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Abstract

This paper studies the problem of concept-based inter-

pretability of transformer representations for videos. Con-

cretely, we seek to explain the decision-making process

of video transformers based on high-level, spatiotemporal

concepts that are automatically discovered. Prior research

on concept-based interpretability has concentrated solely

on image-level tasks. Comparatively, video models deal

with the added temporal dimension, increasing complex-

ity and posing challenges in identifying dynamic concepts

over time. In this work, we systematically address these

challenges by introducing the first Video Transformer Con-

cept Discovery (VTCD) algorithm. To this end, we pro-

pose an efficient approach for unsupervised identification of

units of video transformer representations - concepts, and

ranking their importance to the output of a model. The re-

sulting concepts are highly interpretable, revealing spatio-

temporal reasoning mechanisms and object-centric repre-

sentations in unstructured video models. Performing this

analysis jointly over a diverse set of supervised and self-

supervised representations, we discover that some of these

mechanism are universal in video transformers. Finally, we

show that VTCD can be used for fine-grained action recog-

nition and video object segmentation.

1. Introduction

Understanding the hidden representations within neural net-
works is essential for addressing regulatory concerns [14,
34], preventing harms in deployment [8, 33], and can aid in-
novative model designs [16]. This problem has been studied
extensively for images, both for convolutional neural net-
works (CNNs) [5, 25, 29, 37] and, more recently, vision
transformers (ViTs) [55, 68], resulting in multiple key in-
sights. For example, image classification models extract
low-level positional and texture cues at early layers and
gradually combine them into higher-level, semantic con-
cepts at later layers [5, 27, 49].
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Figure 1. Heatmap predictions of the TCOW model [66] for track-
ing through occlusions (top), together with concepts discovered
by our VTCD (bottom). We can see that the model encodes po-
sitional information in early layers, identifies containers and col-
lision events in mid-layers and tracks through occlusions in late
layers. Only one video is shown, but the discovered concepts are
shared between many dataset samples.

However, while video transformers do share their over-
all architecture with image-level ViTs, the insights obtained
in existing works do very little to explain their inner mecha-
nisms. Consider, for example, the recent approach for track-
ing occluded objects [66] shown in Figure 1 (top). To ac-
curately reason about the trajectory of the invisible object
inside the pot, texture or semantic cues alone would not suf-
fice. What, then, are the spatiotemporal mechanisms used
by this approach? Are any of these mechanisms universal

across video models trained for different tasks?

To answer these questions, in this work we present the
Video Transformer Concept Discovery algorithm (VTCD)
- the first concept discovery methodology for interpreting
the representations of deep video transformers. We focus
on concept-based interpretability [24, 25, 29, 74] due to its

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10946



capacity to explain the decision-making process of a com-
plex model’s distributed representations in high-level, intu-
itive terms. Our goal is to decompose a representation at
any given layer into human-interpretable ‘concepts’ with-
out any labelled data (i.e. concept discovery) and then rank
them in terms of their importance to the model output.

Concretely, we first group model features at a given layer
into spatiotemporal tubelets via SLIC clustering [1], which
serve as a basis for our analysis (Section 3.1.1). Next, we
cluster these tubelets across videos to discover high-level
concepts [17, 24, 25, 42, 74] (Section 3.1.2). The result-
ing concepts for an occluded object tracking method [66]
are shown in Figure 1 (bottom) and span a broad range of
cues, including spatiotemporal ones that detect events, like
collisions, or track the containers.

To better understand the decision-making mechanisms of
video transformers, we then quantify the importance of con-
cepts for the model’s predictions. Inspired by previous work
on saliency maps [53], we propose a novel, noise-robust ap-
proach to estimate concept importance (Section 3.2). Un-
like existing techniques that rely on gradients [37], or con-
cept occlusion [24], our approach effectively handles redun-
dancy in self-attention heads in transformer architectures.

Next, we use VTCD to study whether there are any
universal mechanisms in video transformer models, that
emerge irrespective of their training objective. To this end,
we extend recent work [19] to automatically identify im-

portant concepts that are shared between several models in
Section 4.1. We then analyze a diverse set of representa-
tions (e.g. supervised, self-supervised, or video-language)
and make a number of discoveries: (i) many concepts are in-
deed shared between models trained for different tasks; (ii)
early layers tend to form a spatiotemporal basis that under-
lines the rest of the information processing; (iii) later layers
form object-centric video representations, even in models
trained in a self-supervised way.

We also show how VTCD can be applied for downstream
tasks. Firstly, pruning the heads of an action classifica-
tion model according to their estimated importance yields
a 4.3% increase in accuracy while reducing computation
by 33%. Secondly, object-centric concepts discovered by
VTCD can be used for video-object segmentation (VOS)
and achieve strong performance on the DAVIS’16 bench-
mark [52] even for self-supervised representations.

2. Related work

Our work introduces a novel concept-based interpretabil-

ity algorithm that focuses on transformer-based representa-

tions for video understanding. Below, we review the most
relevant works in each of these fields.

Concept-based interpretability is a family of neural net-
work interpretability methods used to understand, post-hoc,
the representations that a model utilizes for a given task.

Closed-world interpretability operates under the premise of
having a labeled dataset of concepts [5, 37]. However, for
videos, it is unclear what concepts may exist and also diffi-
cult to densely label videos even if they were known a priori.

In contrast, unsupervised concept discovery makes no
assumptions on the existence of semantic concepts and
uses clustering to partition data into interpretable compo-
nents within the model’s feature space. ACE [29] and
CRAFT [25] segment input images into superpixels and
random crops, respectively, before applying clustering at a
given layer. In videos, however, the potential tubelets far
outnumber image crops, prompting us to introduce a more
efficient method for segmenting videos into proposals in
Section 3.1.1.

A necessary component of concept-based interpretability
is measuring the importance (i.e. fidelity) of the discovered
concepts to the model. However, the aforementioned meth-
ods [24, 25, 29, 37, 74] were developed for CNNs, and are
not readily applicable to transformers. The main challenge
of ranking concepts in attention heads is due to the trans-
formers’ robustness to minor perturbations in self-attention
layers. To address this limitation, we introduce a new al-
gorithm to rank the significance of any architectural unit,
covering both heads and intra-head concepts in Section 3.2.

Recent work [19] identifies neurons that produce simi-
lar activation maps across various image models (including
transformers). However, neurons are unable to explain the
full extent of a models’ distributed [21] representation. In
contrast, our method works on features of arbitrary dimen-
sion and is applied to video models.

Interpretability of transformers has received significant
attention recently, due to its success in a variety of com-
puter vision tasks. Early work [55] contrasted vision trans-
former representations with CNNs (representational differ-
ences per layer, receptive fields, localization of information,
etc). Other work aims to generate saliency heatmaps based
on attention maps of a model [11, 12]. Later works fo-
cused on understanding the impact of different training pro-
tocols [51, 68] (e.g. self-supervised learning (SSL) vs. su-
pervised) and robustness [54, 75]. The features of a specific
SSL vision transformer, DINO [2], were explored in detail
and shown to have surprising utility for part-based segmen-
tation tasks. However, none of these works address concept-
based interpretability or study video representations.

Independently, studies in natural language processing
(NLP) analyzed self-attention layers [20, 67] and found that
heads are often specialized to capture different linguistic
or grammatical phenomenon. This is qualitatively seen in
vision works that show dissimilar attention maps for dif-
ferent self-attention heads [15, 36]. Moreover, other NLP
works [48, 67] explore the impact of removing heads and
find that only a small number need to be kept to produce
similar performance. Our findings agree with evidence from
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Figure 2. Video Transformer Concept Discovery (VTCD) takes a dataset of videos, X, as input and passes them to a model, f[1,l] (shown
in yellow). The set of video features, Z, are then parsed into spatiotemporal tubelet proposals, T (shown in red), via SLIC clustering in the
feature space. Finally, tubelets are clustered across the videos to discover high-level units of network representation - concepts, C (right).

these works and in Section 5 we further demonstrate that
targeted pruning of unimportant heads from video trans-
formers can actually improve a model’s performance.

Video model interpretability is an under-explored area of
research considering the recent successes of deep learning
models in action recognition [39], video object segmenta-
tion [43, 52, 63, 66], or self-supervised approaches [23, 56,
62, 64, 69]. Efforts have used proxy tasks to measure the de-
gree to which models use dynamic information [28, 32, 35]
or scene bias [13, 44, 45]. One method quantifies the static
and dynamic information contained in a video model’s in-
termediate representation [40, 41]. However, these meth-
ods can only measure one or two predefined concepts (i.e.
static, dynamic, or scene information) while our approach
is not restricted to a subset of concepts. Another work vi-
sualizes videos that activate single neurons (or filters) in 3D
CNN’s via activation maximization with temporal regular-
ization [22]. While this method has no restrictions on what a
neuron can encode, it only applies to 3D CNNs and does not
truly capture ‘concepts’ across distributed representations
(i.e. feature space directions that generalize across videos).

3. Video transformer concept discovery

We study the problem of decomposing a video representa-
tion into a set of high-level open-world concepts and rank-
ing their importance for the model’s predictions. We are
given a set of (RGB) videos, X ∈ RN×3×T×H×W , where
N , T , H , and W denote the dataset size, time, height,
and width, respectively, and an L layer pretrained model,
f . Let f[r,l] denote the model from layer r to l, with

f[1,l](X) = Zl ∈ RN×C×T ′
×H′

×W ′

being the intermedi-
ate representation at layer l. To decompose Zl into a set
of human-interpretable concepts, Cl = {c1, . . . , cQ}, exist-
ing, image-level approaches [25, 29] first parse the N fea-
ture maps into a set of M proposals, T ∈ RM×C (M > N ),
where each Tm corresponds to a region of the input image.
These proposals are then clustered into Q << M concepts
in the feature space of the model to form an assignment ma-

trix W ∈ RM×Q. The importance of each concept ci to the
model’s prediction is quantified by a score si ∈ [0, 1]. Per-
forming this analysis over all layers in f produces the entire
set of concepts for a model, C = {C1, . . . ,CL}, together
with their corresponding importance scores.

Existing approaches are not immediately applicable to
video transformers because they do not scale well and are
focused on 2D CNN architectures. In this work, we ex-
tend concept-based interpretability to video representations.
To this end, we first describe a computationally tractable
proposal generation method (Section 3.1.1) that operates
over space-time feature volumes and outputs spatiotempo-
ral tubelets. Next (Section 3.1.2), we adapt existing con-
cept clustering techniques to video transformer representa-
tions. Finally, in Section 3.2 we propose a novel concept
importance estimation approach applicable to any architec-
ture units, including transformer heads.

3.1. Concept discovery

3.1.1 Tubelet proposals

Previous proposal methods [24, 25, 29] use superpixels or
crops in RGB space to generate segments; however, the
number of possible segments is exponentially greater for
videos. Moreover, proposals in color space are unrestricted
and may not align with the model’s encoded information,
leading to many irrelevant or noisy segments. To address
these drawbacks, we instantiate proposals in feature space,
which naturally partitions a video based on the information
contained within each layer (shown in Figure 2, left).

We produce tubelets per-video via Simple Linear Itera-
tive Clustering [1] (SLIC) on the spatiotemporal features as

T = GAP(B ⊙ Z) = GAP(SLIC(Z)⊙ Z), (1)

where T ∈ RM×C is the set of tubelets for the dataset,
B ∈ {0, 1}C×M×N×T ′

×H′
×W ′

are spatiotemporal binary
support masks obtained from SLIC, M is the number of
tubelets for all N videos (M >> N ), and GAP represents
global average pooling over the space and time dimensions.
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Figure 3. A visual representation of concept masking for a single
concept. Given a video xi and a concept, cl, we mask the tokens of
the intermediate representation zi = f[1,l](xi) with the concepts’
binary support masks, Bcl , to obtain the perturbed prediction, ŷi.

SLIC is an extension of the K-Means algorithm [46] that
controls a trade-off between cluster support regularity and
adaptability, and also constrains cluster support masks to be
connected. Together these properties produce non-disjoint
tubelets that are easier to interpret for humans because they
reduce the need to attend to multiple regions in a video at
a time. Further, the pruning step in SLIC makes it more
robust to the hyperparameter that controls the desired num-
ber of clusters, as it automatically prunes spurious, discon-
nected tubelets. Next, we describe our approach for group-
ing individual tubelets into higher-level concept clusters.

3.1.2 Concept clustering

Recent work [24, 25, 74] has used Non-Negative Matrix
Factorization (NMF) [17] to cluster proposals into concepts.
Given a non-negative data matrix, T+ ∈ RM×C , NMF
aims to find two non-negative matrices, W+ ∈ RM×Q and
C+ ∈ RQ×C , such that T+ = W+C+, where W+ is the
cluster assignment matrix. Unfortunately, NMF cannot be
applied to transformers as they use GeLU non-linearities,
rather than ReLU, resulting in negative activations.

We solve this problem by leveraging Convex Non-
negative Matrix Factorization [17] (CNMF). Despite the
name, CNMF extends NMF and allows for negative input
values. This is achieved by constraining the factorization
such that the columns of W are convex combinations of the
columns of T, i.e. each column of W is a weighted average
of the columns of T. This constraint can be written as

W = TG, (2)

where G ∈ [0, 1]C×Q and
∑

j Gi,j = 1. To cluster a set of
tubelets, T, into corresponding concepts, we optimize

(G∗,C∗) = argmin
C>0,G>0

||T − TGC||2, (3)

where the final set of concepts are the rows of the matrix C,
i.e. concept centroid ci is the ith row of C (Figure 2, right).

3.2. Concept importance

Given a set of discovered concepts, we now aim to quan-
tify their impact on model performance. One approach,

shown in Figure 3, is to mask out each concept indepen-
dently and rank the importance based on the drop in perfor-
mance [24]. Formally, let cl be a single target concept, and
Bcl ∈ {0, 1}C×M×N×T ′

×H′
×W ′

the corresponding binary
support masks over X. It can then be masked in layer l via

ŷ = f[l,L](Zl ⊙ (1− Bcl)). (4)

While this approach works well for CNNs [24], trans-
formers are robust to small perturbations within self-
attention layers [48, 67]. Therefore, single concept mask-
ing has little effect on performance (shown by results in
Figure 4). Instead, we mask a high percentage of sampled
concepts in parallel (across all layers and heads) and then
empirically validate in Section 5.1 that averaging the results
over thousands of samples produces valid concept rankings.

Formally, we propose Concept Randomized Importance
Sampling (CRIS), a robust method to compute importance
for any unit of interest. To this end, we first randomly sam-
ple K different concept sets, such that each Ck ⊂ C. We
then define Ck

l as the set of concepts in Ck discovered at
layer l, with BCk

l

denoting the corresponding binary support
masks. We mask out every concept at every layer via

ŷk = g(B̃Ck
L

⊙ f[L−1,L](· · · (B̃Ck
1

⊙ f[0,1](X)))), (5)

where g(·) is the prediction head (e.g. an MLP) and B̃ de-
notes the inverse mask (i.e. 1−B). Finally, we calculate the
importance of each concept, ci, via

si =
1

K

K∑

k

(D(ỹ, y)− D(ŷk, y)) ci∈Ck , (6)

where ỹ is the original prediction without any masking and
D is a metric quantifying performance (e.g. accuracy).

4. Understanding transformers with VTCD

Our algorithm facilitates the identification of concepts
within any unit of a model and quantifying their signifi-
cance in the final predictions; however, this is insufficient
to fully represent the computations performed by a video
transformer. It is also crucial to understand how these con-
cepts are employed in the model’s information flow.

As several recent works have shown [20, 50], the resid-
ual stream of a transformer serves as the backbone of the
information flow. Each self-attention block then reads in-
formation from the residual stream with a linear projection,
performs self-attention operations to process it, and finally
writes the results back into the residual stream. Crucially,
self-attention processing is performed individually for each
head with several studies showing, both in vision [2, 18, 36]
and NLP [67], that different self-attention heads capture dis-
tinct information. In other word, heads form the basis of the
transformer representation.
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A closer analysis of the concepts found in the heads of
the TCOW model [66] with VTCD allows us to identify sev-
eral information processing patterns in that model. In par-
ticular, Figure 1 shows that the heads in early layers group
input tokens based on their spatiotemporal positions. This
information is then used to track objects and identify events
in mid-layers, and later layers utilize mid-layer representa-
tions to reason about occlusions. Next, we study which of
these mechanisms are universal across video transformers
trained on different datasets and objectives (cf. [19]).

4.1. Rosetta concepts

Inspired by previous work [19], we mine for Rosetta con-

cepts that are shared between models and represent the same
information. The key to identifying Rosetta units is a ro-
bust metric, R, where a higher R-score corresponds to the
two units having a larger amount of shared information.
This previous work [19] focused on finding such neurons
in image models based on correlating their activation maps.
We instead measure the similarity between concepts (i.e.
distributed representations) via the mean Intersection over
Union (mIoU) of the concepts’ support.

Formally, we mine Rosetta concepts by first applying
VTCD to a set of D models {f1, . . . , fD}, resulting in
discovered concepts, Cj = {cj1, . . . , c

j
i}, and importance

scores, Sj = {sj1, . . . , s
j
i}, for each model f j . We then aim

to measure the similarity between all concept D-tuples from
the models. Given a set of D concepts, {c1i , . . . , c

D
i }, and

corresponding binary support masks, {B1
i , . . . ,BD

i }, we de-
fine the similarity score of these concepts as

RD
i =

|B1
i ∩ · · · ∩ BD

i |

|B1
i ∪ · · · ∪ BD

i |
. (7)

Naively computing the similarity between all D-tuples
results in an exponential number of computations and is
intractable for even small D. To mitigate these issues,
we exclude two types of concepts: (i) unimportant ones
and (ii) those with a low R-score among d-tuples, where
d < D. More specifically, we only consider the most im-
portant ϵ% of concepts from each model. We then iterate
over d ∈ {2, . . . , D} and filter out concepts that have R-
scores less than δ for all d-tuples in which it participates.
Formally, the filtered Rosetta d-concept scores are defined
as

Rd
ϵ,δ = {Rd

i |R
d
i > δ ∀Rd

i ∈ Rd
ϵ}, (8)

where Rd
ϵ is the set of all R-scores among d concepts af-

ter the ϵ importance filtering. This results in a significantly
smaller pool of candidates for the next stage, d+1, reducing
the overall computational complexity of the algorithm. Fi-
nally, as some concepts may reside in a subset of the models
but are still interesting to study, we examine the union of all
important and confident Rosetta d-concepts corresponding
to R-scores R2

ϵ,δ ∪ · · · ∪ RD
ϵ,δ .

TCOW VideoMAE
Model Positive ↓ Negative ↑ Positive ↓ Negative ↑

Baseline + Occ 0.174 0.274 0.240 0.300
Baseline + CRIS 0.166 0.284 0.157 0.607
VTCD (Ours) 0.102 0.288 0.094 0.625

Table 1. Comparison of our tubelet proposal approach to the
widely used random crop tubelets [24, 25, 72] with occlusion-
based importance [24] (Baseline + Occ) for both TCOW [66] and
VideoMAE [64]. Our tubelets result in concepts that are more
faithful to the model’s representations even when the baseline is
equipped with our concept scoring algorithm (Baseline + CRIS).

5. Experiments

We evaluate our concept discovery algorithm quantitatively
and qualitatively across a variety of models and tasks.

Datasets. We primarily use two datasets in our experi-
ments: TCOW Kubric [66] and Something-Something-v2
(SSv2) [30]. The former is a synthetic, photo-realistic
dataset of 4,000 videos with randomized object location
and motion, based on the Kubric synthetic video genera-
tor [31]. This dataset is intended for semi-supervised VOS
(semi-VOS) through occlusions. SSv2 contains 220,847
real videos intended for fine-grained action recognition.
Each sample is a crowdsourced video of a person-object in-
teraction (i.e. doing something to something). Unlike other
video classification benchmarks [9, 60], temporal reasoning
is fundamental for distinguishing SSv2 actions, making it
an ideal choice for analyzing spatiotemporal mechanisms.

Models. We evaluate four models with public pretrained
checkpoints: (i) TCOW [66] trained on Kubric for semi-
VOS, (ii) VideoMAE [64] trained on SSv2 for action clas-
sification (Supervised VideoMAE), (iii) VideoMAE self-
supervised on SSv2 (SSL VideoMAE), and (iv) Intern-
Video [70], a video-text model trained contrastively on 12M
clips from eight video datasets and 100M image-text pairs
from LAION-400M [58]. As TCOW requires a segmenta-
tion as input, when applying it to SSv2, we manually la-
bel the most salient object in the initial frame.We focus our
analysis on the first two models, and use the last two to val-
idate the universality of our Rosetta concepts.

Implementation details. For all experiments, we run
VTCD on 30 randomly sampled videos and discover con-
cepts from all heads and layers. We focus on keys in the
self-attention heads, as they produce the most meaningful
clusters per prior work [2]. We present results with queries
and values on the project page, with further implementation
details.

VTCD target metrics. To discover and rank concepts,
VTCD requires a target evaluation metric. For TCOW
Kubric, we use the intersection-over-union (IoU) between
the predicted and the groundtruth masks. For SSv2, we use
classification accuracy for a target class.
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Figure 4. Attribution curves for every layer of TCOW trained on
Kubric (top) and VideoMAE trained on SSv2 (bottom). We re-
move concepts from most-to-least (left) or least-to-most important
(right). CRIS produces better concept importance than methods
based on single concept occlusions (Occ) or gradients (IG).

5.1. Quantitative evaluation

This section presents a quantitative validation of VTCD’s
key components compared to various baselines. We first as-
sess our tubelet proposal methodology, followed by a com-
parison of CRIS with other concept importance methods.
We follow the standard evaluation protocol, and measure
the fidelity of the discovered concepts [25, 29, 74]. To this
end, we calculate attribution curves [24, 25, 29], where con-
cepts are removed from a model in either most-to-least or-
der (positive perturbation), or least-to-most (negative per-
turbation). The intuition is that concepts, and corresponding
importance scores, with higher fidelity will have a steeper
performance decrease when removing the most important
concepts, and vice-versa for the reverse order.

Tubelet validation. Unlike previous methods that partition
the inputs into proposals in the pixel space, VTCD gener-
ates the proposals via SLIC [1] clustering in the model’s
feature space. We ablate this design choice by compar-
ing VTCD with a strong random cropping baseline used by
recent image-based concept discovery methods (Concept-
SHAP [72], CRAFT [25], Lens [24]), shown as ‘Baseline +
Occ’ in Table 1. In all cases, VTCD yields concepts that are
more faithful to the model’s representation. To further iso-
late the effect of proposals on the performance, we equip the
baseline with our concept importance estimation approach
(shown as ‘Baseline + CRIS’). We observe that VTCD still
outperforms this strong baseline in all settings, validating
that generating tubelet proposals in the feature space of the
transformer indeed yields concepts that are more faithful to
the model’s representation.

Concept important evaluation. In Figure 4, we plot con-
cept attribution curves of our method for TCOW for Kubric
(top) and supervised VideoMAE for SSv2, targeting 10 ran-

Model Accuracy ↑ GFLOPs ↓

Baseline 37.1 180.5

VTCD 33% Pruned 41.4 121.5
VTCD 50% Pruned 37.8 91.1

Table 2. Pruning unimportant heads in VideoMAE results in im-
proved efficiency and accuracy when targeting a subset of classes.
Here, we target the six SSv2 classes containing types of spills.

domly sampled classes and averaging results (bottom). In
addition, we report several baselines: (i) concept removal
in a random order, (ii) standard, occlusion-based concept
importance estimation [24], and (iii) a gradient based ap-
proach [24, 37]. In all cases, CRIS produces a more viable
importance ranking, dramatically outperforming both ran-
dom ordering and the occlusion baseline. The integrated
gradients method performs similarly to ours for TCOW, but
is much worse for the action classification VideoMAE.

Notably, we observe that the performance actually in-

creases for VideoMAE when up to 70% of the least im-
portant concepts are removed. Recall that SSv2 is a fine-
grained action classification dataset. VTCD removes con-
cepts that are irrelevant for the given class, hence increas-
ing the robustness of the model’s predictions. We further
quantify this effect in Table 2, where we focus on the six
classes where a ‘spill’ happens (listed in the appendix). We
then use CRIS to rank the heads in VideoMAE according
to their effect on performance using the training set and re-
port the results for pruning the least important ones on the
validation set. Pruning 33% of the heads actually improves

the accuracy by 4.3% while reducing FLOPS from 180.5
to 121.5. Further removing 50% of the heads retains the
original performance (+0.7%) and reduces FLOPs to 91.1.
These results show that one can tune the trade-off between
performance and computation using VTCD for pruning.

5.2. Qualitative analysis

We have seen that the importance assigned to concepts dis-
covered by VTCD aligns with the accuracy of the model.
We now assess the concepts qualitatively. To this end, Fig-
ure 5 shows two representative videos for the top three most
important concepts for the TCOW and VideoMAE models
for the class dropping something into something.

For TCOW, the most important concept occurs in layer
five and tracks the target object. Interestingly, the same con-
cept highlights objects with similar appearance and 2D po-
sition to the target. This suggests that the model solves the
disambiguation problem by first identifying possible dis-
tractors in mid-layers (i.e. five) and then using this infor-
mation to more accurately track the target in final layers. In
fact, the second most important concept, occurring in layer
nine, tracks the target object throughout the video.

For VideoMAE, the most important concept highlights
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Figure 5. The top-3 most important concepts for the TCOW model trained on Kubric (left) and VideoMAE trained on SSv2 for the target
class dropping something into something (right). Two videos are shown for each concept and the query object is denoted with a green
border in Kubric. For TCOW, the 1st and 2nd (top-left, middle-left) most important concepts track multiple objects including the target
and the distractors. For VideoMAE, the top concept (top-right) captures the object and dropping event (i.e. hand, object and container)
while the 2nd most important concept (middle-right) captures solely the container. Interestingly, for both models and tasks, the third most
important concept (bottom) is a temporally invariant tubelet. Section 5.3 provides a further discussion.

Figure 6. A sample Rosetta concept found in four models trained
for different tasks. Interestingly, we find object-centric represen-
tations in all the models.

the object until it is dropped, after which the object and its
container are highlighted. The second concept clearly cap-
tures the container, but notably not the object itself, mak-
ing a ring-like shape. These concepts identify an important
mechanism for differentiating similar classes (e.g. dropping

something into/behind/in-front of something).

The third concept for each model captures similar infor-
mation, occurring in early layers: a temporally invariant,
spatial support. This corroborates research [2, 27] suggest-
ing that positional information processing occurs early in
the model, acting as a reference frame between semantic
information and the tokens themselves. We now turn to
Rosetta concepts: concepts shared across multiple models.

5.3. Rosetta concepts

We begin by applying VTCD to the four models, target-
ing two classes chosen due to their dynamic nature: rolling

something across a flat surface and dropping something be-

hind something. We then mine Rosetta concepts following
Section 4.1, with δ = 0.15 and ϵ = 15% in all experiments.
The resulting Rosetta 4-concepts contains 40 tuples with an
average R-score (Equation 7) of 17.1. Note the average R-
score between all possible 4-concepts is 0.6, indicating the
significance of the selected matches. Figure 6 visualizes one
mined Rosetta 4-concept, which captures an object tracking
representation in the late layers. This demonstrates that uni-
versal representations indeed exist between all four models.
Our project website shows more shared concepts as videos.

Next, we qualitatively analyze all Rosetta d-concept with
d ∈ {2, 3, 4} at various layers. Figure 7 shows a represen-
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Spatiotemporal object-centric
Rolling objectSpatial basis

Temporal basis

Spatiotemporal basis Object-centric

Hands Container before drop

Early layers Deep layers

Hands+object before drop

Figure 7. Universal concepts emerge in video transformers despite being trained for different tasks. Early layers encode spatiotemporal
positional information. Middle layers track various objects. Deep layers capture fine-grained spatiotemporal concepts, e.g. related to
occlusion reasoning. Legend: TCOW, Supervised VideoMAE, SSL VideoMAE, InternVideo.

Features VTCD VTCD + SAM [38]

VideoMAE-SSL 45.0 68.1
VideoMAE 43.1 66.6
InternVideo 45.8 68.0

Table 3. We apply VTCD to discover object tracking concepts and
evaluate them with mIoU on the DAVIS’16 validation set.

tative sample. In early layers, we find that the models learn
spatiotemporal basis representations (Figure 7, left): they
decompose the video space-time volume into connected
regions, facilitating higher-level reasoning in later layers.
This is consistent with prior works that show spatial posi-
tion is encoded in early layers of image transformers [2, 27].

In the mid-layers (Figure 7, middle), we find that, among
other things, all the models learn to localize and track in-
dividual objects. This result introduces a new angle to
the recently developed field of object-centric representation
learning [3, 26, 47, 59]: it invites us to explore how special-
ized approaches contribute, given that object concepts natu-
rally emerge in video transformers. In addition, all models,
except for synthetically trained TCOW, develop hand track-
ing concepts, confirming the importance of hands for action
recognition from a bottom-up perspective [61, 73].

We validate the accuracy of the discovered object-
centric concepts on the DAVIS’16 video-object segmenta-
tion (VOS) benchmark [52]. To this end, we run VTCD
on the training set and select concepts that have the highest
overlap with the groundtruth tracks. We then use them to
track new objects on the validation set and report results in
Table 3 (see appendix for implementation details). In this
analysis, we solely evaluate representations that are not di-
rectly trained for VOS. While solid performance is achieved
by all representations, segmentation accuracy is limited by
the low resolution of the concept masks. To mitigate this,

we introduce a simple refinement step that samples random
points inside the masks to prompt SAM [38]. The resulting
approach, shown as ‘VTCD + SAM’, significantly improves
performance. We anticipate that future developments in
video representation learning will automatically lead to bet-
ter VOS methods with the help of VTCD.

Finally, deeper layers contain concepts that build on
object-centric representations to capture spatiotemporal
events. For example, three models learn to identify con-
tainers before an object is dropped into them and two mod-
els track the object in the hand until it is dropped. One
notable exception is InternVideo [70], which is primarily
trained on images with limited spatiotemporal modeling.
Perhaps surprisingly, these concepts are also found in the
self-supervised VideoMAE [64], which was never trained to
reason about object-container relationships. This raises the
question: Can intuitive physics models [10, 71] be learned
via large-scale video representation training?

6. Conclusion

In this work, we introduced VTCD, the first algorithm
for concept discovery in video transformers. We empiri-
cally demonstrated that it is capable of extracting human-
interpretable concepts from video understanding models
and quantifying their importance for the final predictions.
Using VTCD, we discovered shared concepts among sev-
eral models with varying objectives, revealing common pro-
cessing patterns, such as a spatiotemporal basis in early lay-
ers. In later layers, useful, higher-level representations uni-
versally emerge, such as those responsible for object track-
ing. Large-scale video representation learning is an active
area of research at the moment [4, 6, 7] and our approach
can serve as a key to unlocking its full potential.
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