-2 captioning per-
forms similarly to a precision of 1.00 and a recall of 0.5
(Tab. 2). Additional analyses w.r.t. precision, recall, and
object sizes can be found in Appendix B.

4.3. Cross-domain alignment

Next, we ask if text-image alignment can benefit cross-
domain tasks. In cross-domain, we train a model on a
source domain and test it on a different target domain. There
are two aspects of alignment in the cross-domain setting:
the first is also present in single-domain, which is image-
text alignment; the second is unique to the cross-domain
setting, which is text-target domain alignment. The second
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Method Dark Zurich-val ND
mIoU mIoU

DAFormer [20] – 54.1
Refign-DAFormer [7] – 56.8
PTDiffSeg [17] 37.0 –

TADPnull 42.8 57.5
TADPsimple 39.1 56.9
TADPTextualInversion 41.4 60.8
TADPDreamBooth 38.9 60.4

TADPNearbyDomain 41.9 56.9
TADPUnrelatedDomain 42.3 55.1

Table 4. Cross-domain semantic segmentation. Cityscapes
(CD) to Dark Zurich (DZ) val and Nighttime Driving (ND). We
report the mIoU. Our method sets a new SOTA for DarkZurich
and Nighttime Driving.

is challenging because there is a large domain shift between
the source and target domain. Our intuition is that while
the model has no information on the target domain from the
training images, an appropriate text prompt may carry some
general information about the target domain. Our cross-
domain experiments focus on the text-target domain align-
ment and use GTADP for image-text alignment (following our
insights from the single-domain setting).

Training. Our experiments in this setting are designed
in the following manner: we train a diffusion model on
the source domain captions CTADP(x). With these source
domain captions, we experiment with four different cap-
tion modifications (each increasing in alignment to the tar-
get domain), a null Mnull(P) caption modification where
Mnull(P)s = ? = Mnull(P)✏✓ = ?, a simple Msimple(P)
caption modifier where Msimple(P)s is a hand-crafted string
describing the style of the target domain appended to the
end and Msimple(P)✏✓ = ?, a Textual Inversion [16]
MTI(P) caption modifier where the output MTI(P)s is a
learned Textual Inversion token <*> and MTI(P)✏✓ = ?,
and a DreamBooth [37] MDB(P) caption modifier where
MDB(P)s is a learned DreamBooth token <SKS> and
MDB(P)✏✓ is a DreamBoothed diffusion backbone. We
also include two additional control experiments. In the first,
Mud(P) an unrelated target domain style is appended to
the end of the string. In the second, Mnd(P) a nearby but
a different target domain style is appended to the caption.
MTI(P) and MDB(P) require more information than the
other methods, such that P represents a subset of unlabelled
images from the target domain.

Testing. When testing the trained models on the tar-
get domain images, we want to use the same caption-
ing modification for the test images as in the training
setup. However, GTADP introduces a confound since it natu-

Method Watercolor2k Comic2k
AP AP50 AP AP50

Single Domain Generalization (SGD)

CLIP the gap [46] – 33.5 – 43.4

Cross domain weakly supervised object detection

PLGE [30] – 56.5 – 41.7
ICCM [19] – 57.4 – 37.1
H2FA R-CNN [51] – 59.9 – 46.4

Unsupervised domain adaptation object detection

ADDA [45] – 49.8 – 23.8
MCAR [54] – 56.0 – 33.5
UMT [11] – 58.1 – –
DASS-Detector (extra data) [44] – 71.5 – 64.2

TADPnull 42.1 72.1 31.1 57.4
TADPsimple 43.5 72.2 31.9 56.6
TADPTextualInversion 43.2 72.2 33.2 57.4
TADPDreamBooth 43.2 72.2 32.9 56.9

TADPNearbyDomain 42.0 71.5 31.8 56.4
TADPUnrelatedDomain 42.2 71.9 32.0 55.9

Table 5. Cross-domain object detection. Pascal VOC to Water-
color2k and Comic2k. We report the AP and AP50. Our method
sets a new SOTA for Watercolor2K.

rally incorporates target domain information. For example,
GTADP(x) might produce the caption “a watercolor paint-
ing of a dog and a bird” for an image from the Water-
color2K dataset. Using the Msimple(P) captioning modi-
fication on this prompt would introduce redundant informa-
tion and would not match the caption format used during
training. In order to remove target domain information and
get a plain caption that can be modified in the same man-
ner as in the training data, we use GPT-3.5 [6] to remove
all mentions of the target domain shift. For example, after
using GPT-3.5 to remove mentions of the watercolor style
in the above sentence, we are left with “an image of a bird
and a dog”. With these GPT-3.5 cleaned captions, we can
match the caption modifications used during training when
evaluating test images. This caption-cleaning strategy lets
us control how target domain information is included in the
test image captions, ensuring that test captions are in the
same domain as train captions.

Evaluation. We evaluate cross-domain transfer on sev-
eral datasets. We train our model on Pascal VOC [13, 14]
object detection and evaluate on Watercolor2K (W2K) [21]
and Comic2K (C2K) [21]. We also train our model on the
Cityscapes [9] dataset and evaluate on the Nighttime Driv-
ing (ND) [10] and Dark Zurich-val (DZ-val) [39] datasets.
We show results in Tabs. 4, 5. In the following sections, we
also report the average performance of each method on the
cross-domain segmentation datasets (average mIoU) and
the cross-domain object detection datasets (average AP).
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Null caption modifier. The null captions have no tar-
get domain information. In this setting, the model is trained
with captions with no target domain information and tested
with GPT-3.5 cleaned target domain captions. We find
diffusion pre-training to be extraordinarily powerful on its
own, with just plain captions (no target domain informa-
tion); the model already achieves SOTA on VOC!W2K
with 72.1 AP50, SOTA on CD!DZ-val with 42.8 mIoU
and SOTA on CD!ND with 60.8 mIoU. Our model per-
forms better than the current SOTA [44] on VOC!W2K
and worse on VOC!C2K (highlighted in yellow in Tab. 5).
However, [44] uses a large extra training dataset from the
target (comic) domain, so we highlight in bold our results
in Tab. 5 to show they outperform all other methods that
use only images in C2K as examples from the target do-
main. Furthermore, these results are with a lightweight FPN
[24] head, in contrast to other competitive methods like Re-
fign [7], which uses a heavier decoder head. These captions
achieve 50.5 average mIoU and 36.6 average AP.

Simple caption modifier. We then add target domain in-
formation to our captions by prepending the target domain’s
semantic shift to the generic captions. These caption modi-
fiers are hand-crafted. For example, “a dog and a bird” be-
comes “a X style painting of a dog and a bird” (where X is
watercolor for W2K and comic for C2K) and “a dark night
photo of a dog and a bird” for DZ. These captions achieve
48.0 average mIoU and 37.7 average AP.

Textual Inversion caption modifier. Textual inversion
[16] is a method that learns a target concept (an object or
style) from a set of images and encodes it into a new to-
ken. We learn a novel token from target domain image sam-
ples to further increase image-text alignment (for details,
see Sec. D.1). In this setting, the sentence template be-
comes “a <token> style painting of a dog and a bird”. We
find that, on average, Textual Inversion captions perform the
best, achieving 51.1 average mIoU and 38.2 average AP.

DreamBooth caption modifier. DreamBooth-ing [37]
aims to achieve the same goal as textual inversion. Along
with learning a new token, the stable-diffusion backbone it-
self is fine-tuned with a set of target domain images (for de-
tails, see Sec. D.1). We swap the stable diffusion backbone
with the DreamBooth-ed backbone before training. We use
the same template as in textual inversion. These captions
achieve 49.7 average mIoU and 38.1 average AP.

Ablations. We ablate our target domain alignment strat-
egy by introducing unrelated and nearby target-domain
style modifications. For example, this would be “a dash-
cam photo of a dog and a bird” (unrelated) and “a construc-
tivism painting of a dog and a bird” (nearby) for the W2K
and C2K datasets. “A watercolor painting of a car on the
street” (unrelated) and “a foggy photo of a car on the street”
for the ND and DZ-val datasets. We find these off-target
domains reduce performance on all datasets.

5. Discussion
We present a method for image-text alignment that is gen-
eral, fully automated, and can be applied to any diffusion-
based perception model. To achieve this, we systematically
explore the impact of text-image alignment on semantic
segmentation, depth estimation, and object detection. We
investigate whether similar principles apply in the cross-
domain setting and find that alignment towards the target
domain during training improves downstream cross-domain
performance.

We find that EOS token averaging for prompting does
not work as effectively as strings for the objects in the im-
age. Our oracle ablation experiments show that our diffu-
sion pre-trained segmentation model is particularly sensi-
tive to missing classes (reduced recall) and less sensitive to
off-target classes (reduced precision), and both have a neg-
ative impact. Our results show that aligning text prompts to
the image is important in identifying/generating good multi-
scale feature maps for the downstream segmentation head.
This implies that the multi-scale features and latent repre-
sentations do not naturally identify semantic concepts with-
out the guidance of the text in diffusion models. Moreover,
proper latent scaling is crucial for downstream vision tasks.
Lastly, we show how using a captioner, which has the ben-
efit of being open vocabulary, high precision, and down-
stream task agnostic, to prompt the diffusion pre-trained
segmentation model automatically improves performance
significantly over providing all possible class names.

We also find that diffusion models can be used effec-
tively for cross-domain tasks. Our model, without any
captions, already surpasses several SOTA results in cross-
domain tasks due to the diffusion backbone’s generaliz-
ability. We find that good target domain alignment can
help with cross-domain performance for some domains, and
misalignment leads to worse performance. Capturing in-
formation about target domain styles in words alone can
be difficult. For these cases, we show that model per-
sonalization through Textual Inversion or Dreambooth can
bridge the gap without requiring labeled data. Future work
could explore how to expand our framework to generalize
to multiple unseen domains. Future work may also explore
closed vocabulary captioners that are more task-specific to
get closer to oracle-level performance.
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