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Abstract

Open-world detection poses significant challenges, as it
requires the detection of any object using either object class
labels or free-form texts. Existing related works often use
large-scale manual annotated caption datasets for train-
ing, which are extremely expensive to collect. Instead, we
propose to transfer knowledge from vision-language mod-
els (VLMs) to enrich the open-vocabulary descriptions au-
tomatically. Specifically, we bootstrap dense synthetic cap-
tions using pre-trained VLMs to provide rich descriptions
on different regions in images, and incorporate these cap-
tions to train a novel detector that generalizes to novel con-
cepts. To mitigate the noise caused by hallucination in syn-
thetic captions, we also propose a novel hyperbolic vision-
language learning approach to impose a hierarchy between
visual and caption embeddings. We call our detector “Hy-
perLearner”. We conduct extensive experiments on a wide
variety of open-world detection benchmarks (COCO, LVIS,
Object Detection in the Wild, RefCOCO) and our results
show that our model consistently outperforms existing state-
of-the-art methods, such as GLIP, GLIPv2 and Grounding
DINO, when using the same backbone.

1. Introduction
An intelligent perception model of our visual world re-
quires the open-world generalizability of understanding any
object. To enable such generalizability, recent advances
in object detection integrate vision models with natural
language models to enrich their open-world knowledge
[15, 23, 46, 56, 59, 61]. Most of these works [15, 46, 56, 61]
consider the open-vocabulary setting in which a novel ob-
ject is specified by its class label (e.g., panda). Other works
[23, 59] cast detection as a generalized localization task and
consider a more challenging open-set setting in which ob-
jects are described by free-form texts (e.g., a black-and-
white giant bear). In this work, we tackle the task of de-
tecting and localizing any object using both class labels and

*Work done during an internship with AWS AI Labs.
†Corresponding author.

dog

dog panda

a black-and-
white giant bear

Open-world object space

synthetic captions

a dog is sitting 
quietly on the grass

a traditional temple 

a furry black-and-
white bear is sitting 
and eating bamboo

Seen object space

dog

a traditional temple 

panda

annotations 

a black-and-
white giant bear

a furry black-and-white bear 
is sitting and eating bamboo

a dog is sitting quietly 
on the grass

Figure 1. We tackle the task of detecting seen and unseen objects
using keywords (e.g., panda) or free-form texts (e.g., a black-and-
white giant bear) in open world. We exploit synthetic captions
from pre-trained caption models to bring rich open-world knowl-
edge for training. As synthetic captions may be noisy, we propose
to align visual features with text embeddings in a structural hierar-
chy to learn robustly and effectively from these captions.

free-form texts (Figure 1). We refer to this challenging task
as “open-world detection”.

To improve generalization in open world, existing detec-
tion methods [28, 56, 59] utilize language descriptions from
large-scale image captioning datasets (e.g., MS-COCO cap-
tions [30], conceptual captions [42]) for training. These de-
scriptions are however expensive to manually annotate [30]
or design human-crafted data cleaning pipeline to process
alt-text [42]. To overcome this limitation, we propose to
leverage recent advanced vision-language models to boot-
strap machine-generated captions automatically. We collect
these synthetic captions on different regions of an image
to generate a dense understanding of all its concepts: from
rich semantic information of known/seen objects (e.g., their
attributes, states, actions and interactions) to diverse open-
vocabulary descriptions of new concepts. Our intuition is
that by aligning the detector features with these rich seman-
tics, we can boost the model capability of understanding and
recognizing any object, including novel ones.
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Nevertheless, one needs to be careful when using syn-
thetic captions, as they are sometimes hallucinated or unre-
lated to the objects in the image [40]. For instance, given
an image of a panda (Figure 1), the model may generate the
caption: “a furry black-and-white bear is sitting and eating
bamboo”, hallucinating the action “eating bamboo”, which
usually co-occurs with the animal panda. To mitigate the
negative impact of aligning visual features with noisy cap-
tions, we propose to learn visual-textual alignment in a hi-
erarchical structure, in which the synthetic caption entails
the keyword of object, along with other semantics. We re-
fer to this hierarchy structure as ‘caption entails object’. To
impose such a structure in our representation space, we pro-
pose a novel hyperbolic vision-language learning objective
which ensures that the caption embeddings entails the visual
object embeddings in the representation space. Our formu-
lation is inspired by the advances of structural representa-
tion learning with hyperbolic geometry [8, 9, 12, 13, 21].
Rather than improving the unimodal representation learning
on purely images [13] or texts [9], our hyperbolic learning
objective is introduced for cross-modal learning on images
and synthetic captions, and especially addresses the hallu-
cination problem of synthetic captions to advance the open-
world generalization in detection.
To summarize, our contribution is three folds:

(1) We propose to boost open-world detection using syn-
thetic captions generated by powerful pre-trained VLMs.
These synthetic captions provide rich language descrip-
tions of both seen and unseen objects, enabling the de-
tection of both new class labels and free-form texts.

(2) We formulate a novel hyperbolic vision-language learn-
ing objective to help learning robust representation us-
ing noisy synthetic captions. Our hyperbolic loss formu-
lation imposes a meaningful structural hierarchy in the
representation space to specifically tackle the hallucina-
tion problem in these captions.

(3) We show that our approach achieves the state-of-the-
art performance on a variety of detection and localiza-
tion datasets in the open-world setting, including COCO,
LVIS, Object Detection in the Wild (ODiW), and Ref-
COCO. Our approach outperforms existing open-world
detectors such as GLIP, GLIPv2, and Grounding DINO
when using the same backbone and datasets for training.

2. Related Work

Open-vocabulary detection (OVD). Standard detection
models like Faster R-CNN [14] and DETR [1] succeed in
detecting objects from a fixed vocabulary, but are not capa-
ble of localizing novel concepts. To overcome this limita-
tion, OVD methods take advantage of extensive image-text
datasets through vision-language models (VLMs). OVD
approaches follow two trends: learning novel object con-
cepts from image-level supervision [61], and transferring

knowledge from VLMs, which includes distilling visual-
semantic cues [15, 46], aligning image-text representa-
tions [47, 55, 60], and exploiting pseudo-labels from cap-
tioning models [4, 27]. In line with the more contemporary
trend, our approach seeks to assimilate novel semantic con-
cepts by probing VLMs. Specifically, we focus on distilling
knowledge from large amount of (noisy) captions generated
by these VLMs. Moreover, we also delve into the integra-
tion of free-form texts in open-world localization, lifting the
model’s proficiency in understanding complex referring ex-
pressions beyond plain object classes.
Vision-language models (VLMs) in detection. VLMs
have demonstrated remarkable abilities in tasks like image
classification and image-text retrieval [7, 18, 37, 48, 51, 57].
Recently, VLMs have also pioneered the state-of-the-art
in detection, as represented by GLIP [28, 59], Region-
CLIP [60] and Grounding DINO [32]. These methods use
large-scale image-text datasets to train the detector, thus en-
hancing the knowledge of both seen and unseen concepts.
Concurrently, other studies [3, 15, 46, 61] have focused on
exploiting the visual-semantic knowledge from VLMs, e.g.,
Detic [61] and ScaleDet [3] use the text encoder from CLIP
to encode the class labels of any seen and unseen objects.
Our work contributes to this evolving direction with a novel
hyperbolic vision-language learning approach to learn with
synthetic captions from VLMs, which avoids the need of
expensive manual annotated image-text datasets.
Learning with captions. Image captions convey rich infor-
mation about objects in an image, such as object attributes,
actions, relationships and scenes. Recent works have high-
lighted the advantages of harnessing caption data to enhance
visual representation learning [7, 11, 44, 49, 52]. The ma-
jority of these studies exploit manual annotated captions,
training visual encoders alongside auxiliary caption genera-
tors to learn more generalized visual features [7, 44, 52]. A
few studies investigate the use of machine generated cap-
tions to augment supervision for visual learning [11, 49].
Our approach takes an innovative step further by employ-
ing synthetic captions to improve open-world generalization
in detection. Importantly, we tackle the hallucination issue
that often presents in synthetic captions by introducing a
novel hyperbolic loss formulation.
Hyperbolic learning. Representation learning based on hy-
perbolic geometry has shown considerable success in var-
ious domains such as text embeddings [9], text genera-
tion [5] and knowledge graph modeling [2], as the hyper-
bolic geometry could model the intrinsic hierarchy among
data. Recently, a few works explore hyperbolic learning in
vision tasks to model the hierarchical relation between ob-
jects and scenes [13], or images and texts [8]. Our work is
built on the foundation of hyperbolic learning to advance
performance in detection. We specially delve into mod-
elling the hierarchy between visual objects and synthetic
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captions, and formulate a novel hyperbolic learning objec-
tive to learn upon such hierarchy.

3. Proposed Approach
We first present the preliminaries of our model in §3.1.
We then introduce our caption bootstrapping strategy which
provides rich open-vocabulary descriptions for training
(§3.2). Finally, we present our hyperbolic vision-language
learning approach which exploits rich semantics from syn-
thetic captions to boost open-world generalization (§3.3).

3.1. Preliminaries on model architecture

Training an open-world detector. Object detectors are
trained to predict a list of bounding box location Bi ∈ R4

and class label Li ∈ Rn. They often consist of an visual
encoder, a bounding box regressor and a visual classifier.
During training, a bounding box regression loss Lbbox and
a classification loss Lcls are jointly optimized to predict the
object bounding box location and class label, i.e.,

LDet = Lbbox + Lcls. (1)

Most detectors can be categorized into one-stage [43, 63]
or two-stage [17, 38, 62]. Detectors in the latter set employ
an additional loss to train a region proposal network (Lrpn)
for predicting the objectness score of each region proposal.
For the classification loss Lcls, classic detectors often adopt
a cross-entropy loss [38], which works well for classifying
known classes, but it cannot model novel classes. To over-
come this limitation, open-world detectors [28, 61] leverage
text embeddings to represent the class labels. In details, the
classification loss Lcls helps aligning the visual feature em-
bedding vi with its class label embedding li, i.e.,

Lcls = − log
exp(sim(vi, li)/τ)∑n
j=1 exp(sim(vi, lj)/τ)

, (2)

where vi is visual feature embedding from the detector,
sim(·, ·) measures cosine similarity between embeddings, τ
is the temperature. The class label embedding lj is extracted
with a pre-trained text encoder from CLIP [37]. At test
time, the predicted label is Li = argmaxj{sim(vi, lj)}nj=1,
where n is the number of pre-defined class labels (seen dur-
ing training). One can augment these n classes with novel
classes (by adding their class label embeddings) to enable
the open-set recognition on these novel concepts.
Cross-modal attention. The above formulation (Eq. (2))
enables the detection of novel objects using their class la-
bel embeddings. However, it does not capture the spatial
awareness of language semantics on different visual ob-
jects, thus fails to localize objects with more precise infor-
mation, e.g., localizing “the person playing a bass guitar”
in Figure 2. To achieve open-world detection with free-
form texts, we propose to inject the language semantics into

the visual feature embedding vi by a cross-modal attention
module [26, 28]. Specifically, given any text embeddings
T = {tj}n1 , we compute the cross-modal attention between
vi, T as:

v
(q)
i = (W (q))⊤vi, T

(k) = TW (k), T (v) = TW (v),

Ai = T (k)v
(q)
i /

√
d, vli = softmax(Ai) T

(v)W (out),
(3)

where W (q), W (k), W (v) are the trainable query, key, and
value matrices in multi-head attention [45], d is the dimen-
sion of hidden embeddings v(q)i and T (k), and vli is the vi-
sual feature embedding fused with language semantics. To
further inject spatial awareness into the visual feature em-
bedding, we add a positional encoding layer [10] to fuse the
visual feature embedding vi with region proposal feature pi:

vsi = PositionalEncoding(vi, pi). (4)

Finally, to attain a spatial-aware visual feature embedding
fused with language semantics, we combine the language-
aware and spatial-aware visual embeddings vli (Eq. (3)), vsi
(Eq. (4)) with the region proposal network RPN(·):

ṽi = RPN(vli + vsi ). (5)

Within this formulation, our detector can localize objects
given any texts by replacing the original visual embedding
vi with the new visual embedding ṽi, and compute the lo-
calization score based on similarity between ṽi and the text
embeddings {tj}n1 , i.e., Loci = argmaxj{sim(ṽi, tj)}nj=1.

3.2. Bootstrapping synthetic captions

To enable generalization on novel objects, existing methods
often exploit manual annotated datasets such as image clas-
sification [39], captioning [42] and grounding dataset [22]
to provide knowledge of novel concepts. Rather than rely-
ing on expensive manual annotations, we propose to boot-
strap synthetic captions from a pre-trained VLM. Similar to
manual annotations, these captions also provide rich open-
vocabulary descriptions of novel concepts. In this paper, we
use BLIP2 [27] to generate captions – which is trained on a
large-scale dataset of 129M images. It is worth noting that
our model is agnostic to the VLM used for caption genera-
tion, and thus can benefit from more powerful VLMs.
Region sampling for caption bootstrapping. We collect
three sets of region proposals. First, for seen/known classes
we use the ground truth bounding boxes B. Then, to attain
regions on novel objects, we propose to use two region sam-
pling strategies: proposal sampling and grid sampling. In
proposal sampling, we sample region proposals with high
objectness scores and apply non-maximum suppression to
remove duplicates; this leads to the set of regions P . In grid
sampling, we split the image into k× k grids similar to ViT
[10] to get a set of region crops G. Together, these produce a

16764



region sampling

novel regions

open-world 
detector

text 
encoder

person
two people are playing drums and 
bass in front of a no-escape sign

a set of drums and cymbals 

synthetic captions

class labels

feature embedding space

bootstrap synthetic captionsgroundtruth regions

Figure 2. Approach overview. Given an image, our open-world detector extracts visual feature embeddings on region crops, and aligns
visual feature embeddings with text embeddings extracted from a pre-trained text encoder (§3.1). To obtain synthetic captions for both seen
and novel objects, we propose region sampling to augment region crops, and adopt a pre-trained image captioner to bootstrap synthetic
captions on these region crops (§3.2). To learn from synthetic captions effectively, we propose to align visual feature embeddings and
caption embeddings in a structural hierarchy through hyperbolic vision-language learning in the hyperbolic space (see Figure 3, §3.3).

rich set of region crops: B∪P∪G that encapsulate both seen
and unseen objects. Finally, we generate synthetic captions
C densely over these region crops with the BLIP2 captioner:

C = CaptionerBLIP2(B ∪ P ∪ G), (6)

where the captions C are then used for model training.

3.3. Hyperbolic vision-language learning

Vanilla contrastive learning. Our bootstrapping synthetic
captions provide diverse language descriptions on both seen
and unseen objects in different image regions, thus offer-
ing rich knowledge to boost open-world generalization. To
learn from such knowledge, we can adopt the vanilla con-
trastive loss [37] for aligning the visual feature embedding
õi (Eq. (5)) with the captions embedding ci attained in (6):

Lcap = − log
exp(sim(ṽi, ci, )/τ)∑m
j=1 exp(sim(ṽi, cj)/τ)

, (7)

where Lcap is computed on a batch of m caption embed-
dings, which enables learning about the novel concepts de-
scribed in the synthetic captions. However, synthetic cap-
tions suffer from the hallucination problem [40], where con-
cepts unrelated to the image are added to the generated cap-
tion; this simple contrastive loss is not equipped to handle
them and its learning suffers from the generated noise. To
learn more effectively from these captions, we propose to
align visual and text embeddings in a hierarchy.
Hyperbolic contrastive learning. The synthetic caption
on a region often entails the object descriptions along with
other content. Thus, we argue that the object and caption
should follow a ‘caption entails object’ hierarchy in a tree-
like structure (Figure 3). Inspired by recent advances in hy-
perbolic learning to model the partial order of ‘scene entails

bassperson drums
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(a) Euclidean space (b) Hyperbolic space

caption

⇒

⇒

⇒

caption
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Figure 3. Illustration of hyperbolic vision-language learning.
The visual and caption embeddings are lifted from (a) Euclidean
space to (b) Hyperbolic space by exponential mapping (Eq. (8)).
To learn the partial order of ‘caption entails object’, we propose
hyperbolic contrastive loss, hyperbolic entailment loss (Eq. (10),
Eq. (13)) to align visual and caption embeddings in hierarchy,
thus ensuring the hallucination in caption is not aligned directly
with visual embeddings to negatively impact the model learning.

object’ [13] or ‘text entails image’ [8], we propose to model
our ‘caption entails object’ hierarchy in a hyperbolic space.

Specifically, we introduce our hyperbolic contrastive
learning based on the Lorentzian distance in hyperbolic ge-
ometry [24], which lifts the embeddings from Euclidean
space to the Lorentz hyperboloid to represent the structural
hierarchy. Formally, we first project the visual feature em-
bedding ṽi and caption embedding ci to the hyperboloid
with exponential mapping (Eq. (8)), and then compute their
Lorentzian distance on the hyperboloid (Eq. (9)) as follows:

vHi = expm0(ṽi), c
H
i = expm0(ci),

with expm0(x) =
sinh(

√
C∥x∥)√

C∥x∥
,

(8)
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where expm0(·) is an exponential mapping, and C is a
learnable curvature parameter. Given two mapped embed-
dings vHi , cHi , we follow existing Lorentz model [8, 24,
25, 36], and compute the Lorentzian distance on the hyper-
boloid as:

dH(ṽi, ci) =
√
1/C · cosh−1(−c⟨ṽi, ci⟩H),

with ⟨ṽi, ci⟩H=⟨ṽi, ci⟩ −
√
1/C + ∥ṽi∥

√
1/C + ∥ci∥,

(9)
where ⟨·, ·⟩H is the Lorentz inner product induced by the
Riemannian metric of the Lorentz model [8, 24, 25, 36], and
dH(·, ·) is the distance between two embeddings on the hy-
perboloid. By mappings the embeddings to the hyperbolic
space, we derive the hyperbolic contrastive loss by replac-
ing cosine similarity measure sim(·, ·) in Eq. (7) with the
hyperbolic distance measure dH(·, ·), i.e,

LH
cap = − log

exp(−dH(vHi , cHi )/τ)∑B
j=1 exp(−dH(vHi , cHj )/τ)

, (10)

where LH
cap is our loss function to align visual embedding

and caption embedding in the hyperbolic space.
Hyperbolic entailment. To impose our proposed structural
hierarchy of ‘caption entails object’, we formulate a hyper-
bolic entailment loss based on the property of an entailment
cone – which defines a cone in the hyperbolic space to en-
force partial order between embeddings [25]. Specifically,
we define an entailment cone for caption embedding cHi as:

A(cHi ) = sin−1(
2K√
C∥cHi ∥

) (11)

where K is a constant 0.1 used to avoid numerical overflow;
A(·) is half aperture of the cone in hyperbolic space. With
A(cHi ), we introduce the entailment constraints to impose
the hierarchy of ‘caption entails object’, by ensuring (1) the
visual object embedding vHi lies inside the cone, and (2)
other visual embeddings vHj (j ̸=i) lie outside the cone.

Formally, we denote the exterior angle between vHi and
cHi as ∠(cHi , vHi )1, and introduce a loss term to ensure the
entailment constraint (1):

E(cHi , vHi ) = max(0,∠(cHi , vHi )−A(cHi )), (12)

where E(·, ·) ensures ∠(cHi , vHi )⩽A(cHi ), thus enforcing
vHi to lie inside the cone of cHi . To further ensure both en-
tailment constraints (1) and (2), we introduce the following
hyperbolic entailment loss with two loss terms:

Lentail = E(cHi , vHi ) +
∑
j ̸=i

max(0, γ − E(cHi , vHj )), (13)

1Note: the exterior angle ∠(a, b) in hyperbolic space is computed as

∠(a, b) = cos−1(

√
1/c+∥b∥+

√
1/c+∥a∥c⟨aH

i ,bHi ⟩H
∥aH

i ∥
√

c(⟨aH
i ,bHi ⟩)2−1

), c is curvature.

where the first term is Eq. (12); the second term is a max
margin loss to ensure ∠(cHi , vHj )⩾A(cHi ) + γ, thus enforc-
ing vHj to lie outside the cone of cHi with a margin γ.
Overall objective. Finally, given our proposed hyperbolic
loss functions (Eq. (7), Eq. (13)), we formulate our learning
objective as follows:

Lhyper = Lbbox + Lcls + LH
cap + Lentail, (14)

where LH
cap,Lentail are our hyperbolic contrastive loss, and

hyperbolic entailment loss to align visual and caption em-
bedding in a structural hierarchy. An alternative to learn
from synthetic captions is the vanilla contrastive loss (Eq.
(7)), which leads to the baseline objective below:

Lbaseline = Lbbox + Lcls + Lcap. (15)

We compare our Hyperbolic Learning objective Lhyper

(Eq. (14)) to alternative objectives LDet (Eq. (1)), Lbaseline

(Eq. (15)) in ablation study to verify our design rationales.
We refer our approach as “HyperLearner” in experiments.

4. Experiments
In the following, we detail our experimental settings (§4.1)
and provide thorough evaluation of our approach on a wide
set of benchmark datasets in comparison to the state-of-the-
arts (§4.2). Finally, we provide insightful ablation study
(§4.3) and qualitative results (§4.4) to analyze our approach.

4.1. Experimental settings

Implementation details. Our approach utilizes Center-
NetV2 [61] as the first-stage region proposal network, suc-
ceeded by a cross-modal attention module as detailed in
§3.1. Our text encoder is the 12-layer text transformer from
CLIP ViT/B16 [37]. We used BLIP2 6.7b [27] to generate
synthetic captions on region crops offline (§3.2). For model
pre-training, we used two datasets: Object 365 (O365) [41]
and GoldG [19], to ensure a fair comparison with other
methods on the same evaluation benchmark datasets. In all
experiments, we use Swin-Tiny [33] as the backbone, and
undergo training for 100,000 iterations with a batch size of
64 and a learning rate 0.0001. The initial 10,000 iterations
serve as a warm-up phase, which is essential for optimal
convergence. We train our model on 8 A100 GPUs. More
details are provided in the supplementary material.
Object detection benchmark datasets. We evaluate the
open-world detection performance of our method on the
most popular object detection datasets: (1) COCO [30],
which has 80 common object classes, and (2) LVIS [16],
which has 1203 object classes. Furthermore, we also eval-
uate on Object Detection in the Wild (ODinW) [28] – an
assembly of 13 datasets, each one representing a differ-
ent real-world fine-grained domain. Following the common
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Method Backbone #Params FLOPs Pre-training Data
COCO2017 val

Zero-shot Fine-tuning

1 Faster-RCNN [14] RN50-FPN 42M 180G COCO - 40.2
2 Faster-RCNN [14] RN101-FPN 54M 313G COCO - 42.0
3 Deformable DETR(DC5) [64] RN50 41M 187G COCO - 41.1
4 CenterNetv2 [62] RN50 76M 288G COCO - 42.9

5 Dyhead-T [6] Swin-T 232M 361G O365 43.6 53.3
6 GLIP-T(A) [28] Swin-T 232M 488G O365 42.9 52.9
7 GLIP-T(B) [28] Swin-T 232M 488G O365 44.9 53.8
8 GLIP-T(C) [28] Swin-T 232M 488G O365, GoldG 46.7 55.1
9 DINO-T [58] Swin-T - - O365 46.2 56.9
10 Grounding-DINO-T1 [32] Swin-T 172M 464G O365 46.7 56.9
11 Grounding-DINO-T2 [32] Swin-T 172M 464G O365, GoldG 48.1 57.1
12 Grounding-DINO-T3 [32] Swin-T 172M 464G O365, GoldG, Cap4M 48.4 57.2

13 HyperLearner (Ours) Swin-T 90M 324G O365 47.6 56.8
14 HyperLearner (Ours) Swin-T 90M 324G O365, GoldG 48.4 57.4

Table 1. Comparison on COCO benchmark. Results are given on both zero-shot and fine-tuning settings. Metric: mAP.

Method Pre-training Data
LVIS minival

AP APr | APc | APf

MDETR [19] GoldG, RefCOCO 24.2 20.9 | 24.9 | 24.3
DETCLIP-T [50] O365 28.8 26.0 | 28.0 | 30.0
GLIP-T (C) [28] O365, GoldG 24.9 17.7 | 19.5 | 31.0
GLIP-T [28] O365, GoldG, Cap4M 26.0 20.8 | 21.4 | 31.0
Grounding-DINO-T [32] O365, GoldG 25.6 14.4 | 19.6 | 32.2
Grounding-DINO-T [32] O365, GoldG, Cap4M 27.4 20.8 | 21.4 | 31.0

HyperLearner (Ours) O365 25.5 25.9 | 27.5 | 23.7
HyperLearner (Ours) O365, GoldG 31.3 30.7 | 32.6 | 30.3

Table 2. Comparison on LVIS benchmark. Metric: mAP.

practices, for zero-shot setting we evaluate our pre-trained
models directly, while for fine-tuning setting, we fine-tune
our pre-trained models on the target dataset. We report
mean Average Precision (mAP) at IoU threshold of 0.5.
Object localization benchmark datasets. We evaluate
our method on referring expression comprehension which
aims to locate novel objects using natural language expres-
sions. We employ the following benchmark datasets: Ref-
COCO [20], RefCOCO+ [54] and RefCOCOg [34] (collec-
tively referred as RefCOCO/+/g) to evaluate localizing the
objects given descriptive free-form texts. All three datasets
utilize the images from the original COCO dataset; how-
ever, they differ in their textual descriptions: RefCOCO+
emphasizes purely on appearance, excluding spatial refer-
ence found in RefCOCO; RefCOCOg provides more com-
prehensive descriptions in sentences rather than phases. Our
evaluation adheres to the established evaluation protocol,
employing top-1 accuracy to determine the successful lo-
calization of objects based on the description, in line with
the metric used in previous works [19, 32, 53].

4.2. Comparison to SOTA methods

Comparison on COCO. In Table 1, we compare our Hy-
perLearner to several recent models: (1) traditional two-
stage object detectors, including Faster-RCNN [38], De-
formable DETR [64] and CenterNetV2 [61]; (2) closed-
set detectors which are adaptable for evaluation on COCO

through class mapping between O365 and COCO, includ-
ing Dyhead [6] and DINO [58]; (3) open-world detectors
including GLIP [28] and Grounding DINO [32], which not
only use image-text data for pre-training, but also utilize
model architectures to fuse visual-language representations.

Table 1 details the comparison on model efficiency and
performance on COCO. As shown, our model has much
smaller parameter size and computation cost (measured in
FLOPs), which significantly improve model efficiency for
real-world deployment. Moreover, while being lightweight,
our model achieves better performance in both zero-shot
and fine-tuning settings, with an mAP of 48.4 and 57.4 as
compared to 48.1 and 57.1 obtained by the best competi-
tor Grounding DINO-T when using O365, GoldG for train-
ing. Notably, our model pre-trained on O365, GoldG (in
row 14) obtains similar performance as Grounding DINO-
T pre-trained on O365, GoldG and Cap4M, an additional
large-scale manually-annotated caption dataset [28] (row
12). This clearly shows how powerful machine-generated
captions can be when used properly in HyperLearner.

Comparison on LVIS. Table 2 shows the results on LVIS
minival validation set. Our model demonstrates a signifi-
cant advantage over GLIP and Grounding DINO on detect-
ing novel rare classes – outperforming them by +13.0% and
+16.3% in APr respectively, when pre-trained on O365 and
GoldG. Our improved gain is maintained at 9.9% even when
other methods benefit from the additional Cap4M dataset.
The results suggest our proposed method’s capability to de-
tect novel and rare concepts, attributing to the effective in-
corporation of semantic knowledge via bootstrapping syn-
thetic captions and the vision-language alignments brought
by our novel hyperbolic loss formulation.

Comparison on ODinW. The ODinW dataset exemplifies
more fine-grained, challenging real-world application sce-
narios. In Table 4, we report the average AP over its 13
subsets. Our finding aligns with those from the COCO and
LVIS datasets, indicating that our model performs well in
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Method Pre-training Data Fine-tuning
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 CNN-LSTM [34] RefC - - 63.15 64.21 - 48.73 42.13 62.14 -
2 MAttNet [53] RefC ✓ 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27
3 RefTR [29] VG ✓ 85.65 88.73 81.16 77.55 82.26 68.99 79.25 80.01
4 MDETR [19] GoldG,RefC ✓ 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
5 DQ-DETR [31] GoldG,RefC ✓ 88.63 91.04 83.51 81.66 86.15 73.21 82.76 83.44

6 GLIP-T(B) [28] O365,GoldG × 49.96 54.69 43.06 49.01 53.44 43.42 65.58 66.08
7 GLIP-T(C) [28] O365,GoldG,Cap4M × 50.42 54.30 43.83 49.50 52.78 44.59 66.09 66.89
8 Grounding-DINO-T [32] O365,GoldG × 50.41 57.24 43.21 51.40 57.59 45.81 67.46 67.13
9 Grounding-DINO-T [32] O365,GoldG,RefC × 73.98 74.88 59.29 66.81 69.91 56.09 71.06 72.07
10 Grounding-DINO-T [32] O365,GoldG,RefC ✓ 89.19 91.86 85.99 81.09 87.40 74.71 84.15 84.94

11 HyperLearner (Ours) O365,GoldG × 50.66 60.87 44.66 59.29 62.29 45.43 67.02 67.44
12 HyperLearner (Ours) O365,GoldG,RefC × 77.89 76.92 72.99 67.54 75.55 57.54 77.00 76.79
13 HyperLearner (Ours) O365,GoldG,RefC ✓ 90.74 92.09 85.46 82.35 84.70 72.64 82.53 82.39

Table 3. Comparison on RefCOCO/+/g benchmark. Metric: Top-1 accuracy.

Method Backbone Pre-training Data
Test APavg

zero-shot full-shot

Detic-R [61] RN50 LVIS, COCO, IN-21K 29.4 64.4
Detic-B [61] Swin-B LVIS, COCO, IN-21K 38.7 70.1

GLIP-T(A) [28] Swin-T O365 28.7 63.6
GLIP-T(B) [28] Swin-T O365 33.2 62.7
GLIP-T(C) [28] Swin-T O365, GoldG 44.4 63.9
Grounding-DINO-T [32] Swin-T O365, GoldG,Cap4M 44.9 -

HyperLearner (Ours) Swin-T O365 37.9 66.7
HyperLearner (Ours) Swin-T O365, GoldG 45.2 68.9

Table 4. Comparison on ODinW benchmark. Metric: mAP.

zero-shot testing scenario. It outperforms GLIP by +4.7%
with pre-training solely on O365 and +0.8% when GoldG is
added. While our model shows the commendable zero-shot
transferability, it also excels in the full-shot setting, suggest-
ing the pre-trained model possesses strong generalizablity.
Comparison on RefCOCO/+/g. Table 3 shows the results
of localizing objects with referring expressions. When pre-
trained on O365, GoldG or pre-trained on O365, GoldG,
RefC, our model (in row 11, 12) surpasses Grounding
DINO (in row 8, 9) and GLIP (in row 6). With further fine-
tuning on RefC, our model (in row 13) performs competi-
tively compared to Grounding DINO (in row 10). The com-
petitive results in Table 3 can be attributed to learning with
our bootstrapped captions, which often include descriptions
of object attributes and their spatial relationships that also
exist in the natural language expressions in RefCOCO/+/g.

4.3. Ablation study

We now ablate our approach and its components: hyper-
bolic learning objective (§3.3), region sampling for boot-
strapping synthetic captions (§3.2), and cross-modal atten-
tion module for localization with free-form texts (§3.1).
Ablation study on learning objectives. Table 5 shows the
results of different objectives: (1) standard open-world de-
tection objective LDet in Eq. (1), (2) vanilla contrastive
learning objective Lbaseline in Eq. (15), (3) hyperbolic
learning objective Lhyper in Eq. (14). Our results show that
our objective Lhyper outperforms other alternatives signifi-

Method COCO LVIS ODinWAP APr APc APf

1 LDet 42.3 13.3 8.3 11.9 15.4 26.3
2 Lbaseline 46.8 23.6 22.7 24.3 24.6 38.6
3 Lhyper 48.4 31.3 30.7 32.6 30.3 45.2

Table 5. Ablation study on learning objectives. Metric: mAP.
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Figure 4. Comparison between baseline objective Eq. (15) and
our objective Eq. (14) on COCO during training. Metric: mAP.

Method COCO LVIS ODinW

1 no synthetic captions 42.3 13.3 26.3

2 synthetic captions on B 47.1 23.4 36.8
3 synthetic captions on B ∪ G 47.6 23.7 38.6
4 synthetic captions on B ∪ P 47.4 27.1 38.9
5 synthetic captions on B ∪ G ∪ P 48.4 31.3 45.2

Table 6. Ablation study on region sampling for bootstrapping
synthetic captions. Metric: mAP.

cantly, consistently across different datasets. The improve-
ment of Lbaseline over LDet shows the strength of learning
with synthetic captions to boost open-world generalization;
while the improvement of Lhyper over Lbaseline,LDet fur-
ther shows the benefit of aligning visual and caption embed-
dings in hierarchy with hyperbolic geometry (Figure 3).

Figure 4 compares the baseline objective Lbaseline and
our objective Lhyper during training. When using vanilla
contrastive learning (Lbaseline), the performance saturates
quickly. In contrast, our HyperLearner converges slower
but consistently improves its performance, suggesting its
stronger capability of learning from synthetic captions.
Ablation study on region sampling. Table 6 shows the
results of bootstrapping richer synthetic captions on differ-
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Figure 5. Qualitative results on open-world detection. Given any new class labels (row 1) or free-form texts (row 2) that specify objects
with attribute, action, interaction, and spatial relationship, our model can detect and localize the objects in images.

Method RefCOCO COCOval | testA | testB

1 w/o cross-modal attention 60.10 | 70.96 | 48.58 48.7
2 w cross-modal attention 77.89 | 76.92 | 72.99 48.4

Table 7. Ablation study on cross-modal attention.

ent regions: basic groundtruth bboxes B, proposal sampling
bboxes P , grid sampling bboxes G (§3.2, Figure 2). As
shown in row 1 and 2, utilizing captions on B improves the
performance substantially, with a ≈10% increase on LVIS
and ODinW. Moreover, the object-centric proposal sam-
pling P (row 4) can target on novel objects, hence improv-
ing the detection on LVIS and ODinW, where performance
are more dominated by rare novel objects. Finally, com-
bining all sampled regions (row 5) yields the best overall
performance, suggesting that using a diverse set of regions
leads to richer semantics information and higher robustness.
Ablation study on cross-modal attention. Table 7 shows
the results of using cross-modal attention to fuse spatial vi-
sual information and language semantics (Eq. (3), (4), (5)
in §3.1). Our results indicate that the cross-modal attention
module improves our model performance significantly on
RefCOCO benchmark and yields similar performance on
COCO benchmark. These results prove the crucial effec-
tiveness of leveraging spatial and language information for
the task of localization with free-form texts, as evidenced by
the substantial boosts of 17.79%, 5.96%, 24.31% in Top-1
accuracy on the RefCOCO val, testA, testB respectively.

4.4. Qualitative analysis

Qualitative results. Figure 5 shows our qualitative results.
In row 1, given new labels, our model can detect these new
objects, even though these objects are small-scale (exam-
ples 2 and 3) and rare (example 4). In row 2, given any
free-form texts that specify novel objects with fine-grained
details, our model can localize these objects precisely, such
as localizing the object of an attribute (pink), performing

object visual embeddings
caption embeddings

entailment relation

Figure 6. Visualization of our object and caption embeddings.

an action (standing), interacting with other object (holding
football), or in a certain spatial location (in the middle).
These examples indicate the strong generalizability of our
model on recognizing new concepts in open world.
Visualization of embeddings. Figure 6 shows our object
visual embeddings, caption embeddings with UMAP [35],
which projects the learned embeddings into a 2D space. We
can find that the visualized embeddings present a tree-like
entailment relation; this is in line with our motivation of im-
posing the hierarchy of ‘caption entails object’ in our learn-
ing objective (Figure 3). Interestingly, we can also find the
hierarchy of ‘longer caption entails shorter caption’, which
suggests the intrinsic hierarchy inside the caption data.

5. Conclusion
We present a novel hyperbolic vision-language learning ap-
proach to learn from synthetic captions effectively. Our ap-
proach is well designed to leverage the open-world knowl-
edge from pre-trained VLMs, and specially mitigate the
hallucination issue in synthetic captions to boost the open-
world generalizability in detection. Our comprehensive ex-
periments on multiple benchmark datasets show the com-
petitive performance of our approach as compared to the
state-of-the-art. We analyze our model design rationales
with insightful ablation study and qualitative analysis. Our
work also paved a strong foundation on leveraging synthetic
captions with hyperbolic learning for other vision tasks.
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