
ACT-Diffusion: Efficient Adversarial Consistency Training for One-step
Diffusion Models

Fei Kong1 Jinhao Duan2 Lichao Sun3 Hao Cheng4 Renjing Xu4

Hengtao Shen1 Xiaofeng Zhu1 Xiaoshuang Shi1* Kaidi Xu2 ∗

1University of Electronic Science and Technology of China
2Drexel University
3Lehigh University

4The Hong Kong University of Science and Technology (Guangzhou)
kong13661@outlook.com xsshi2013@gmail.com kx46@drexel.edu

Abstract

Though diffusion models excel in image generation, their
step-by-step denoising leads to slow generation speeds.
Consistency training addresses this issue with single-step
sampling but often produces lower-quality generations and
requires high training costs. In this paper, we show that op-
timizing consistency training loss minimizes the Wasserstein
distance between target and generated distributions. As
timestep increases, the upper bound accumulates previous
consistency training losses. Therefore, larger batch sizes
are needed to reduce both current and accumulated losses.
We propose Adversarial Consistency Training (ACT), which
directly minimizes the Jensen-Shannon (JS) divergence be-
tween distributions at each timestep using a discriminator.
Theoretically, ACT enhances generation quality, and con-
vergence. By incorporating a discriminator into the consis-
tency training framework, our method achieves improved
FID scores on CIFAR10 and ImageNet 64×64 and LSUN
Cat 256×256 datasets, retains zero-shot image inpainting
capabilities, and uses less than 1/6 of the original batch
size and fewer than 1/2 of the model parameters and train-
ing steps compared to the baseline method, this leads to a
substantial reduction in resource consumption. Our code is
available: https://github.com/kong13661/ACT

1. Introduction
Diffusion models, known for their success in image gener-
ation [12, 19, 31, 43, 44, 53], utilize diffusion processes to
produce high-quality, diverse images. They also perform
tasks like zero-shot inpainting [32] and audio generation
[24, 25, 36]. However, they have a significant drawback:

*Equal corresponding author

lengthy sampling times. These models generate target dis-
tribution samples by iterative denoising a Gaussian noise
input, a process that involves gradual noise reduction until
samples match the target distribution. This limitation af-
fects their practicality and efficiency in real-world applica-
tions.

The lengthy sampling times of diffusion models have
spurred the creation of various strategies to tackle this is-
sue. Several models and techniques have been suggested to
enhance the efficiency of diffusion-based image generation
[4, 29, 57]. Recently, consistency models [45] have been
introduced to speed up the diffusion models’ sampling pro-
cess. A consistency function is one that consistently yields
the same output along a specific trajectory. To use consis-
tency models, the trajectory from noise to the target sample
must be obtained. By fitting the consistency function, the
model can generate data within 1 or 2 steps.

The score-based model [44], an extension of the diffu-
sion model in continuous time, gradually samples from a
normal distribution pT to the sample distribution p0. In de-
terministic sampling, it essentially solves an Ordinary Dif-
ferential Equation (ODE), with each sample representing
an ODE trajectory. Consistency models generate samples
using a consistency function that aligns every point on the
ODE trajectory with the ODE endpoint. However, deriving
the true ODE trajectory is complex. To tackle this, consis-
tency models suggest two methods. The first, consistency
distillation, trains a score-based model to obtain the ODE
trajectory. The second, consistency training, approximates
the trajectory using a conditional one. Compared to dis-
tillation, consistency training has a larger error, leading to
lower sample quality. The consistency function is trained
by equating the model’s output at time tn+1 with its output
at time tn.

Generative Adversarial Networks (GANs) [3, 15, 55],

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8890

unlike consistency training, can directly minimize the dis-
tance between the model’s generated and target distribu-
tions via the discriminator, independent of the model’s out-
put at previous time tn−1. Drawing from GANs, we intro-
duce Adversarial Consistency Training. We first theoreti-
cally explain the need for large batch sizes in consistency
training by showing its equivalence to optimizing the up-
per bound of the Wasserstein-distance between the model’s
generated and target distributions. This upper bound con-
sists of the accumulated consistency training loss Ltk

CT , the
distance between sampling distributions, and the accumu-
lated error, all of which increase with t. Hence, a large batch
size is crucial to minimize the error from the previous time
t. To mitigate the impact of Ltk

CT and accumulated error,
we incorporate the discriminator into consistency training,
enabling direct reduction of the JS-divergence between the
generated and target distributions at each timestep t. Our
experiments on CIFAR10 [26], ImageNet 64×64 [7] and
LSUN Cat 256×256 [51] show that ACT significantly sur-
passes consistency training while needing less than 1/6 of
the original batch size and less than 1/2 of the original
model parameters and training steps, leading to consider-
able resource savings. For comparison, we use 1 NVIDIA
GeForce RTX 3090 for CIFAR10, 4 NVIDIA A100 GPUs
for ImageNet 64×64 and 8 NVIDIA A100 GPUs for LSUN
Cat 256×256, while consistency training requires 8, 64, 64
A100 GPUs for CIFAR10, ImageNet 64×64 and LSUN Cat
256×256, respectively.

Our contributions are summarized as follows:
• We demonstrate that consistency training is equivalent to

optimizing the upper bound of the W-distance. By an-
alyzing this upper bound, we have identified one reason
why consistency training requires a larger batch size.

• Following our analysis, we propose Adversarial Consis-
tency Training (ACT) to directly optimize the JS diver-
gence between the sampling distribution and the target
distribution at each timestep t, by incorporating a discrim-
inator into the consistency training process.

• Experimental results demonstrate that the proposed ACT
significantly outperforms the original consistency train-
ing with only less than 1/6 of the original batch size and
less than 1/2 of the training steps. This leads to a sub-
stantial reduction in resource consumption.

2. Related works
Generative Adversarial Networks GANs have achieved
tremendous success in various domains, including image
generation [15, 52, 54] and audio synthesis [10]. However,
GAN training faces challenges such as instability and mode
collapse, where the generator fails to capture the diversity of
the training data. To address these issues, several methods
have been proposed. For example, spectral normalization,
gradient penalty, and differentiable data augmentation tech-

niques have been developed. Spectral normalization [33]
constrains the Lipschitz constant of the discriminator, pro-
moting more stable training. Gradient penalty, as employed
in the WGAN-GP [17], utilizes the gradient penalty to dis-
criminator to limit the range of gradient, so as to avoid the
tend of concentrating the weights around extreme values,
when using weight clipping in WGAN [1]. [48] introduces
the concept of zero centered gradient penalty, and Style-
GAN2 [47] introduces lazy regularization which performs
multiple steps of iteration before computing the gradient
penalty to improve the efficiency. Moreover, differentiable
data augmentation techniques [56] have been introduced to
enhance the diversity and robustness of GAN models dur-
ing training. StyleGAN2-ADA [46] improves GAN perfor-
mance on small datasets by employing adaptive differen-
tiable data augmentation techniques.

Diffusion Models Diffusion models have emerged as
highly successful approaches for generating images [37,
38]. In contrast to the traditional approach of Genera-
tive Adversarial Networks (GANs), which involve a gen-
erator and a discriminator, diffusion models generate sam-
ples by modeling the inverse process of a diffusion pro-
cess from Gaussian noise. Diffusion models have shown
superior stable training process compared to GANs, ef-
fectively addressing issues such as checkerboard artifacts
[11, 13, 40]. The diffusion process is defined as follows:
xt =

√
αtxt−1 +

√
βtϵt, ϵt ∼ N (0, I). As t increases,

βt gradually increases, causing xt to approximate random
Gaussian noise. In the reverse diffusion process, x′

t follows
a Gaussian distribution, assuming the same variance as in
the forward diffusion process. The mean of x′

t is defined as:
µ̃t = 1√

at

(
xt − βt√

1−āt
ϵ̄θ(xt, t)

)
, where ᾱt =

∏t
k=0 αk

and ᾱt + β̄t = 1. The reverse diffusion process becomes:
xt−1 = µ̃t +

√
βtϵ, ϵ ∼ N (0, I). The loss function is

defined as Ex0,ϵ̄t

[∥∥ϵ̄t − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ̄t, t

)∥∥2] .
Score-based models [44] transforms the discrete-time dif-
fusion process into a continuous-time process and em-
ploys Stochastic Differential Equations (SDEs) to ex-
press the diffusion process. Moreover, the forward and
backward processes are no longer restricted to the dif-
fusion process. They employ the forward process de-
fined as dx =

(
f t(x)− 1

2

(
g2t − σ2

t

)
∇x log pt(x)

)
dt +

σtdw, and the corresponding backward process is dx =(
f t(x)− 1

2

(
g2t + σ2

t

)
∇x log pt(x)

)
dt+ σtdw̄, where w

is the forward time Brownian motion and w̄ is the for-
ward time Brownian motion. Compared to GANs, diffusion
models have longer sampling time consummations. Sev-
eral methods have been proposed to accelerate the genera-
tion process, including [9, 39, 50], DDIM [42], Consistency
models [45], etc.

Consistency type models A function is called a con-
sistency function if its output is the same at every point on

8891

a trajectory. Formally, given a trajectory, xt, t ∈ [0, T], the
function satisfies f(xt1) = E[f(xt2)], if t1, t2 ∈ [0, T].
If this trajectory is not a probability trajectory, then the
expected symbol E in the above formula can be removed.
[6] proposed Consistency Diffusion Models (CDM), which
proves that when the forward diffusion process satisfies
dxt = g(t)dwt, h(x, t) = ∇ log qt(x)g

2(t) + x is a con-
sistency function. They add consistency regularity above
during training to improve the sampling effectiveness of the
model. [45] proposed consistency models. Unlike consis-
tency diffusion models, Consistency Models (CM) utilize
deterministic sampling to obtain a one-step sampling model
by learning the mapping from each point xt on the trajec-
tory to x0. When training a diffusion model to obtain the
trajectory xt, it is called consistency distillation. When us-
ing conditional-trajectories to approximate non-conditional
trajectories, it is called consistency training. Compared to
consistency distillation, consistency training has a lower
sampling effectiveness. Concurrently, [22] induces a new
temporal variable, while calculating the previous step’s x
through multi-step iteration, and incorporates a discrimi-
nator after a period of training and achieved SOTA results
in distillation. Our work concentrates on energy-efficient
training from scratch also with different objective functions.

3. Method
3.1. Preliminary

3.1.1 Score-Based Generative Models

Score-Based Generative Models [44], as an extension of
diffusion models, extends the diffusion to continuous time,
and the forward and backward processes are no longer
limited to the diffusion process. Given a distribution pt,
where t ∈ [0, T], p0 is the data distribution and pT is
normal distribution. From p0 to pT , this distribution in-
creasingly approximates a normal distribution. We sam-
ple xt from pt distribution. If we can obtain xt′ from the
formula dx =

(
f t(x)− 1

2

(
g2t − σ2

t

)
∇x log pt(x)

)
dt +

σtdw, where w is the forward time Brownian motion and
t′ > t, then we can obtain xt′ from the formula dx =(
f t(x)− 1

2

(
g2t + σ2

t

)
∇x log pt(x)

)
dt+ σtdw, where w

is the backward time Brownian motion and t′ < t. If
σt = 0, this formula turns into a ordinary differential equa-
tion dx =

(
f t(x)− 1

2g
2
t∇x log pt(x)

)
dt. We can gener-

ate a new sample by numerically solving this Ordinary Dif-
ferential Equation (ODE). For each xT ∼ pT , this ODE
describes a trajectory from xT to x0.

3.1.2 Consistency Training

Denote {xt} as a ODE trajectory, a function is called
consistency function, if g(xt1 , t1) = g(xt2 , t2), for any
xt1 ,xt2 ∈ {xt}. To reduce the time consumption for

sampling from diffusion models, consistency training uti-
lizes a model to fit the consistency function g(xt1 , t1) =
g(xt2 , t2) = x0. The ODE trajectory selected by consis-
tency training is

dx = t∇x log pt(x)dt, t ∈ [0, T]. (1)

In this setting, the distribution of

pt(x) = p0(x) ∗ N (0, t2I),

where ∗ is convolution operator. The consistency models
are denoted as f(xt, t,θ). Consistency model is defined as

f(xt, t,θ) =
0.52

r2t + 0.52
xt+

0.5rt√
0.52 + r2t

F θ((
1√

r2t + 0.52
)xt, t),

(2)
where θ represents the parameters of the model, F θ is the
output of network, rt = t − ϵ, and ϵ is a small number for
numeric stability.

To train the consistency model f(xt, t, θ), we need to di-
vide the time interval [0, T] into several discrete time steps,
denoted as t0 = ϵ < t1 < t2 < · · · < tN = T . N gradually
increases as the training progresses, satisfying

N(k) = ⌈
√

k

K
((s1 + 1)2 − s20) + s20 − 1⌉+ 1,

where K denotes the total number of training steps, s1 is
the end of time steps, s0 is the beginning of time steps and
k refers to the current training step. Denote

Ln
CD =

n∑
k=1

E[d(f(xtk , tk,θ),f(x
Φ
tk−1

, tk−1,θ
−))],

where d(·) is a distance function, θ− is the exponentially
moving average of each batch of θ, and xtn+1

∼ ptn+1
.

xΦ
tn is obtained from xtn+1 through the ODE solver Φ using

Eq. (1). About θ and θ−, the equation is given as θ−
k+1 =

µ(k)θ−
k + (1− µ(k))θk, where µ(k) = exp(s0 log µ0

N(k)) and
µ0 is the coefficient at the beginning.

However, calculating LΦ
CD requires training another

score-based generative model. They also propose using
conditional trajectories to approximate xΦ

tn . This loss is de-
noted as

Ln
CT =

n∑
k=1

E[d(f(x0 + tkz, tk,θ), f(x0 + tk−1z, tk−1,θ
−))],

where x0 ∼ p0 and z ∼ N (0, I). LCT = LN
CT is called

consistency training loss. Using this loss to train the con-
sistency model is called consistency training. This loss is
proven [45] to satisfy

Ln
CT = Ln

CD + o(∆t), (3)

when the ODE solver Φ is Euler solver.

8892

3.1.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs), as generative
models, are divided into two parts during training. One
part is the generator, denoted as G(·), which is used to
generate samples from the approximated target distribu-
tion. The other part is the discriminator, denoted as D(·).
The training of GANs is alternatively optimizing G(·) and
D(·): 1) train to distinguish whether the sample is a gen-
erated sample; 2) train G(·) to deceive the discriminator.
These two steps are alternated in training. One type of
GANs can be described as the following minimax prob-
lem: minG maxD V (G,D) = Ex∼pdata (x)[logD(x)] +
Ez∼pz(z)[log(1−D(G(z)))]. It can be proven that this min-
imax problem is equivalent to minimizing the JS-divergence
between pdata and G(z), where z ∼ pz .

To improve the training stability of GANs, many meth-
ods have been proposed. A practical approach is the zero-
centered gradient penalty. This is achieved by using the fol-
lowing regularization:

Lgp = ∥∇xD(x)∥2,x ∼ pdata. (4)

To reduce computational overhead, this regularization
can be applied intermittently every few training steps, rather
than at every step.

3.2. Analysis the Loss Function
Theorem 3.1. If the consistency model satisfies the Lips-
chitz condition: there exists L > 0 such that for all x, y
and t, we have ∥f(x, t,θ) − f(y, t,θ)∥2 ≤ L∥x − y∥2,
then minimizing the consistency loss will reduce the upper
boundary of the W-distance between the two distributions.
This can be formally articulated as the following theorem:

W[ftk , gtk] = W[ftk , p0]

≤ LW[qtk , ptk] + Ltk
CT + tkO(∆t) + o(∆t),

(5)

where the definition of pt,f , Ltk
CT and g is consistent

with that in Sec. 3.1.2. ∆t = max(tk − tk−1). The dis-
tribution ft is defined as f(xt, t,θ), where xt ∼ qt, and
the distribution gt is defined as g(yt, t), where yt ∼ pt.
The distribution qt represents the noise distribution when
generating samples.

Proof. The W-distance (Wasserstein-distance) is defined as
follows:

Wρ[p, q] = inf
γ∈

∏
[p,q]

∫∫
γ(x,y)∥x− y∥ρdxdy,

where γ is any joint distribution of p and q. For conve-
nience, we take the case of ρ = 2 and simply denote ∥ · ∥ as
∥ · ∥2, and denoteW[p, q] asW2[p, q]. Let {xtk} or {ytk

}
be the points on the same trajectory defined by the ODE in
Eq. (1) on the ODE trajectory. ForW[ftk , gtk], we have the

following inequality:

W[ftk , gtk]

= inf
γ∗∈

∏
[ftk ,gtk]

∫∫
γ∗(x̂tk , ŷtk

)∥x̂tk − ŷtk
∥ρdx̂tkdŷtk

(i)

≤
∫∫

γ(x̂tk , ŷtk
)∥x̂tk − ŷtk

∥dx̂tkdŷtk
, γ ∈

∏
[ftk , gtk]

=Ex̂tk
,ŷtk

∼γ∈
∏

[ftk ,gtk][∥x̂tk − ŷtk
∥]

(ii)
= Extk

,ytk
∼γ∈

∏
[qtk ,ptk][∥f(xtk , tk, ϕ)− g(ytk

, tk)∥].

Here, (i) holds because γ is the joint distribution of any pt
and qt. (ii) is obtained through the law of the unconscious
statistician. Since the joint distribution γ ∈ ∏

[qtk , ptk] in
the above formula is arbitrary, so we choose the distribution
satisfying Extk

,ytk
∼γ∗ [∥ytk

−xtk∥] =W[qtk , ptk]. We de-
note it as γ∗. The expectation Extk

,ytk
∼γ∗ [∥f(xtk , tk, θ)−

g(ytk
, tk)∥] satisfies the following inequality:

Extk
,ytk

∼γ∗ [∥f(xtk , tk,θ)− g(ytk
, tk)∥]

≤Eytk
∼ptk

[∥g(ytk
, tk)− f(ytk

, tk,θ)∥] + LW[qtk , ptk].

(6)

If the ODE solver is Euler ODE solver, we have:

Eytk
∼ptk

[∥g(ytk
, tk)− f(ytk

, tk,θ)∥]

≤Eytk−1
∼ptk−1

[∥g(ytk−1
, tk−1)− f(ytk−1

, tk−1,θ)∥]

+ L(tk − tk−1)O(tk − tk−1)

+ Eytk
∼ptk

[∥f(yϕ
tk−1

, tk−1,θ)− f(ytk
, tk,θ)∥]

(7)

The detailed proofs for the aforementioned inequalities can
be found in Appendix B. We iterate multiple times un-
til t0. At this point, from Eq. (2), we have ∥g(yt0 , t0) −
f(yt0 , t0, θ)∥ = 0. So, we can obtain the inequality below:

Eytk
∼ptk

[∥g(ytk
, tk)− f(ytk

, tk,θ)∥]

≤Lk
CD +

k∑
i=1

L(ti − ti−1)O((ti − ti−1))

(i)
=Lk

CT +

k∑
i=1

tkO((∆t)) + o(∆t).

Here, (i) holds because ∆t = max(tk − tk−1), and the re-
lationship between Lk

CD and Lk
CT in Eq. (3). Since consis-

tency function g(xt, t) = x0, it follows thatW[ftk , gtk] =
W[ftk , p0]. Putting these together, the proof is com-
plete.

Analyzing Eq. (5), W[qtk , ptk] is the W-distance be-
tween the two sampling distributions, which is independent
of the model. We set qt = pt to eliminate W[qtk , ptk].
The term o(∆t) and tkO(∆t) originate from approxima-
tion errors, where tkO(∆t) increases with the increase of
tk. The remaining term is Lk

CT =
∑k

i=1 E[d(f(x0 +

8893

tiz, ti,θ), f(x0+ti−1z, ti−1,θ
−))]. It can be seen that this

term also accumulates errors. The quality of the model’s
generation depends not only on the current loss at tk,
E[d(f(x0+tkz, tk,θ), f(x0+tk−1z, tk−1,θ

−))], but also
on the sum of all losses for values less than k. These two
accumulated errors may be one of the reasons why consis-
tency training requires as large a batch size and large model
size as possible. During training, it is not only necessary
to ensure a smaller loss at the current tk, but also to use a
larger batch size and larger model size to ensure a smaller
loss at previous t values. Besides, reducing ∆t can help to
lower this upper bound. However, as described in the origi-
nal text [45], reducing ∆t in practical applications does not
always lead to performance improvements.

3.3. Enhancing Consistency Training with Discrim-
inator

Following the analysis in Sec. 3.2, it can be observed that
the W-distance at time tk depends not only on the loss at
tk, but also on the loss at previous times. This could be one
of the reasons why consistency training requires as large a
batch size and model size as possible. However, it can be
noted that at each moment tk, the ultimate goal is to reduce
the distance between the generated distribution and the tar-
get distribution. In order to reduce the gap between two
distributions, we propose not only using the W-distance,
but also other distances, such as JS-divergence. Inspired
by GANs, we suggest incorporating a discriminator into the
training process.

It can be proven that when the generator training loss is
given by

LG = log(1−D(f(x+ tn+1z, tn+1,θg), tn+1,θd)), (8)

and the discriminator training loss is given by

LD =− log(1−D(f(xg + tn+1z, tn+1),θd)

− log(D(xr, tn+1,θd)),
(9)

minimizing the loss leads to minf (−2 log 2 +
2JSD (ftk∥p0)), which is equivalent to minimizing
the JS-divergence. D is the discriminator. It can be
observed that this loss does not depend on the previous tk
loss, and can directly optimize the distance between the
current tk distributions. Therefore, the required batch size
and model size can be smaller compared to consistency
training.

However, although the ultimate goals of the two dis-
tances are the same, e.g., when the JS-divergence is 0, the
W-distance is also 0, at which point the gradient of the dis-
criminator is also 0. However, at this point, the gradient of
LCT may not be 0 due to the aforementioned error. More-
over, when LCT is relatively large, the optimization direc-
tion of LCT may conflict with LG. Consider the extreme
case where the output of ftn is completely random, it is
clear that LCT and LG are in conflict, when training f at

time tn+1. On the other hand, whenLCT is relatively small,
the model f is easier to fit at tn than at tn+1, thus generating
better quality. Also, since xt and xtn+1 are close enough,
their discriminators are also close enough, thus jointly im-
proving the generation quality. Therefore, we employ the
coefficient λ to balance the proportion between LCT and
LG. Furthermore, as Lk

CT increases with k, the W-distance
also increases. In order to improve the performance of con-
sistency training, the weight ofLG should also increase. We
utilize the formula Eq. (10) to give LG more weight, where
w is the weight at n = N − 1, and wmid is the weight at
n = (N − 1)/2.

λN (n) = w

(
n

N − 1

)log 1
2
(
wmid

w
)

. (10)

Please note, even though the fitting targets of all ftk are q0,
we choose for the form D(xt, t,θd) rather than D(xt,θd)
when constructing the discriminator. Although theoreti-
cally, the optimal distribution of the generator trained by
these two discriminators is p0, and for two similar samples,
the discriminator in the form of D(xt,θd) will generate
similar gradients at different t, we find in our experiments
Sec. 4.3.3 that this form of discriminator is not as effective
as D(xt, t,θd). The training algorithm is described in Al-
gorithm 1.

3.4. Gradient Penalty Based Adaptive Data Aug-
mentation

For smaller datasets, in the field of GANs, there are many
data augmentation works to improve generation effects.
Inspired by StyleGAN2-ADA[46], we also utilize adap-
tive differentiable data augmentation. However, unlike
StyleGAN2-ADA, which adjusts the probability of data
augmentation based on the accuracy of the discriminator
over time, it is difficult to adjust the augmentation proba-
bility through the accuracy of a single discriminator in our
model due to the varying training difficulties at different t.
As described in Sec. 4.3.2, we find that the stability of the
discriminator’s gradient has a significant impact on train-
ing. This may be due to the interaction between LCT and
LG. We propose to adjust the probability of data augmen-
tation based on the value of the gradient penalty over time.
Given a differential data augmentation function A(x, paug),
where paug is the probability of applying the data augmen-
tation, the augmented discriminator is defined by:

Daug(xt, t, paug,θd) = D(A(xt, paug), t,θd).

The probability paug is updated by

paug ← Clip[0,1](paug + 2([L−
gp ≥ τ]− 0.5)pr),

where [·] denotes the indicator function, which takes a value
of 1 when the condition is true and 0 otherwise. Clip[0,1](·)

8894

Table 1. Training steps and model parameter size are reported. BS
stands for Batch Size. For ACT, Params represent parameters of
the consistency model + discriminator.

Dataset Method BS Steps Params Fid

CIFAR10

CT 512 800K 73.9M 8.7
CT 256 800K 73.9M 10.4
CT 128 800K 73.9M 14.4
ACT-Aug 80 300K 27.5M+14.1M 6.0

ImageNet CT 2048 800K 282M 13.0
ACT 320 400K 107M+54M 10.6

LSUN Cat CT 2048 1000K 458M 20.7
ACT 320 165K 113M+57M 13.0

Table 2. Sample quality of ACT on the ImageNet dataset with the
resolution of 64× 64. Our ACT significantly outperforms CT.

Method NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
BigGAN-deep [3] 1 4.06 0.79 0.48
ADM [8] 250 2.07 0.74 0.63
EDM [21] 79 2.44 0.71 0.67
DDPM [19] 250 11.0 0.67 0.58
DDIM [42] 50 13.7 0.65 0.56
DDIM [42] 10 18.3 0.60 0.49
CT 1 13.0 0.71 0.47
ACT 1 10.6 0.67 0.56

represents the operation of clipping the value to the inter-
val [0, 1]. pr denotes the update rate at each iteration, and
L−
gp is the exponential moving average of Lgp, defined as
L−
gp = µpL−

gp+(1−µp)Lgp. pr and µp are constants within
the range [0, 1]. This algorithm is described in Algorithm 2
shown in Appendix D. Our motivation for proposing the
use of data augmentation is to mitigate the overfitting phe-
nomenon in the discriminator. We conduct experiments on
CIFAR10 to verify the method. However, the performance
of data augmentation on large datasets, such as ImageNet
64×64, remains to be explored.

4. Experiments
In this section, we report experimental settings and results
on CIFAR-10, ImageNet64 and LSUN Cat 256 datasets.

4.1. Generation Performance

In this section, we report the performance of our model
on the CIFAR10, ImageNet 64×64 datasets and LSUN Cat
256×256 datasets. The results demonstrate a significant im-
provement of our method over the original approach. We
exhibit the results on CIFAR10 in Tab. 3, on ImageNet
64×64 in Tab. 2 and on LSUN Cat 256×256 in Tab. 4,
respectively. The FID on CIFAR10 improves from 8.7 to
6.0. It improves from 13 to 10.6 on ImageNet 64×64, and
it improves from 20.7 to 13.0 on LSUN Cat 256×256.

Furthermore, we demonstrate the performance of the
consistency training on different batch sizes, and the sizes
of the models used by the proposed method and consistency
training, in Tab. 1. As can be discerned from the data in the
table, the batch size has a significant impact on consistency
training. When the batch size is set to 256, the FID score
escalates to 10.4 from 8.7. Besides, with a batch size of

Algorithm 1 Adversarial Consistency Training

1: Input: dataset D, initial consistency model parame-
ter θg , discriminator θd, step schedule N(·), EMA de-
cay rate schedule µ(·), optimizer opt(·, ·), discrimina-
tor D(·, ·, θd), adversarial rate schedule λ(·), gradient
penalty weight wgp, gradient penalty interval Igp.

2: θ−
g ← θ and k ← 0

3: repeat
4: Sample x ∼ D, and n ∼ U [[1, N(k)]]
5: Sample z ∼ N (0, I) ▷ Train Consistency Model
6: LCT ←

d(f(x+ tn+1z, tn+1,θg),f(x+ tnz, tn,θ
−
g))

7: LG ←
log(1−D(f(x+ tn+1z, tn+1,θg), tn+1,θd))

8: Lf ← (1− λN(k)(n+1))LCT + λN(k)(n+1)LG

9: θg ← opt(θg,∇θg (Lf))

10: θ−
g ← stopgrad(µ(k)θ−

g + (1− µ(k))θg)

11: Sample xg ∼ D, xr ∼ D, and n ∼ U [[1, N(k)]]
12: Sample z ∼ N (0, I) ▷ Train Discriminator
13: LD ← − log(D(xr, tn+1,θd))

− log(1−D(f(xg + tn+1z, tn+1,θd))
14: Lgp ←

wgp∥∇xr
D(xr, tn+1,θd)∥2[k mod Igp = 0]

15: Ld ← λN(k)(n+ 1)LD + λN(k)(n+ 1)Lgp

16: θd ← opt(θd,∇θd
(Ld))

17: k ← k + 1
18: until convergence

128, the FID rises to 14.4. On the CIFAR10 dataset, the
proposed method outperforms consistency training, achiev-
ing an FID of 6.0 with a batch size of 80, versus 8.7 with
a batch size of 512. On ImageNet 64x64, it achieves an
FID of 10.6 with a batch size of 320, compared to consis-
tency training’s 13.0 with a batch size of 2048. Besides,
on LSUN Cat 256 × 256, the proposed method attains an
FID of 13.0 with a batch size of 320, better than consis-
tency training’s 20.7 with a batch size of 2048. Fig. 1 shows
the generated samples from model training on ImageNet
64×64 and LSUN Cat 256×256. Figs. E7 and E8 shows
more generated samples from model training on LSUN Cat
256×256. Appendix A provides explanations for all met-
rics. Appendix E shows zero-shot image inpainting.

4.2. Resource Consumption

We utilize the DDPM model architecture as our backbone.
While DDPM’s performance isn’t as high as [8] and [44], it
has fewer parameters and attention layers, enabling faster
execution. Our model is significantly smaller than the
63.8M model used by consistency training on CIFAR10,
with only 27.5M (41.6M with discriminator during training)
parameters. On the ImageNet 64×64 dataset, our model,

8895

Table 3. Sample quality of ACT on the CIFAR10 dataset. We
compare ACT with state-of-the-art GANs and (efficient) diffusion
models. We show that ACT achieves the best FID and IS among
all the one-step diffusion models.

Method NFE (↓) FID (↓) IS (↑)
BigGAN [3] 1 14.7 9.22
AutoGAN [14] 1 12.4 8.40
ViTGAN [28] 1 6.66 9.30
TransGAN [20] 1 9.26 9.05
StyleGAN2-ADA [46] 1 2.92 9.83
StyleGAN2-XL [41] 1 1.85 -
Score SDE [44] 2000 2.20 9.89
DDPM [19] 1000 3.17 9.46
EDM [21] 36 2.04 9.84
DDIM [42] 50 4.67 -
DDIM [42] 20 6.84 -
DDIM [42] 10 8.23 -
1-Rectified Flow [30] 1 378 1.13
Glow [23] 1 48.9 3.92
Residual FLow [4] 1 46.4 -
DenseFlow [16] 1 34.9 -
DC-VAE [35] 1 17.9 8.20
CT [45] 1 8.70 8.49
ACT 1 6.4 8.93
ACT-Aug 1 6.0 9.15

with only 107M parameters (161M with discriminator dur-
ing training), is smaller than the 282M model used by con-
sistency training. The smaller model and batch size reduce
resource consumption. In our experiments on CIFAR10, we
utilize 1 NVIDIA GeForce RTX 3090, as opposed to the 8
NVIDIA A100 GPUs used for consistency training. For the
ImageNet 64×64 experiments, we employ 4 NVIDIA A100
GPUs, in contrast to the 64 A100 GPUs used for training in
the consistency training setup. For the LSUN Cat 256×256
experiments, we employ 8 NVIDIA A100 GPUs, in contrast
to the 64 A100 GPUs used for training in the consistency
training setup [45].

4.3. Ablation Study
4.3.1 Impacts of λN

When λN ≡ 0, this reduces to consistency training. Con-
versely, when λN ≡ 1, it becomes Generative Adversarial
Networks (GANs). According to the analysis in Sec. 3.2,
as λN increases, adversarial consistency training gains the
capacity to enhance model performance with smaller batch
sizes, leveraging the discriminator. However, as discussed
in Sec. 3.3, an overly large λN can lead to an excessive con-
sistency training loss, thereby causing a conflict between
LCT and LG. Furthermore, it has been noted in the lit-
erature that for GANs, high-dimensional inputs may detri-
mentally affect model performance [34]. Therefore, as λN

increases, the model performance exhibits a pattern of ini-
tial improvement followed by a decline. Firstly, we demon-
strate the phenomenon of mode collapse when λN ≈ 1
on CIFAR10. As illustrated in Fig. E6, the phenomenon
of mode collapse is observed. It can be noted that, apart

Table 4. Sample quality of ACT on the LSUN Cat dataset with the
resolution of 256×256. Our ACT significantly outperforms CT.
†Distillation techniques.

Method NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
DDPM [19] 1000 17.1 0.53 0.48
ADM [8] 1000 5.57 0.63 0.52
EDM [21] 79 6.69 0.70 0.43
PD† [39] 1 18.3 0.60 0.49
CD† [45] 1 11.0 0.65 0.36
CT [45] 1 20.7 0.56 0.23
ACT 1 13.0 0.69 0.30

from the initial tk where the residual structure from Eq. (2)
results in outputs with substantial input components, pre-
venting mode collapse, the other tk values all exhibit mode
collapse.

For a score-based model as defined in Sec. 3.1.1, the
learned sampling process is the reverse of the diffusion
process pt(x0|xt). However, the distribution qt(x0|xt)
learned via Eqs. (8) and (9) does not consider the for-
ward process of the diffusion. We conduct further exper-
iments where the form of the discriminator is changed to
D(x0,xt, t,θd), and it can be proven Appendix C that the
distribution learned by the generator is pt(x0|xt). How-
ever, we also observe the phenomenon of mode collapse in
our experiments. Fig. 2 illustrates the training collapse on
ImageNet 64×64 when λN ≡ 0.3. It can be observed that
at around 150k training steps, the LCT becomes unstable
and completely collapses around 170k. We have included
the training curves for the proper λN in the Appendix E. It
can be observed that at this point, LCT and several other
training losses remain stable. Essentially, a smaller wmid

and a larger w are preferable choices.

4.3.2 Connection between gradient penalty and train-
ing stability

In Sec. 3.3, we analyze the relationship between LCT and
LG, highlighting the importance of gradient stability. In
this section, we conduct experiments to validate our pre-
vious analysis and demonstrate the rationality of the ACT-
Aug method proposed in Sec. 3.4.

Fig. 2 illustrates the relationship among the values of the
gradient penalty (Lgp), consistency training loss (LCT), and
FID. It can be observed that almost every instance of in-
stability in LCT is accompanied by a relatively large Lgp.
Fig. 3 illustrates the relationship among these three on the
CIFAR10 dataset. It can be seen that in the mid-stage of
training, Lgp begins to slowly increase, a process that is
accompanied by a gradual increase in LCT and FID. There-
fore, we believe that gradient stability is crucial for adver-
sarial consistency training. Based on this, we propose ACT-
Aug (Sec. 3.4) on small datasets, using Lgp as an indicator
to adjust the probability of data augmentation, thereby sta-
bilizing Lgp around a certain value.

8896

Figure 1. Generated samples on ImageNet 64×64 (top two rows)
and LSUN Cat 256×256 (the third row).

120k 140k 160k 180k

training step

0.0

2.5

5.0

7.5

10.0

L g
p

0.00

0.08

0.16

0.24

0.32

L C
T

24

26

28

30

32

F
ID

Lgp
LCT
FID

Figure 2. Lgp, LCT , and FID of ACT on ImageNet 64x64 (λN ≡
0.3, an overly large λN leads to training collapse. Additionally,
drastic changes in Lgp closely follow changes in LCT).

50k 100k 150k 200k 250k 300k

training step

0.6

0.8

1.0

L g
p

0.032

0.034

0.036

0.038

0.040

L C
T

6.0

7.5

9.0

10.5

12.0

F
ID

Lgp
LCT
FID

Figure 3. Lgp, LCT , and FID of ACT on CIFAR10 (λN ≡ 0.3, an
appropriate λN . In the later stages of training, without data aug-
mentation, LCT , Lgp, and FID all show relatively large increases).

4.3.3 Discriminator
Activation Function Generally, GANs employ
LeakyReLU as the activation function for the discrim-
inator. This function is typically considered to provide
better gradients for the generator. On the other hand, SiLU
is the activation function chosen for DDPM, and it is gen-
erally regarded as a stronger activation function compared
to LeakyReLU. Tab. 5 displays the FID scores of different
activation functions on CIFAR10 at 50k and 150k training
steps. Contrary to previous findings, we discovery that
utilizing the SiLU function for the discriminator leads to
faster convergence rates and improved final performance.
A possible reason is that LCT provides an additional
gradient direction, which mitigates the overfitting of the
discriminator.
Different Backbone Tab. 5 also displays the FID scores
of different architecture on CIFAR10 at 50k and 150k train-
ing steps. In our investigation, we have evaluated the dis-
criminators of StyleGAN2, ProjectedGAN and the down-

Table 5. Ablation study of the discriminator.

Discriminator Activation t-emb Fid (50k) Fid (150k)
DDPM-res LeakyReLU False 18.7 10.6
DDPM-res LeakyReLU True 11.5 7.4
DDPM-res SiLU True 9.9 7.0
DDPM SiLU True 12.5 6.5
StyleGAN2 LeakyReLU True 16.7 9.5
ProjectedGAN LeakyReLU True 19.4 16.6

sampling part of DDPM (simply denoted as DDPM) as de-
scribed in Appendix A. Due to the significant role of resid-
ual structures in designing GANs’ discriminators, we in-
corporate residual connections between different downsam-
pling blocks in DDPM, denoted as DDPM-res. It can be
observed that DDPM performs the best. Although DDPM-
res exhibits a faster convergence rate during the early stages
of training, its performance in the later stages is not as
satisfactory as that of DDPM. Furthermore, we find that
DDPM demonstrates superior training stability compared
to DDPM-res. We also experiment with whether or not to
feed t into the discriminator, denoted as t-emb. We find
that feeding t yields better results. This might be due to the
fact that the optimal value of the discriminator varies with
different tk, hence the necessity of t-emb for better fitting.

5. Conclusion
We proposed Adversarial Consistency Training (ACT), an
improvement over consistency training. Through analyz-
ing the consistency training loss, which is proven to be the
upper bound of the W-distance between the sampling and
target distributions, we introduced a method that directly
employs Jensen-Shannon Divergence to minimize the dis-
tance between the generated and target distributions. This
approach enables superior generation quality with less than
1/6 of the original batch size and approximately 1/2 of
the original model parameters and training steps, thereby
having smaller resource consumption. Our method re-
tains the beneficial capabilities of consistency models, such
as inpainting. Additionally, we proposed to use gradient
penalty-based adaptive data augmentation to improve the
performance on small datasets. The effectiveness has been
validated on CIFAR10, ImageNet 64×64 and LSUN Cat
256×256 datasets, highlighting its potential for broader ap-
plication in the field of image generation.

However, the interaction between LCT and LG can be
further explored to improve our method. In addition to us-
ing JS-Divergence, other distances can also be used to re-
duce the distance between the generated and target distribu-
tions. In the future, we will focus on these two aspects to
further boost the performance.

6. Acknowledgement
Fei Kong and Xiaoshuang Shi were supported by the
National Natural Science Foundation of China (No.
62276052).

8897

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein gan, 2017. 2
[2] Shane Barratt and Rishi Sharma. A note on the inception

score. arXiv: Machine Learning, abs/1801.01973, 2018. 1
[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2019. 1, 6, 7

[4] Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and
Jörn-Henrik Jacobsen. Residual flows for invertible
generative modeling. In Conference on Neural Information
Processing Systems, pages 9913–9923, 2019. 1, 7

[5] christian szegedy, vincent vanhoucke, sergey ioffe, jonathon
shlens, and zbigniew wojna. Rethinking the inception archi-
tecture for computer vision. Proceedings - IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, abs/1512.00567(1):2818–2826, 2016. 1

[6] Giannis Daras, Yuval Dagan, Alexandros G Dimakis, and
Constantinos Daskalakis. Consistent diffusion models: Mit-
igating sampling drift by learning to be consistent. arXiv
preprint arXiv:2302.09057, 2023. 3

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In Advances in neural infor-
mation processing systems, pages 8780–8794, 2021. 6, 7

[9] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-
based generative modeling with critically-damped langevin
diffusion. In International Conference on Learning Repre-
sentations, 2022. 2

[10] Chris Donahue, Julian McAuley, and Miller Puckette. Ad-
versarial audio synthesis. arXiv preprint arXiv:1802.04208,
2018. 2

[11] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
versarial feature learning. In International Conference on
Learning Representations, 2017. 2

[12] Jinhao Duan, Fei Kong, Shiqi Wang, Xiaoshuang Shi, and
Kaidi Xu. Are diffusion models vulnerable to membership
inference attacks? In International Conference on Machine
Learning, 2023. 1

[13] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex
Lamb, Martı́n Arjovsky, Olivier Mastropietro, and Aaron C.
Courville. Adversarially learned inference. In International
Conference on Learning Representations, 2017. 2

[14] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. In IEEE International Conference on
Computer Vision, pages 3223–3233, 2019. 7

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, 2014. 1, 2

[16] Matej Grcić, Ivan Grubišić, and Siniša Šegvić. Densely con-
nected normalizing flows. In Conference on Neural Informa-
tion Processing Systems, pages 23968–23982, 2021. 7

[17] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent
Dumoulin, and Aaron C. Courville. Improved training of
wasserstein gans. In Advances in neural information pro-
cessing systems, 2017. 2

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Conference on Neural Information Processing Sys-
tems, 2017. 1

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Infor-
mation Processing Systems, pages 6840–6851, 2020. 1, 6,
7

[20] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two pure transformers can make one strong gan, and that
can scale up. In Advances in Neural Information Processing
Systems, pages 14745–14758, 2021. 7

[21] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Conference on Neural Information Processing
Systems, 2022. 6, 7

[22] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Mu-
rata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki
Mitsufuji, and Stefano Ermon. Consistency trajectory mod-
els: Learning probability flow ode trajectory of diffusion.
arXiv preprint arXiv:2310.02279, 2023. 3

[23] Diederik P. Kingma and Prafulla Dhariwal. Glow: Genera-
tive flow with invertible 1x1 convolutions. In Conference on
Neural Information Processing Systems, 2018. 7

[24] Fei Kong, Jinhao Duan, RuiPeng Ma, Hengtao Shen, Xi-
aofeng Zhu, Xiaoshuang Shi, and Kaidi Xu. An efficient
membership inference attack for the diffusion model by
proximal initialization. arXiv preprint arXiv:2305.18355,
2023. 1

[25] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model for
audio synthesis. In International Conference on Learning
Representations, 2021. 1

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images, 2009. 2

[27] Tuomas Kynkäänniemi, Tero Karras, Samuli
Laine, Jaakko Lehtinen, and Timo Aila. Improved preci-
sion and recall metric for assessing generative models. In
Advances in neural information processing systems, pages
3929–3938, 2019. 1

[28] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang,
Zhuowen Tu, and Ce Liu. Vitgan: Training gans with vi-
sion transformers. In International Conference on Learning
Representations, 2022. 7

[29] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data with
rectified flow. In International Conference on Learning Rep-
resentations, 2022. 1

[30] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data with

8898

rectified flow. In International Conference on Learning Rep-
resentations, 2023. 7

[31] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao,
Ruoxi Chen, Zhengqing Yuan, Yue Huang, Hanchi Sun, Jian-
feng Gao, et al. Sora: A review on background, technology,
limitations, and opportunities of large vision models. arXiv
preprint arXiv:2402.17177, 2024. 1

[32] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11461–11471, 2022. 1

[33] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations, 2018. 2

[34] Manisha Padala, Debojit Das, and Sujit Gujar. Effect of input
noise dimension in gans. In Neural Information Processing,
pages 558–569. Springer, 2021. 7

[35] Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen
Tu. Dual contradistinctive generative autoencoder. Proceed-
ings - IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 823–832, 2021. 7

[36] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima
Sadekova, and Mikhail Kudinov. Grad-tts: A diffusion prob-
abilistic model for text-to-speech. In International Confer-
ence on Machine Learning, pages 8599–8608, 2021. 1

[37] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 2

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 10674–
10685, 2022. 2

[39] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2022. 2, 7

[40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Advances in Neural Information Pro-
cessing Systems, 2016. 2, 1

[41] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In Interna-
tional Conference on Computer Graphics and Interactive
Techniques, pages 1–10, 2022. 7

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 2, 6, 7

[43] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Advances
in Neural Information Processing Systems, pages 11895–
11907, 2019. 1

[44] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based

generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, 2021. 1, 2, 3, 6, 7

[45] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. Computing Research Repos-
itory, abs/2303.01469, 2023. 1, 2, 3, 5, 7

[46] Karras Tero, Aittala Miika, Hellsten Janne, Laine Samuli,
Lehtinen Jaakko, and Aila Timo. Training generative adver-
sarial networks with limited data. In Conference on Neural
Information Processing Systems, pages 12104–12114, 2020.
2, 5, 7

[47] Karras Tero, Laine Samuli, Aittala Miika, Hellsten Janne,
Lehtinen Jaakko, and Aila Timo. Analyzing and improving
the image quality of stylegan. In Computer Vision and Pat-
tern Recognition, pages 8107–8116, 2020. 2

[48] Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh.
Improving generalization and stability of generative adver-
sarial networks. In International Conference on Learning
Representations, 2019. 2

[49] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro
Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,
and Thomas Wolf. Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/
diffusers, 2022. 1

[50] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. In International Conference on Learning Represen-
tations, 2022. 2

[51] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 2

[52] Chenxi Yuan and Mohsen Moghaddam. Attribute-aware
generative design with generative adversarial networks.
IEEE Access, 8:190710–190721, 2020. 2

[53] Chenxi Yuan, Jinhao Duan, Nicholas J Tustison, Kaidi Xu,
Rebecca A Hubbard, and Kristin A Linn. Remind: Recov-
ery of missing neuroimaging using diffusion models with ap-
plication to alzheimer’s disease. medRxiv, pages 2023–08,
2023. 1

[54] Chenxi Yuan, Tucker Marion, and Mohsen Moghaddam.
Dde-gan: Integrating a data-driven design evaluator into gen-
erative adversarial networks for desirable and diverse con-
cept generation. Journal of Mechanical Design, 145(4):
041407, 2023. 2

[55] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak
Lee. Consistency regularization for generative adversarial
networks. In International Conference on Learning Repre-
sentations, 2020. 1

[56] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. In Conference on Neural Information Processing
Systems, pages 7559–7570, 2020. 2

[57] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Fast sampling of dif-
fusion models via operator learning. International Confer-
ence on Machine Learning, 2023. 1

8899

