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Figure 1. We introduce EscherNet, a diffusion model that can generate a flexible number of consistent target views (highlighted in blue)

with arbitrary camera poses, based on a flexible number of reference views (highlighted in purple). EscherNet demonstrates remarkable

precision in camera control and robust generalisation across synthetic and real-world images featuring multiple objects and rich textures.

Abstract

We introduce EscherNet, a multi-view conditioned dif-

fusion model for view synthesis. EscherNet learns im-

plicit and generative 3D representations coupled with a

specialised camera positional encoding, allowing precise

and continuous relative control of the camera transforma-

tion between an arbitrary number of reference and target

views. EscherNet offers exceptional generality, flexibility,

and scalability in view synthesis — it can generate more

than 100 consistent target views simultaneously on a sin-

gle consumer-grade GPU, despite being trained with a fixed

number of 3 reference views to 3 target views. As a result,

EscherNet not only addresses zero-shot novel view synthe-

sis, but also naturally unifies single- and multi-image 3D

reconstruction, combining these diverse tasks into a single,

cohesive framework. Our extensive experiments demon-

strate that EscherNet achieves state-of-the-art performance

in multiple benchmarks, even when compared to methods

specifically tailored for each individual problem. This re-

markable versatility opens up new directions for designing

scalable neural architectures for 3D vision. Project page:

https://kxhit.github.io/EscherNet.

1. Introduction

View synthesis stands as a fundamental task in computer vi-

sion and computer graphics. By allowing the re-rendering

of a scene from arbitrary viewpoints based on a set of ref-

erence viewpoints, this mimics the adaptability observed in
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human vision. This ability is not only crucial for practi-

cal everyday tasks like object manipulation and navigation,

but also plays a pivotal role in fostering human creativity,

enabling us to envision and craft objects with depth, per-

spective, and a sense of immersion.

In this paper, we revisit the problem of view synthesis

and ask: How can we learn a general 3D representation to

facilitate scalable view synthesis? We attempt to investigate

this question from the following two observations:

i) Up until now, recent advances in view synthesis have

predominantly focused on training speed and/or rendering

efficiency [12, 18, 31, 48]. Notably, these advancements

all share a common reliance on volumetric rendering for

scene optimisation. Thus, all these view synthesis methods

are inherently scene-specific, coupled with global 3D spatial

coordinates. In contrast, we advocate for a paradigm shift

where a 3D representation relies solely on scene colours

and geometries, learning implicit representations without

the need for ground-truth 3D geometry, while also main-

taining independence from any specific coordinate system.

This distinction is crucial for achieving scalability to over-

come the constraints imposed by scene-specific encoding.

ii) View synthesis, by nature, is more suitable to be cast

as a conditional generative modelling problem, similar to

generative image in-painting [25, 60]. When given only a

sparse set of reference views, a desired model should pro-

vide multiple plausible predictions, leveraging the inherent

stochasticity within the generative formulation and drawing

insights from natural image statistics and semantic priors

learned from other images and objects. As the available

information increases, the generated scene becomes more

constrained, gradually converging closer to the ground-truth

representation. Notably, existing 3D generative models cur-

rently only support a single reference view [20–23, 44]. We

argue that a more desirable generative formulation should

flexibly accommodate varying levels of input information.

Building upon these insights, we introduce EscherNet,

an image-to-image conditional diffusion model for view

synthesis. EscherNet leverages a transformer architec-

ture [51], employing dot-product self-attention to capture

the intricate relation between both reference-to-target and

target-to-target views consistencies. A key innovation

within EscherNet is the design of camera positional encod-

ing (CaPE), dedicated to representing both 4 DoF (object-

centric) and 6 DoF camera poses. This encoding incorpo-

rates spatial structures into the tokens, enabling the model to

compute self-attention between query and key solely based

on their relative camera transformation. In summary, Esch-

erNet exhibits these remarkable characteristics:

• Consistency: EscherNet inherently integrates view con-

sistency thanks to the design of camera positional encod-

ing, encouraging both reference-to-target and target-to-

target view consistencies.

• Scalability: Unlike many existing neural rendering meth-

ods that are constrained by scene-specific optimisation,

EscherNet decouples itself from any specific coordinate

system and the need for ground-truth 3D geometry, with-

out any expensive 3D operations (e.g. 3D convolutions

or volumetric rendering), making it easier to scale with

everyday posed 2D image data.

• Generalisation: Despite being trained on only a fixed

number of 3 reference to 3 target views, EscherNet ex-

hibits the capability to generate any number of target

views, with any camera poses, based on any number of

reference views. Notably, EscherNet exhibits improved

generation quality with an increased number of reference

views, aligning seamlessly with our original design goal.

We conduct a comprehensive evaluation across both

novel view synthesis and single/multi-image 3D reconstruc-

tion benchmarks. Our findings demonstrate that EscherNet

not only outperforms all 3D diffusion models in terms of

generation quality but also can generate plausible view syn-

thesis given very limited views. This stands in contrast to

these scene-specific neural rendering methods such as In-

stantNGP [31] and Gaussian Splatting [18], which often

struggle to generate meaningful content under such con-

straints. This underscores the effectiveness of our method’s

simple yet scalable design, offering a promising avenue for

advancing view synthesis and 3D vision as a whole.

2. Related Work

Neural 3D Representations Early works in neural 3D

representation learning focused on directly optimising on

3D data, using representations such as voxels [26] and point

clouds [40, 41], for explicit 3D representation learning. Al-

ternatively, another line of works focused on training neural

networks to map 3D spatial coordinates to signed distance

functions [35] or occupancies [28, 37], for implicit 3D rep-

resentation learning. However, all these methods heavily

rely on ground-truth 3D geometry, limiting their applicabil-

ity to small-scale synthetic 3D data [2, 55].

To accommodate a broader range of data sources, dif-

ferentiable rendering functions [33, 46] have been intro-

duced to optimise neural implicit shape representations with

multi-view posed images. More recently, NeRF [29] paved

the way to a significant enhancement in rendering qual-

ity compared to these methods by optimising MLPs to en-

code 5D radiance fields. In contrast to tightly coupling 3D

scenes with spatial coordinates, we introduce EscherNet as

an alternative for 3D representation learning by optimising a

neural network to learn the interaction between multi-view

posed images, independent of any coordinate system.

Novel View Synthesis The success of NeRF has sparked

a wave of follow-up methods that address faster training

and/or rendering efficiency, by incorporating different vari-

ants of space discretisation [3, 12, 14], codebooks [49], and
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Figure 2. 3D representations overview. EscherNet generates a

set of M target views X
T
1:M based on their camera poses P

T
1:M ,

leveraging information gained from a set of N reference views

X
R
1:N and their camera poses PR

1:N . EscherNet presents a new way

of learning implicit 3D representations by only considering the

relative camera transformation between the camera poses of PR

and P
T , making it easier to scale with multi-view posed images,

independent of any specific coordinate systems.

encodings using hash tables [31] or Gaussians [18].

To enhance NeRF’s generalisation ability across diverse

scenes and in a few-shot setting, PixelNeRF [59] attempts

to learn a scene prior by jointly optimising multiple scenes,

but it is constrained by the high computational demands re-

quired by volumetric rendering. Various other approaches

have addressed this issue by introducing regularisation tech-

niques, such as incorporating low-level priors from local

patches [34], ensuring semantic consistency [16], consid-

ering adjacent ray frequency [57], and incorporating depth

signals [9]. In contrast, EscherNet encodes scenes directly

through the image space, enabling the learning of more gen-

eralised scene priors through large-scale datasets.

3D Diffusion Models The emergence of 2D generative

diffusion models has shown impressive capabilities in gen-

erating realistic objects and scenes [15, 43]. This progress

has inspired the early design of text-to-3D diffusion mod-

els, such as DreamFusion [39] and Magic3D [19], by op-

timising a radiance field guided by score distillation sam-

pling (SDS) from these pre-trained 2D diffusion models.

However, SDS necessitates computationally intensive itera-

tive optimisation, often requiring up to an hour for conver-

gence. Additionally, these methods, including recently pro-

posed image-to-3D generation approaches [8, 27, 56], fre-

quently yield unrealistic 3D generation results due to their

limited 3D understanding, giving rise to challenges such as

the multi-face Janus problem.

To integrate 3D priors more efficiently, an alterna-

tive approach involves training 3D generative models di-

rectly on 3D datasets, employing representations like point

clouds [32] or neural fields [4, 11, 17]. However, this de-

sign depends on 3D operations, such as 3D convolution and

volumetric rendering, which are computationally expensive

and challenging to scale.

To address this issue, diffusion models trained on multi-

view posed data have emerged as a promising direction,

designed with no 3D operations. Zero-1-to-3 [21] stands

out as a pioneering work, learning view synthesis from

paired 2D posed images rendered from large-scale 3D ob-

ject datasets [6, 7]. However, its capability is limited to

generating a single target view conditioned on a single ref-

erence view. Recent advancements in multi-view diffusion

models [20, 22, 23, 44, 45, 58] focused on 3D generation

and can only generate a fixed number of target views with

fixed camera poses. In contrast, EscherNet can generate an

unrestricted number of target views with arbitrary camera

poses, offering superior flexibility in view synthesis.

3. EscherNet

Problem Formulation and Notation In EscherNet, we

recast the view synthesis as a conditional generative mod-

elling problem, formulated as:

X T ∼ p(X T |XR,PR,PT ). (1)

Here, X T = {XT
1:M} and PT = {PT

1:M} represent a set of

M target views XT
1:M with their global camera poses PT

1:M .

Similarly, XR = {XR
1:N} and PR = {PR

1:N} represent

a set of N reference views X
R
1:N with their global camera

poses P
R
1:N . Both N and M can take on arbitrary values

during both model training and inference.

We propose a neural architecture design, such that the

generation of each target view X
T
i ∈ X T solely depends

on its relative camera transformation to the reference views

(PR
j )

−1
P

T
i , ∀P

R
j ∈ PR, introduced next.

3.1. Architecture Design

We design EscherNet following two key principles: i) It

builds upon an existing 2D diffusion model, inheriting its

strong web-scale prior through large-scale training, and ii)

It encodes camera poses for each view/image, similar to

how language models encode token positions for each to-

ken. So our model can naturally handle an arbitrary number

of views for any-to-any view synthesis.

Multi-View Generation EscherNet can be seamlessly in-

tegrated with any 2D diffusion model with a transformer

architecture, with no additional learnable parameters. In

this work, we design EscherNet by adopting a latent

diffusion architecture, specifically StableDiffusion

v1.5 [43]. This choice enables straightforward compar-

isons with numerous 3D diffusion models that also leverage

the same backbone (more details in the experiment section).

To tailor the Stable Diffusion model, originally designed

for text-to-image generation, to multi-view generation as
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Figure 3. EscherNet architecture details. EscherNet adopts the Stable Diffusion architectural design with minimal but important mod-

ifications. The lightweight vision encoder captures both high-level and low-level signals from N reference views. In U-Net, we apply

self-attention within M target views to encourage target-to-target consistency, and cross-attention within M target and N reference views

(encoded by the image encoder) to encourage reference-to-target consistency. In each attention block, CaPE is employed for the key and

query, allowing the attention map to learn with relative camera poses, independent of specific coordinate systems.

applied in EscherNet, several key modifications are imple-

mented. In the original Stable Diffusion’s denoiser U-Net,

the self-attention block was employed to learn interactions

within different patches within the same image. In Esch-

erNet, we re-purpose this self-attention block to facilitate

learning interactions within distinct patches across M dif-

ferent target views, thereby ensuring target-to-target consis-

tency. Likewise, the cross-attention block, originally used

to integrate textual information into image patches, is repur-

posed in EscherNet to learn interactions within N reference

to M target views, ensuring reference-to-target consistency.

Conditioning Reference Views In view synthesis, it is

crucial that the conditioning signals accurately capture

both the high-level semantics and low-level texture details

present in the reference views. Previous works in 3D dif-

fusion models [21, 22] have employed the strategy of en-

coding high-level signals through a frozen CLIP pre-trained

ViT [42] and encoding low-level signals by concatenating

the reference image into the input of the U-Net of Sta-

ble Diffusion. However, this design choice inherently con-

strains the model to handle only one single view.

In EscherNet, we choose to incorporate both high-level

and low-level signals in the conditioning image encoder,

representing reference views as sets of tokens. This de-

sign choice allows our model to maintain flexibility in han-

dling a variable number of reference views. Early ex-

periments have confirmed that using a frozen CLIP-ViT

alone may fail to capture low-level textures, preventing the

model from accurately reproducing the original reference

views given the same reference view poses as target poses.

While fine-tuning the CLIP-ViT could address this issue,

it poses challenges in terms of training efficiency. Instead,

we opt to fine-tune a lightweight vision encoder, specifi-

cally ConvNeXtv2-Tiny [54], which is a highly efficient

CNN architecture. This architecture is employed to com-

press our reference views to smaller resolution image fea-

tures. We treat these image features as conditioning tokens,

effectively representing each reference view. This configu-

ration has proven to be sufficient in our experiments, deliv-

ering superior results in generation quality while simultane-

ously maintaining high training efficiency.

3.2. Camera Positional Encoding (CaPE)

To encode camera poses efficiently and accurately into ref-

erence and target view tokens within a transformer archi-

tecture, we introduce Camera Positional Encoding (CaPE),

drawing inspiration from recent advancements in the lan-

guage domain. We first briefly examine the distinctions be-

tween these two domains.

– In language, token positions (associated with each

word) follow a linear and discrete structure, and their length

can be infinite. Language models are typically trained with

fixed maximum token counts (known as context length),

and it remains an ongoing research challenge to construct

a positional encoding that enables the model to behave rea-

sonably beyond this fixed context length [13, 36].

– In 3D vision, token positions (associated with each

camera) follow a cyclic, continuous, and bounded struc-

ture for rotations and a linear, continuous, and unbounded

structure for translations. Importantly, unlike the language

domain where the token position always starts from zero,

there are no standardised absolute global camera poses in
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a 3D space. The relationship between two views depends

solely on their relative camera transformation.

We now present two distinct designs for spatial posi-

tion encoding, representing camera poses using 4 DoF for

object-centric rendering and 6 DoF for the generic case, re-

spectively. Our design strategy involves directly applying

a transformation on global camera poses embedded in the

token feature, which allows the dot-product attention to di-

rectly encode the relative camera transformation, indepen-

dent of any coordinate system.

4 DoF CaPE In the case of 4 DoF camera poses, we adopt

a spherical coordinate system, similar to [21, 22], denoted

as P = {α, β, γ, r} including azimuth, elevation, camera

orientation along the look-at direction, and camera distance

(radius), each position component is disentangled.

Mathematically, the position encoding function π(v,P),
characterised by its d-dimensional token feature v ∈ R

d

and pose P, should satisfy the following conditions:

⟨π(v1, θ1), π(v2, θ2)⟩ = ⟨π(v1, θ1 − θ2), π(v2, 0)⟩, (2)

⟨π(v1, r1), π(v2, r2)⟩ = ⟨π(v1, r1/r2), π(v2, 1)⟩. (3)

Here ⟨·, ·⟩ represents the dot product operation, θ1,2 ∈
{α, β, γ}, within α, γ ∈ [0, 2π), β ∈ [0, π), and r1,2 >
0. Essentially, the relative 4 DoF camera transformation is

decomposed to the relative angle difference in rotation and

the relative scale difference in view radius.

Notably, Eq. 2 aligns with the formula of rotary posi-

tion encoding (RoPE) [47] derived in the language domain.

Given that log(r1)− log(r2) = log(s · r1)− log(s · r2) (for

any scalar s > 0), we may elegantly combine both Eq. 2

and Eq. 3 in a unified formulation using the design strat-

egy in RoPE by transforming feature vector v with a block

diagonal rotation matrix φ(P) encoding P.
– 4 DoF CaPE: π(v,P) = φ(P)v,

φ(P) =















Ψ 0 · · · 0

0 Ψ 0
.
.
.

.

.

. 0
. . . 0

0 · · · 0 Ψ















, Ψ =















Ψα 0 · · · 0

0 Ψβ 0
.
.
.

.

.

. 0 Ψγ 0
0 · · · 0 Ψr















. (4)

Rotation: Ψθ =

[

cos θ − sin θ

sin θ cos θ

]

, (5)

View Radius: Ψr =

[

cos(f(r)) − sin(f(r))
sin(f(r)) cos(f(r))

]

, (6)

where f(r) = π
log r − log rmin

log rmax − log rmin

∈ [0, π]. (7)

Here, dim(v) = d should be divisible by 2|P| = 8.

Note, it’s crucial to apply Eq. 7 to constrain log r within

the range of rotation [0, π], so we ensure the dot product

monotonically corresponds to its scale difference.

6 DoF CaPE In the case of 6 DoF camera poses, denoted

as P = [R t
0 1

] ∈ SE(3), each position component is en-

tangled, implying that we are not able to reformulate as a

multi-dimensional position as in 4 DoF camera poses.

Mathematically, the position encoding function π(v,P)
should now satisfy the following condition:

⟨π(v1,P1), π(v2,P2)⟩ =
〈

π(v1,P
−1

2
P1), π(v2, I)

〉

. (8)

Let’s apply a similar strategy as used in 4 DoF CaPE,
which increases the dimensionality of P ∈ R

4×4 to φ(P) ∈
R

d×d by reconstructing it as a block diagonal matrix, with
each diagonal element being P. Since φ(P) also forms a
real Lie group, we may construct π(·, ·) for a key and query
using the following equivalence:

(φ(P−1

2
P1)v1)

⊺ (φ(I)v2) = (v⊺

1
φ(P⊺

1
P

−⊺

2
))v2 (9)

= (v⊺

1
φ(P⊺

1
))(φ(P−⊺

2
)v2) = (φ(P1)v1)

⊺(φ(P−⊺

2
)v2) (10)

= ⟨π(v1, φ(P1)), π(v2, φ(P
−⊺

2
))⟩. (11)

– 6 DoF CaPE: π(v,P) = φ(P)v,

φ(P) =















Ψ 0 · · · 0

0 Ψ 0
.
.
.

.

.

. 0
. . . 0

0 · · · 0 Ψ















, Ψ =

{

P if key

P
−⊺ if query

. (12)

Here, dim(v) = d should be divisible by dim(P) = 4.

Similarly, we need to re-scale the translation t for each

scene within a unit range for efficient model training. It’s

worth noting that 6 DoF CaPE is concurrently explored in

[30], with a focus on scene-level representations.

In both 4 and 6 DoF CaPE implementation, we can effi-

ciently perform matrix multiplication by simply reshaping

the vector v to match the dimensions of Ψ (8 for 4 DoF,

4 for 6 DoF), ensuring faster computation. The PyTorch

implementation is attached in Appendix A.

4. Experiments

Training Datasets In this work, we focus on object-

centric view synthesis, training our model on Objaverse-1.0

which consists of 800K objects [7]. This setting allows us to

fairly compare with all other 3D diffusion model baselines

trained on the same dataset. We adopt the same training data

used in Zero-1-to-3 [21], which contains 12 randomly ren-

dered views per object with randomised environment light-

ing. To ensure the data quality, we filter out empty rendered

images, which make up roughly 1% of the training data.

We trained and reported results using EscherNet with

both 4 DoF and 6 DoF CaPE. Our observations revealed

that 6 DoF CaPE exhibits a slightly improved performance,

which we attribute to its more compressed representation

space. However, empirically, we found that 4 DoF CaPE

yields visually more consistent results when applied to real-

world images. Considering that the training data is confined

within a 4 DoF object-centric setting, we present EscherNet

with 4 DoF CaPE in the main paper. The results obtained

with 6 DoF CaPE are provided in Appendix C.

In all experiments, we re-evaluate the baseline models by

using their officially open-sourced checkpoints on the same

set of reference views for a fair comparison. Our experi-

ment settings are provided in Appendix B.
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4.1. Results on Novel View Synthesis

We evaluate EscherNet in novel view synthesis on the

Google Scanned Objects dataset (GSO) [10] and the RTMV

dataset [50], comparing with 3D diffusion models for view

synthesis, such as Zero-1-to-3 [21] and RealFusion [27]

(primarily for generation quality with minimal reference

views). Additionally, we also evaluate on NeRF Synthetic

Dataset [29], comparing with state-of-the-art scene-specific

neural rendering methods, such as InstantNGP [31] and 3D

Gaussian Splatting [18] (primarily for rendering accuracy

with multiple reference views).

Notably, many other 3D diffusion models [20, 22, 23,

44, 58] prioritise 3D generation rather than view synthesis.

This limitation confines them to predicting target views with

fixed target poses, making them not directly comparable.

Compared to 3D Diffusion Models In Tab. 1 and Fig. 5,

we show that EscherNet significantly outperforms 3D dif-

fusion baselines, by a large margin, both quantitatively and

qualitatively. Particularly, we outperform Zero-1-to-3-XL

despite it being trained on ×10 more training data, and Re-

alFusion despite it requiring expensive score distillation for

iterative scene optimisation [39]. It’s worth highlighting

that Zero-1-to-3 by design is inherently limited to generat-

ing a single target view and cannot ensure self-consistency

across multiple target views, while EscherNet can generate

multiple consistent target views jointly and provides more

precise camera control.

Training

Data

# Ref.

Views

GSO-30 RTMV

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RealFusion - 1 12.76 0.758 0.382 - - -

Zero123 800K 1 18.51 0.856 0.127 10.16 0.505 0.418

Zero123-XL 10M 1 18.93 0.856 0.124 10.59 0.520 0.401

EscherNet 800k 1 20.24 0.884 0.095 10.56 0.518 0.410

EscherNet 800k 2 22.91 0.908 0.064 12.66 0.585 0.301

EscherNet 800k 3 24.09 0.918 0.052 13.59 0.611 0.258

EscherNet 800k 5 25.09 0.927 0.043 14.52 0.633 0.222

EscherNet 800k 10 25.90 0.935 0.036 15.55 0.657 0.185

Table 1. Novel view synthesis performance on GSO and RTMV

datasets. EscherNet outperforms Zero-1-to-3-XL with signifi-

cantly less training data and RealFusion without extra SDS opti-

misation. Additionally, EscherNet’s performance exhibits further

improvement with the inclusion of more reference views.

Compared to Neural Rendering Methods In Tab. 2 and

Fig. 4, we show that EscherNet again offers plausible view

synthesis in a zero-shot manner, without scene-specific op-

timisation required by both InstantNGP and 3D Gaussian

Splatting. Notably, EscherNet leverages a generalised un-

derstanding of objects acquired through large-scale train-

ing, allowing it to interpret given views both semantically

and spatially, even when conditioned on a limited number

of reference views. However, with an increase in the num-

ber of reference views, both InstantNGP and 3D Gaussian

# Reference Views (Less → More)

1 2 3 5 10 20 50 100

InstantNGP (Scene Specific Training)

PSNR↑ 10.92 12.42 14.27 18.17 22.96 24.99 26.86 27.30

SSIM↑ 0.449 0.521 0.618 0.761 0.881 0.917 0.946 0.953

LPIPS↓ 0.627 0.499 0.391 0.228 0.091 0.058 0.034 0.031

GaussianSplatting (Scene Specific Training)

PSNR↑ 9.44 10.78 12.87 17.09 23.04 25.34 26.98 27.11

SSIM↑ 0.391 0.432 0.546 0.732 0.876 0.919 0.942 0.944

LPIPS↓ 0.610 0.541 0.441 0.243 0.085 0.054 0.041 0.041

EscherNet (Zero Shot Inference)

PSNR↑ 13.36 14.95 16.19 17.16 17.74 17.91 18.05 18.15

SSIM↑ 0.659 0.700 0.729 0.748 0.761 0.765 0.769 0.771

LPIPS↓ 0.291 0.208 0.161 0.127 0.114 0.106 0.099 0.097

Table 2. Novel view synthesis performance on NeRF Synthetic

dataset. EscherNet outperforms both InstantNGP and Gaussian

Splatting when provided with fewer than five reference views

while requiring no scene-specific optimisation. However, as the

number of reference views increases, both methods show a more

significant improvement in rendering quality.

Splatting exhibit a significant improvement in the render-

ing quality. To achieve a photo-realistic neural rendering

while retaining the advantages of a generative formulation

remains an important research challenge.

# Reference Views (Less → More)
1 2 3 5 10 20

InstantNGP (Scene Specific Training)

PSNR 10.37 PSNR 11.72 PSNR 12.82 PSNR 15.58 PSNR 19.71 PSNR 21.28

3D Gaussian Splatting (Scene Specific Training)

PSNR 9.14 PSNR 10.63 PSNR 11.43 PSNR 14.81 PSNR 20.15 PSNR 22.88

EscherNet (Zero Shot Inference)

PSNR 10.10 PSNR 13.25 PSNR 13.43 PSNR 14.33 PSNR 14.97 PSNR 15.65

Figure 4. Generated views visualisation on the NeRF Synthetic

drum scene. EscherNet generates plausible view synthesis even

when provided with very limited reference views, while neural

rendering methods fail to generate any meaningful content. How-

ever, when we have more than 10 reference views, scene-specific

methods exhibit a substantial improvement in rendering quality.

We report the mean PSNR averaged across all test views from the

drum scene. Results for other scenes and/or with more reference

views are shown in Appendix D.
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Reference

Views

1 View 2 Views 5 Views 1 View 2 Views 5 Views 1 View 2 Views 5 Views 1 View 2 Views 5 Views

Zero-1-to-3-XL

[1 View]

EscherNet

[1 View]

EscherNet

[2 Views]

EscherNet

[5 Views]

Ground

Truth

Figure 5. Novel view synthesis visualisation on GSO and RTMV datasets. EscherNet outperforms Zero-1-to-3-XL, delivering superior

generation quality and finer camera control. Notably, when conditioned with additional views, EscherNet exhibits an enhanced resemblance

of the generated views to ground-truth textures, revealing more refined texture details such as in the backpack straps and turtle shell.

4.2. Results on 3D Generation

In this section, we perform single/few-image 3D generation

on the GSO dataset. We compare with SoTA 3D gener-

ation baselines: Point-E [32] for direct point cloud genera-

tion, Shape-E [17] for direct NeRF generation, DreamGaus-

sian [17] for optimising 3D Gaussian [18] with SDS guid-

ance, One-2-3-45 [20] for decoding an SDF using multiple

views predicted from Zero-1-to-3, and SyncDreamer [22]

for fitting an SDF using NeuS [52] from 16 consistent fixed

generated views. We additionally include NeuS trained on

reference views for few-image 3D reconstruction baselines.

Given any reference views, EscherNet can generate mul-

tiple 3D consistent views, allowing for the straightforward

adoption with NeuS [52] for 3D reconstruction. We gen-

erate 36 fixed views, varying the azimuth from 0◦ to 360◦

with a rendering every 30◦ at a set of elevations (-30◦, 0◦,

30◦), which serve as inputs for our NeuS reconstruction.

Results In Tab. 3 and Fig. 6, we show that EscherNet

stands out by achieving significantly superior 3D recon-

struction quality compared to other image-to-3D generative

models. Specifically, EscherNet demonstrates an approx-

imate 25% improvement in Chamfer distance over Sync-

Dreamer, considered as the current best model, when con-

ditioned on a single reference view, and a 60% improvement

when conditioned on 10 reference views. This impressive

performance is attributed to EscherNet’s ability to flexibly

# Ref. Views Chamfer Dist. ↓ Volume IoU ↑

Point-E 1 0.0447 0.2503
Shape-E 1 0.0448 0.3762
One2345 1 0.0632 0.4209
One2345-XL 1 0.0667 0.4016
DreamGaussian 1 0.0605 0.3757
DreamGaussian-XL 1 0.0459 0.4531
SyncDreamer 1 0.0400 0.5220

NeuS 3 0.0366 0.5352
NeuS 5 0.0245 0.6742
NeuS 10 0.0195 0.7264

EscherNet 1 0.0314 0.5974
EscherNet 2 0.0215 0.6868
EscherNet 3 0.0190 0.7189
EscherNet 5 0.0175 0.7423
EscherNet 10 0.0167 0.7478

Table 3. 3D reconstruction performance on GSO. EscherNet

outperforms all other image-to-3D baselines in generating more

visually appealing with accurate 3D geometry, particularly when

conditioned on multiple reference views.

handle any number of reference and target views, providing

comprehensive and accurate constraints for 3D geometry.

In contrast, SyncDreamer faces challenges due to sensitivity

to elevation angles and constraints imposed by a fixed 30◦

elevation angle by design, thus hindering learning a holistic

representation of complex objects. This limitation results in

degraded reconstruction, particularly evident in the lower

regions of the generated geometry.

4.3. Results on Textto3D Generation

EscherNet’s flexibility in accommodating any number of

reference views enables a straightforward approach to the

9509



Reference One-2-3-45-XL DreamGaussian-XL SyncDreamer EscherNet Ground-Truth

Figure 6. Single view 3D reconstruction visualisation on GSO. EscherNet’s ability to generate dense and consistent novel views signif-

icantly improves the reconstruction of complete and well-constrained 3D geometry. In contrast, One-2-3-45-XL and DreamGaussian-XL,

despite leveraging a significantly larger pre-trained model, tend to produce over-smoothed and noisy reconstructions; SyncDreamer, con-

strained by sparse fixed-view synthesis, struggles to tightly constrain geometry, particularly in areas in sofa and the bottom part of the bell.

A bald eagle carved
out of wood. ⇒

A robot made of vegetables, 4K. ⇒

Figure 7. Text-to-3D visualisation with MVDream (up) and

SDXL (bottom). EscherNet offers compelling and realistic view

synthesis for synthetic images generated with user-provided text

prompts. Additional results are shown in Appendix E.

text-to-3D generation problem by breaking it down into two

stages: text-to-image, relying on any off-the-shelf text-to-

image generative model, and then image-to-3D, relying on

EscherNet. In Fig. 7, we present visual results of dense

novel view generation using a text-to-4view model with

MVDream [45] and a text-to-image model with SDXL [38].

Remarkably, even when dealing with out-of-distribution

and counterfactual content, EscherNet generates consistent

3D novel views with appealing textures.

5. Conclusions

In this paper, we have introduced EscherNet, a multi-view

conditioned diffusion model designed for scalable view

synthesis. Leveraging Stable Diffusion’s 2D architecture

empowered by the innovative Camera Positional Embed-

ding (CaPE), EscherNet adeptly learns implicit 3D repre-

sentations from varying number of reference views, achiev-

ing consistent 3D novel view synthesis. We provide detailed

discussions and additional ablative analysis in Appendix F.

Limitations and Discussions EscherNet’s flexibility in

handling any number of reference views allows for au-

toregressive generation, similar to autoregressive language

models [1, 5]. While this approach significantly reduces in-

ference time, it leads to a degraded generation quality. Ad-

ditionally, EscherNet’s current capability operates within a

3 DoF setting constrained by its training dataset, which may

not align with real-world scenarios, where views typically

span in SE(3) space. Future work will explore scaling Es-

cherNet with 6 DoF training data with real-world scenes,

striving for a more general 3D representation.
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