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Abstract

A neural signed distance function (SDF) is a convenient
shape representation for many tasks, such as surface recon-
struction, editing and generation. However, neural SDFs
are difficult to fit to raw point clouds, such as those sam-
pled from the surface of a shape by a scanner. A major is-
sue occurs when the shape’s geometry is very different from
the structural biases implicit in the network’s initialization.
In this case, we observe that the standard loss formulation
does not guide the network towards the correct SDF val-
ues. We circumvent this problem by introducing guiding
points, and use them to steer the optimization towards the
true shape via small incremental changes for which the loss
formulation has a good descent direction. We show that
this point-guided homotopy-based optimization scheme fa-
cilitates a deformation from an easy problem to the diffi-
cult reconstruction problem. We also propose a metric to
quantify the difference in surface geometry between a target
shape and an initial surface, which helps indicate whether
the standard loss formulation is guiding towards the target
shape. Our method outperforms previous state-of-the-art
approaches, with large improvements on shapes identified
by this metric as particularly challenging.

1. Introduction

Point cloud reconstruction using a neural signed distance
function (SDF) is a popular approach due to its simplic-
ity and flexibility. Such methods show impressive perfor-
mance improvements for cases with significant noise, out-
liers, missing regions or misalignment [20]. However, they
are still unable to outperform classical methods on clean
and relatively dense input data [20, 25], especially when the
shape exhibits challenging geometry. For example, thin sur-
faces near each other (see Fig. 1 bottom) or large concave
regions with small openings (see Fig. 1 top).

We address the task of reconstruction from raw point
clouds, i.e., without ground-truth normal vectors. We ob-
serve that the standard loss formulation used for the task

Figure 1. Given a point cloud without ground-truth normals (left),
neural SDF optimization for surface fitting frequently gets trapped
in local minima (middle). Note that these two shapes have geom-
etry very different to a sphere, which causes the loss right after
spherical initialization to not provide a good descent direction to-
wards the target shape (see Sec. 3.3). Our point-guided homotopy-
based approach provides a principled way to avoid this issue and
improve reconstruction quality (right).

does not give a good descent direction1 towards the target
SDF values, especially when the initialization does not align
with the target geometry. Since most methods initialize to
a sphere to bias the optimization result towards a bounded
shape, and rely on this bias to find a good descent direction,
their performance can be poor if the input shape has very
different geometry to a sphere (see Fig. 1).

Instead we propose a point-guided SDF (PG-SDF) ap-
proach, where we introduce guiding points to represent an
intermediate surface for the optimization to target. By in-
crementally moving the guiding points towards the sam-
pled input and optimizing the network to their new loca-
tion, we ensure that the loss formulation gives a good de-
scent direction during optimization. We eventually con-
verge the guiding points to the input points, leading the op-
timization stably towards the target SDF. We also propose

1To avoid confusion, in this paper we use the term normal direction to
refer to vectors in the normalized gradient field of the SDF and descent
direction for the negative gradient of the loss function.
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Figure 2. Reconstructing a 2D surface using a neural SDF, without (1a–e) and with (2a–e,3a–f) our proposed point guidance. Note that our
point guidance has two parts, converging to level sets (2) and taking small steps in between (3). The input points X are black, the guiding
points Y are green, and the network’s level sets are drawn as contour lines with the zero level setR in bold. (1a–b) The network deforms
from the sphere initialization to one whose zero level set is close to X . (1c) The network only makes local changes near X , gradually
interpolating X by adding complexity. (1d–e) X is fully interpolated, but the result is unsatisfactory. (2a) Our initialization. (2b–d) Our
method after convergence to each intermediate level set. (2e) Our method after optimizing on the input points. (3a–f) The small steps taken
by our method while reaching the first intermediate level set of radius δ0. Each row shows a single step, where the guiding points are first
moved a short distance (left) and then the network is optimized to match this (right).

a metric—the percentage of self-intersecting outward nor-
mals (SION%)—to quantify the difference between the sur-
face geometry of a target shape and that of another surface,
such as the sphere initialization. We use this metric to deter-
mine which shapes are likely to be difficult for neural SDF
methods, and why the optimization steps in our method are
robust. Our contributions are:
1. a point-guided optimization approach for surface recon-

struction from point clouds without normals;
2. a metric to quantify differences between surfaces, which

can be used to identify the most challenging shapes to
reconstruct; and

3. an interpretation of the algorithm as a homotopy method,
providing a justification for the design decisions and in-
sight into the failure modes of existing approaches.

2. Related Work

Surface reconstruction from point clouds is a fundamen-
tal problem in computer vision. We restrict our atten-
tion to methods that optimize using generic priors, rather
than methods that learn reconstruction priors from a dataset
[19, 45] and are sensitive to domain shift.

Early approaches [1, 7, 10, 24] directly triangulated point
clouds, with provable guarantees given dense input points
with no defects. However, the limitation of vertices being
input points make them impractical for even small levels of
imperfection [6], and the result is often not watertight. A
less restrictive class of approaches is implicit field methods

[9, 22, 23, 32, 34], where an implicit function is defined over
the domain to represent the reconstructed surface. Such
methods often use a carefully defined set of basis functions,
and optimize for an energy function with respect to the basis
function parameters. However they usually rely on normal
vectors as inputs, allowing efficient optimization with linear
solvers, such as Poisson Surface Reconstruction [23] and its
screened version [22].

Neural implicit methods, which were popularised by
DeepSDF [35] and Occupancy Networks [29], are promis-
ing as they provide more modeling and optimization flex-
ibility. Rather than creating basis functions tailored to the
input, the network is fixed and can adapt its representational
ability through optimization. Furthermore, as they are op-
timized by gradient descent, they can work with any dif-
ferentiable loss. This flexibility has led to learned shape
spaces that allow for strong learned biases and interpolation
[21, 26, 35, 47]. However, while many neural methods are
able to perform better than non-neural approaches when the
input has defects, they often perform worse when the data
is clean and dense [20]. A major issue is that gradient de-
scent optimization is not guaranteed to converge to a global
optimum. Furthermore, many methods for the surface re-
construction task [2–4, 15, 41] use losses that are difficult
for gradient descent to optimize. As the reason these losses
are hard to optimize is fundamental to our method, we ex-
amine this issue and related loss formulations in Sec. 3.3.

Our method follows a line of work that attempts to
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improve upon these issues for reconstruction from points
clouds without normals. There are three major methods that
are competitive for this task, DiGS [5], SAP [39] and OG-
INR [25]. DiGS and OG-INR are neural SDF methods. In
order to avoid the difficulties of SDF optimization, DiGS
[5] changes the optimization landscape by adding strong
regularization at the start, and slowly annealing the regu-
larization to gently change the optimization landscape back
to the correct one. OG-INR [25] avoids local minima by
first discretizing the problem and solving for inside–outside
labels. It then uses this discrete solution to get an approxi-
mate SDF that makes it easier to optimize the original SDF.
SAP [39] does not use neural methods or SDFs, and instead
minimizes a chamfer loss on points and normals directly.
This is related to our approach as we also use points and
SDF-derived normals to guide our SDF optimization. How-
ever, rather than using a chamfer loss, which we find gets
trapped in bad local minima, we use a more nuanced strat-
egy to move our guiding points, outlined in Sec. 4.1.

Another highly related approach is Point2Mesh [17],
which deforms an enclosing mesh onto the point cloud.
Like SAP, they use a chamfer loss to guide the deforma-
tion, however they note that this loss does not easily enter
concavities. To address this, they introduce a beam gap loss,
which guides mesh vertices towards input points in the in-
ward normal direction if they are not already well matched
by chamfer distance. Our deformation strategy, in contrast,
is based purely on explicitly matching points in the inward
normal direction. Our approach also avoids a major short-
coming of Point2Mesh, the reconstruction output must have
the same genus as the initial mesh.

3. Preliminaries
3.1. Notation and Definitions

We denote the Euclidean inner product as ⟨p, q⟩ = pTq, the
Euclidean distance as d(p, q) = ∥p − q∥2, a unit vector as
v̂ = v/∥v∥, the cosine similarity between two vectors as
s(p, q) = ⟨p̂, q̂⟩, and the distance from a point p to a set A
by d(p,A) = dA(p) = infq∈A d(p, q).

The chamfer distance dC is a common measure of the
distance between two discrete point sets P and Q, defined
by the average of two one-sided chamfer distances

dC(P,Q) =
1

2

(
dC⃗(P,Q) + dC⃗(Q,P )

)
(1)

each averaging the distance over one set to the other set

dC⃗(P,Q) =
1

|P |
∑
p∈P

d(p,Q). (2)

The chamfer distance can also be used between two sur-
faces, A and B, in which case the chamfer distance is taken
over uniform samplings, UA ∼ U(A) and UB ∼ U(B).

A signed distance function (SDF) FV : D → R of a
bounded, open volume V ⊂ D is a scalar function defined
everywhere on D. FV(z) is the distance from z to the clos-
est point on the boundary ∂V , with a negative sign if z ∈ V

FV(z) = (−1)[[z∈V]]d(z, ∂V) (3)

where the Iverson bracket [[X]] is 1 if X is true and 0 other-
wise. The level set La is the set of points that have a signed
distance of a from ∂V , i.e.,

La = {z ∈ D | FV(z) = a}. (4)

The exterior level set Ωa (a > 0) is the subset of La such
that for each p ∈ La there is a connected path from a point
on the boundary of D to p that only intersects La at p.

3.2. Problem Formulation

Let X = {xi}i∈I be a point cloud sampled from a surface
S ⊂ D where D ⊂ R3 is compact. We often refer to S as
the target shape, and assume that it is watertight, i.e., S =
∂V of some open volume V ⊂ D. We wish to reconstruct
S from the point cloud X = {xi}. Note that no per-point
surface normals or scanner information is provided.

We choose to represent our reconstructed surface R ⊂ D
using an implicit neural representation Φ. Specifically we
define R = {z ∈ D | Φ(z, θ) = 0} where θ are the param-
eters of the neural network Φ. Thus we want to minimize
the chamfer distance between S and R. Since we do not
know S, we instead compute the distance to our input points
dC(X ,R) = dC(X , UR), where UR is a uniform sampling
from R. Furthermore we choose to optimize the implicit
function Φ to approximate the true signed distance function
FV of the volume V . As V is unknown, during optimiza-
tion we care about ensuring that Φ is a valid SDF to some
open volume U for which X is an approximate sampling,
i.e., Φ ≈ FU and dC(X , ∂U) is small (note ∂U = R). Thus
our overall optimization problem is

minimizeθ dC(X , ∂U)
subject to Φ(x, θ) = FU (x).

(5)

Why SDFs? We choose SDFs over other popular implicit
functions like indicator or occupancy functions [22, 23, 29,
38] or unsigned distance functions (UDFs) [12, 16, 49] for
several reasons. First, SDFs and UDFs constrain the possi-
bilities for Φ, and are fairly smooth (unlike indicator func-
tions). This helps with regularizing R and ensures that
they can be represented by neural networks, which are bi-
ased to be smooth. Previous works have shown that neu-
ral SDFs empirically perform better than neural occupancy
functions [51]. Second, SDFs allow for distance and direc-
tion to the surface queries, which we make use of in our
algorithm. Last, the signed aspect of SDFs guarantee the
watertight criteria compared to UDF, and make it easier to
mesh using algorithms like marching cubes [27].
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3.3. Neural SDF Formulation

Since neural SDFs are coordinate networks, each coordinate
is processed independently. During gradient descent each
coordinate seeks to minimize its loss locally, and is only
affected by changes in nearby coordinates due to the net-
work’s inherent smoothness bias. Thus information prop-
agation through the domain (from the smoothness bias) is
slow, and optimization is only effective if the loss provides
clear guidance. Specifically, if the descent direction of the
loss with respect to its SDF input value at a coordinate gives
an approximate descent direction towards the target SDF
value at that coordinate. However whether or not the loss
provides a good descent direction depends on whether the
geometry of the current state of the network aligns with the
geometry of the target shape (see Fig. 2 top left for when
they do not align and thus optimization gets stuck).

We now discuss this observation in relation to currently
used neural SDF losses. When optimizing neural SDFs for
point clouds without normals, the main losses are

Lzls(θ,X ) =
∑
x∈X

|Φ(x, θ)| (6)

Leik(θ) =
∑
z∈D

|∥∇zΦ(z, θ)∥2 − 1| (7)

Lpull(θ,X ) =
∑
z∈D

∥x⋆
R(z)− x⋆

X (z)∥2 (8)

where x⋆
R(z) = z − Φ(z)∇̂zΦ(z) and x⋆

X (z) =
arg minx∈X d(z, x). The first two losses were proposed by
IGR [15] and the last one was proposed by Neural Pull [4]
(further details in the supplement). The zero level set loss
Lzls gives a perfect descent direction to the target SDF val-
ues for the points in X . However, for other points in the do-
main, the loss formulation may not give a descent direction
towards the target SDF value. The Eikonal loss Leik guides
towards scaling the SDF gradient, and does not change its
direction unless forced to by the optimization of nearby
points. Thus for a point z ∈ D, if the network’s current
normal directions in the region around z is in the opposite
direction to what the target SDF normals are around z, then
at z this loss does not guide towards the target SDF values.
The neural pull loss Lpull has two value–gradient pairs that
will minimize its loss (one where the normal points towards
x⋆
X and one where it points away), so the loss will guide

towards the closer one, which may not be the target.
As a result, an important part of these methods is

spherical initialization [2], where the network is initialized
roughly to the SDF of a sphere. If the shape’s geometry
is similar to a sphere, then the initialized normal direc-
tions in the network are mostly in the correct direction, so
Leik and Lpull guide towards the correct SDF value. When
the shape’s geometry is very different to a sphere resulting
in large regions where the initialized normal directions are

Figure 3. Surface S and surrounding surface R, with outward
normal directions for some points on S shown, and which ones
are SIONs relative toR shown in red.

very different to the target normal directions, then the loss
does not provide a good descent direction in those regions.
As a result, optimization often converges to a local mini-
mum close to the initialization, such as in Fig. 2 (top left).

3.4. Shape Reachability

From the analysis in the previous subsection, we are inter-
ested in whether the current state of a network provides sim-
ilar normal directions to the SDF of the target shape, so that
the loss provides a good descent direction towards the tar-
get SDF values. Let us assume that the current state of the
network is roughly the SDF to some surface R surround-
ing the target shape’s surface S. One way of quantifying
whether the normal directions are similar is to determine if
points on S can “reach” R by travelling in their outward
normal direction (see Fig. 3). If S has large concavities and
the outward surface normal of most points in that concavity
does not reach R before it self-intersects, then the current
normal directions of the network are likely to be poor.

More formally, if PS and PR are samplings of S and R
and for each p ∈ PS we have a known outward unit normal
np, then for a point p ∈ PS we can construct around the
outward normal a thin cylinder

Cp = {z ∈ D | ∥p+ tnp − z∥ ≤ ε, ⟨z − p, np⟩ ≥ 0}. (9)

By the assumption of R surrounding S and PR being a
dense sampling of R, we note that Cp ∩ PR ̸= ∅. Then
we consider p to have a self-intersecting outward normal
(SION) with respect to PR if its normal direction intersects
its own shape before it intersects R: ∃p′ ∈ PS such that
p′ ∈ Cp and ∀q ∈ C∩PR we have that ∥p−p′∥2 < ∥p−q∥.
We then use the percentage of points in pS that have SIONs
with respect to PR as a measure of how dissimilar the ge-
ometry of S is to R, which we denote SION(S;R), where
a high value indicates dissimilarity.

When R is not specified and S is clear from context,
we will use SION as a shorthand for SION(S; R), with
R assumed to be any sphere surrounding S. The two point
clouds in Fig. 1 have a high SION, which indicates that their
geometry is very different to a sphere and that optimization
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from a spherical initialization is likely to be difficult.

4. Point-Guided SDF

The key idea of our method is to slowly converge the sur-
face of reconstruction R towards the input points X until it
interpolates X , while maintaining Φ as a valid SDF to the
volume enclosed by R (see Fig. 2). We do this by guiding
R towards level sets (Fig. 2:2a–e) and taking small steps to-
wards reaching each level set (Fig. 2:3a–f, Fig. 4). At each
step we move guiding points Y , which represent the sur-
face R, a small distance towards X (Fig. 4c) and then opti-
mize Φ to interpolate the new Y positions, thus defining the
new surface of reconstruction R over which Y is resampled
(Fig. 4d). Our full algorithm is shown in Algorithm 1.

Since each movement of the guiding points is small, the
geometry of the moved guiding points Y should be similar
to the network’s current surface R, and SION(Y; R) should
be low. Thus optimizing the network to reconstruct the up-
dated Y should be robust (unlikely to converge to local min-
ima) as the optimization is likely to have a clear descent
direction from the loss at most points.

In Sec. 4.1 we outline how to move the guiding points Y
one step closer to the input points X (Fig. 4a–c). In Sec. 4.2
we outline how to optimize the network Φ to interpolate the
new guiding point locations (Fig. 4d). Finally, in Sec. 4.3
we analyze our method within the homotopy framework.

Preprocessing X . Following standard practice, we first
center and (isotropically) scale the shape to fit in a centered
ball. After scaling, we calculate the point cloud’s approxi-
mate sampling radius δX conservatively by calculating the
distance to the four closest neighbors for each x ∈ X and
averaging the highest 5% of all such distances. We use this
radius extensively in our method.

Initialization. We first initialize our network to the exterior
level set of radius δinit = 16δX . We provide intuition into
why we can do this robustly in Sec. 4.3, and provide details
on how to make this more efficient in the supplement.

4.1. Moving the Guiding Points

We now describe how to move the guiding points y ∈ Y
towards the input points X . At a high level, each step we
move Y closer to an exterior level set of radius δ, Ωδ , and
when R has converged to Ωδ we reduce δ (see Algorithm 1).

Since we are moving y ∈ Y to guide the surface R, we
only move each y in the inwards normal direction of R.
Next, since we are moving towards an exterior level set Ωδ

of X , for each y ∈ Y we find the closest input point in the
inwards normal direction x⋆(y) ∈ X , and use this to deter-
mine the target point ω⋆(y) on Ωδ that we move towards.
Finally, since we want to move the surface R slowly, we
have a maximum step size for each movement.

Closest point in the inward direction. We first define
x⋆(y) (see Fig. 4a–b). As we are moving in the inward nor-
mal direction, i.e., −ny where ny = ∇̂yΦ(y), we want to
move y based on the closest point x ∈ X in the inward nor-
mal direction −ny . We define the inward normal definition
by setting a cosine similarity threshold ay ≥ 0 to define a
cone Cy supported at y emanating in the direction −ny ,

Cy = {z | s(−ny, z − y) ≥ ay}. (10)

However as y gets very close to points in X , it is unlikely
that any of those nearby points stay within this cone. Thus
we also consider the half ball Hy of radius 2δX containing
points close to y

Hy = {z | ∥x− y∥2 ≤ 2δX ∧ s(−ny, z − y) ≥ 0}. (11)

Thus our target point x⋆(y) is given by

x⋆(y) = arg min
x∈X∩(Cy∪Hy)

||x− y||2. (12)

Moving towards Ωδ . As x⋆(y) is our closest (inward)
point, a reasonable location for a point in Ωδ can be com-
puted by moving δ away from x⋆ towards y

ω⋆(y) = (∥x⋆ − y∥2 − δ) ̂(x⋆ − y). (13)

We move towards ω⋆ with a maximum step size of sm so
that the movement step is small and easy to optimize. Thus
our final point y′ (see Fig. 4b) is

y′ = y − clip(⟨ω⋆(y),−ny⟩ , sm)ny (14)

where clip(a, ε) projects a to the interval [−ε, ε].

Reducing δ. After initialization, we set δ = δ0 as our next
target level set. Once Y has finished moving towards Ωδ

and R has converged, we decrease the current δ by half and
start moving Y towards the new exterior level set. We do
this until δ reaches δf . We use δ0 = 4δX , δf = δX . We
then abandon Y and optimize directly on X .

4.2. Optimizing the Network

We now have the points Y to guide where our new surface
should be. Furthermore, we have an approximate normal
ny for each y ∈ Y given by Φ, whose direction should be
useful as the SION between the new position of the points
relative to the previous positions is low. We use this to esti-
mate an approximate SDF

F̃V(z) = (−1)[[s(z−y(z),ny(z))≥0]]d(z, y(z)) (15)

where y(z) = arg miny∈Y d(z, y) and s(p, q) = ⟨p̂, q̂⟩ is
cosine similarity. We guide towards these values using

Ls̃df(θ,X ) =
∑
z∈D

∥Φ(z, θ)− F̃V(z)∥2. (16)
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Figure 4. One iteration of Algorithm 1, steps 6–8. (a) Given the current value of our network Φ (the contours) and our guiding points Y
(the green points), for each y ∈ Y we calculate a half ball Hy and a cone Cy in the inside normal direction to find an input points x ∈ X
(black points) to move towards (shown for 3 points, with one highlighted in red). (b) We find the closest input point x⋆(y) ∈ X within
Hy ∩ Cy , and use this to calculate the new position y′ for each y ∈ Y (shown for all points). (c) The result after each y ∈ Y has been
moved. (d) The network Φ is optimized on the new guiding points, and Y is resampled to densely cover the new zero level setR.

Furthermore, our input points X should be at distance δ
from Y and should be inside, so we add a loss term

Linput(θ,X , δ) =
∑
x∈X

|Φ(x, θ) + δ|. (17)

Thus our overall loss term formulation is

L(θ,X ,Y, δ) = Lzls(θ,Y) + Linput(θ,X , δ) + Leik(θ)+

Ls̃df(θ,Y) + Lpull(θ,Y). (18)

Relevant details (e.g., loss term weightings, domain sam-
pling procedure, optimizer settings) are in the supplement.

Finally, we resample Y in the new zero level set R
(Fig. 4f) so that it densely samples it. After this process has
finished (i.e., when Φ has converged for δ = δf ), we op-
timize Φ on the input points X using the loss in Eq. (18).
Here we do not use the approximate SDF term, as X is
likely to have more imperfections that our guiding points.

Algorithm 1 Point-Guided SDF
1: procedure PG-SDF(X )
2: Center X , scale X and compute sampling radius δX
3: Y,NY ,Φ← Initialization(X , δinit)
4: δ ← δ0
5: while δ ≥ δf do
6: Move Y using Eq. (14) ▷See Sec. 4.1
7: Optimize Φ to match Y ▷See Sec. 4.2
8: Resample Y on newR
9: Query Φ for normalsNY

10: if Φ’s zero level set has not changed then
11: δ ← 1

2
δ

12: end if
13: end while
14: Optimize Φ on X ▷See Sec. 4.2
15: return Φ
16: end procedure

4.3. Interpretation as a Homotopy Method

One way to analyze this method is in the context of a homo-
topy method [33]. Here, we wish to solve a difficult prob-
lem M(θ) = 0 for θ, and instead consider the homotopy
map H(θ, t) = tM(θ) + (1 − t)N(θ) where N(θ) = 0 is
easy to solve and t ∈ [0, 1]. This forms a homotopy be-
tween the problems M(θ) = H(θ, 1) and N(θ) = H(θ, 0)
as we can now continuously deform one problem into the
other by varying t. By taking small steps along the zero
path, the trajectory of points (θ, t) for which H(θ, t) = 0,
we can reach the solution to M(θ).

For our method, we start by solving the easier problem
L(θ,Y0) = 0 where Y0 is our initial set of guiding points.
Our goal is to solve the hard problem L(θ,X ) = 0. To see
that our method is a homotopy method, note that our guid-
ing points Y are facilitating a topological homotopy from
Y0 to our input points X . Thus we can parameterize our
zero path using Y . It is given by (θ(Y), t(Y)) where

θ(Y) satisfies L(θ(Y),Y) = 0 (19)

t(Y) =
dC(Y0,X )− dC(Y,X )

dC(Y0,X )
. (20)

Note that at initialization Y = Y0 and we have t(Y0) = 0,
while at termination Y = X and we have t(X ) = 1. Each
time we update Y , we are traversing the zero path. If we
take n steps to reach the final exterior level set of radius δX ,
then we visit n+2 points along the zero path parameterized
by the sequence Y0,Y1, . . . ,Yn,X .

To see why this works well in practice, we need to show
that solving H(θ(Yk+1), t(Yk+1)) for θ(Yk+1) given θ(Yk)
is easy, and solving H(θ(Y0), t(Y0)) for θ(Y0) is easy. To
see the former, note that we move our guiding points Y only
a small distance from Yk to Yk+1, and that SION(Yk+1; Yk)
is small by construction. Thus, by the analysis in Secs. 3.3
and 3.4, the relative optimization problem is easy. To see the
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Figure 5. Qualitative results on ShapeNet. Top: Intermediate
results as our method converges to different level sets Ωδ . Bot-
tom: Comparison with other methods, for challenging high SION
shapes (0.40 for the car and 0.42 for the lamp).

latter, when δinit ≫ δX we can estimate good normals for
Y0 by taking the displacement from the closest input point.
With good normal estimates, Ls̃df is very effective, and so
optimization is easy. Furthermore, we note that higher ra-
dius exterior level sets are less complex, with smaller SION
to an enclosing sphere. We formalize and prove this obser-
vation in the supplement.

5. Results
Dataset. We evaluate the performance of our method on
ShapeNet [11], a large dataset of 3D CAD models. In
this dataset, there are many shapes with complex geome-
tries that are challenging to reconstruct, including extremely
thin surfaces (sometimes string-like), hollow regions (often
with small openings), and shapes with high genus. Previous
works [5, 25] have shown that many neural methods fail
on these shapes, even when using the ground-truth normals.
We use the preprocessed watertight subset of Williams et al.
[46], which consists of 13 classes with 20 shapes in each
class. For each shape, 100k points are uniformly sampled
from the surface and ground-truth normals are provided for
each point, which are only used for those methods that re-
quire normals. We use these points as the input to our
method, and for evaluating the squared chamfer metric. An
additional 100k points are uniformly sampled within the
domain with ground-truth labels that indicate whether the
point is inside or outside the shape, allowing for the inte-
rior intersection-over-union (IoU) metric to be calculated.
Further experimental details are given in the supplement.

Squared Chamfer ↓ IoU ↑
Method NN nx Mean Median Std Mean Median Std

SPSR [22] T 5.44e-5 1.97e-5 5.06e-4 0.9926 0.9956 0.0105
IGR [15] ✓ T 5.12e-4 1.13e-4 2.15e-3 0.8102 0.8480 0.1519
SIREN [41] ✓ T 1.03e-4 5.28e-5 1.93e-4 0.8268 0.9097 0.2329
FFN [43] ✓ T 9.12e-5 8.65e-5 3.36e-5 0.8218 0.8396 0.0989
NSP [46] T 5.36e-5 4.06e-5 3.64e-5 0.8973 0.9230 0.0871
DiGS+N [5] ✓ T 2.74e-4 2.32e-5 9.90e-4 0.9200 0.9774 0.1992
SDF+N† ✓ T 3.97e-5 2.22e-5 8.98e-5 0.9915 0.9951 0.0141
Ours+N ✓ T 2.43e-5 2.15e-5 1.66e-5 0.9932 0.9955 0.0076

SPSR [22] E 3.76e-3 4.37e-5 1.14e-2 0.7187 0.9761 0.3767
SIREN [41] ✓ 3.08e-4 2.58e-4 3.26e-4 0.3085 0.2952 0.2014
SAL [2] ✓ 1.14e-3 2.11e-4 3.63e-3 0.4030 0.3944 0.2722
DiGS [5] ✓ 1.32e-4 2.55e-5 4.73e-4 0.9390 0.9764 0.1262
SAP [39] 4.09e-4 2.46e-5 2.60e-3 0.9118 0.9923 0.2002
OG-S [25] ✓ 3.75e-5 2.17e-5 8.24e-5 0.9615 0.9871 0.1048
OG-N [25] ✓ 5.07e-5 2.57e-5 9.39e-5 0.9593 0.9870 0.1057
SDF† ✓ 1.84e-4 8.15e-4 2.95e-3 0.5490 0.5245 0.3572
SDF+N† ✓ E 2.48e-2 5.89e-5 5.63e-3 0.6817 0.9671 0.3990
Ours+N ✓ E 2.79e-2 4.79e-5 6.79e-2 0.7017 0.9721 0.3876
Ours ✓ 3.72e-5 2.40e-5 5.39e-5 0.9729 0.9896 0.0676

Table 1. Surface reconstruction results on ShapeNet [11]. NN:
uses a neural network. nx: uses ground-truth (T), estimated (E) or
no ( ) input surface normals. Suffix ‘+N’ denotes normal informa-
tion added to the underlying method. †Our implementation.

Implementation and Baselines. Our baseline methods use
the same implementation framework as our approach (see
full details in the supplement) with standard loss formula-
tions. ‘SDF’ uses Lzls, Leik, and Lpull while ‘SDF+N’ ad-
ditionally uses Ls̃df and Lnormal [15]. We also evaluate our
methods with estimated normals (using Open3D [50]).

5.1. Surface Reconstruction on ShapeNet

Results on the full ShapeNet subset are given in Tab. 1, with
qualitative results in Fig. 5. Our proposed method outper-
forms all prior normal-free methods and even demonstrates
improvement when ground-truth normals are available. In
particular, our approach gets a significant improvement in
mean IoU, with much smaller variance, indicating that our
method performs reliably well.

5.2. Challenging High-SION Shapes

In this section, we analyze the performance of surface
reconstruction methods with respect to the SION metric.
Fig. 6 shows that the mean IoU degrades significantly
as we progressively consider shapes with higher SION
scores. While our method also follows this trend, perfor-
mance degradation is considerably slower, indicating that
our method is much more robust to challenging shapes. We
report the reconstruction performance on the subset of 20
shapes with the highest SION in Tab. 2. On these most chal-
lenging shapes, our approach has a decisive advantage. This
demonstrates that our structured optimization approach is
able to achieve good reconstructions of the most difficult
shapes, without sacrificing performance on easy shapes.
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Figure 6. Mean IoU for all shapes with a SION higher than a lower
bound. The analysis from Secs. 3.3 and 3.4 predicts a significant
negative correlation for existing neural SDF methods. Our method
weakens this trend considerably.

Squared Chamfer ↓ IoU ↑
Method NN nx Mean Median Std Mean Median Std

SPSR [22] T 3.98e-5 3.92e-5 1.80e-5 0.9798 0.9848 0.0222
DiGS+N [5] ✓ T 2.09e-4 7.42e-5 2.91e-4 0.8160 0.8764 0.2119
SDF+N† ✓ T 1.11e-4 4.84e-5 1.95e-4 0.9733 0.9854 0.0409
Ours+N ✓ T 4.16e-5 3.89e-5 1.86e-5 0.9822 0.9865 0.0148

SPSR [22] E 5.83e-3 1.25e-3 1.16e-2 0.3290 0.1802 0.3445
DiGS [5] ✓ 4.34e-4 1.71e-4 5.34e-4 0.7108 0.8196 0.2536
SAP [39] 1.28e-4 5.84e-5 1.99e-4 0.7616 0.8872 0.2665
OG-S [25] ✓ 1.31e-4 6.50e-5 1.79e-4 0.7651 0.9219 0.2512
SDF† ✓ 1.29e-3 7.75e -4 1.43e-3 0.3413 0.2617 0.2292
SDF+N† ✓ E 5.32e-2 4.51e-3 7.03e-2 0.2896 0.1977 0.3288
Ours+N ✓ E 4.89e-2 7.32e-3 6.25e-2 0.3173 0.2362 0.3259
Ours ✓ 5.51e-5 4.87e-5 3.12e-5 0.9153 0.9598 0.0906

Table 2. Surface reconstruction results on the 20 highest SION
ShapeNet shapes. NN: uses a neural network. nx: uses ground-
truth (T), estimated (E) or no ( ) input surface normals. Suf-
fix ‘+N’ denotes adding normal information to the underlying
method. †Our implementation.

Guidance Squared Chamfer ↓ IoU ↑
Y0 Y δ0 δf Mean Median Std Mean Median Std

– – 2.41e-3 1.18e-3 2.65e-3 0.2795 0.2255 0.2078
✓ – – 2.63e-4 1.91e-4 2.31e-4 0.5694 0.6091 0.2278
✓ ✓ 4 2 9.89e-5 7.70e-5 7.95e-5 0.8657 0.9163 0.1219
✓ ✓ 1 1 8.08e-5 7.52e-5 5.66e-5 0.8538 0.9386 0.1602
✓ ✓ 4 1 5.51e-5 4.87e-5 3.12e-5 0.9153 0.9598 0.0906

Table 3. Ablation results on the 20 highest SION ShapeNet shapes.
Y0: uses our SDF initialization strategy instead of spherical initial-
ization [15]. Y: uses our point guidance strategy. δ0/δf : starting
and final level set radii, given in multiples of δX .

5.3. Ablation Study and Runtime

An ablation study, on the 20 highest-SION shapes of
ShapeNet, is reported in Tab. 3. The performance when us-
ing a spherical initialization and optimizing with respect to
the input points (row 1) is poor. It improves significantly
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Figure 7. Runtime vs SION on ShapeNet for our method. Chal-
lenging shapes with high SION take more time to optimize. One
outlier (82 min) is truncated for clarity and marked as x.

when replaced with our high exterior level set initializa-
tion (row 2). When point guidance is added (rows 3–5),
the performance increases considerably. In particular, stop-
ping point guidance early (when δf = 2δX ) harms perfor-
mance, as does guiding straight to the final level set target
(δ0 = δX ) without first converging to intermediate level set
targets. Our gradual homotopy approach performs best by a
significant margin, justifying the strategy.

An unoptimized implementation of our method takes 10
mins on average per ShapeNet shape (a median of 7.4 mins).
Convergence time depends strongly on the difficulty of the
shape, as shown in Fig. 7. Our implementation has 17.5M
parameters: a small neural network with Fourier feature
embeddings [43] and parametric embeddings [31, 42] com-
puted using a dense feature grid (> 99% of the parameters).

6. Discussion and Conclusion
In this paper, we proposed a point-guided optimization
method for neural SDF reconstruction from raw point
clouds. We also examined why neural SDF losses can be
detrimental for some shapes, proposed a metric to identify
these shapes, and used this analysis to justify our algorithm
design. Our method outperforms prior work, with large im-
provements for the most challenging shapes.

Like many methods, our approach is not robust to high
outlier fractions and large noise scales, behaving similarly
to the compared methods. In addition, our approach does
not handle large occlusions gracefully, since it treats these
regions like concavities to be explored. This could be alle-
viated by defining anisotropic per-point sampling radii δi.
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