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Abstract

Understanding what deep network models capture in
their learned representations is a fundamental challenge
in computer vision. We present a new methodology to un-
derstanding such vision models, the Visual Concept Con-
nectome (VCC), which discovers human interpretable con-
cepts and their interlayer connections in a fully unsuper-
vised manner. Our approach simultaneously reveals fine-
grained concepts at a layer, connection weightings across
all layers and is amendable to global analysis of network
structure (e.g. branching pattern of hierarchical concept
assemblies). Previous work yielded ways to extract inter-
pretable concepts from single layers and examine their im-
pact on classification, but did not afford multilayer concept
analysis across an entire network architecture. Quantitative
and qualitative empirical results show the effectiveness of
VCCs in the domain of image classification. Also, we lever-
age VCCs for the application of failure mode debugging to
reveal where mistakes arise in deep networks.

1. Introduction

This paper focuses on interpreting the intermediate repre-
sentations of deep networks for computer vision. The goal
is understanding how various encoded concepts impact a
model’s prediction as well as concepts in other layers. We
define concepts as abstractions that generalize from partic-
ular instances, including those defined locally (e.g. color
and orientation), regionally (e.g. texture and shading) and
from higher-level considerations (e.g. object parts, wholes
and groupings). Human-interpretable concepts are of par-
ticular interest in increasing human understanding of mod-
els; however, extracting these concepts encoded in deep net-
works remains an open challenge in computer vision due to
the complexity and opaque nature of these models.
Understanding what concepts are learned by deep mod-
els and how they are encoded is important for both science
and applications. For science, understanding what informa-
tion drives a model’s encoding of different concepts may in-
dicate directions to advance performance. For applications,

several negative consequences of deploying opaque vision
models have been documented, e.g. [8, 24].

Previous work has focused on interpreting models via
feature attribution, which measures the contribution of in-
dividual inputs to a model’s output [10, 46, 59]; so, expla-
nations are of single pixels and may be difficult to interpret.
Other work generates images that maximize activation of a
model’s features [19, 38, 54]. Like feature attribution, these
approaches are qualitative and place most of the burden
on the user to determine the concepts revealed. Concept-
based interpretability, which identifies human-interpretable
abstractions in a model’s latent space [20, 23, 29, 32], yield
quantitative contributions of a concept to the model’s output
and explanations on the class-level (vs. pixel-level). These
approaches are easier to understand and validate; however,
they have not been used to explore interlayer relationships.

As it stands, no approaches can quantify the interlayer
affect of a given distributed concept at one layer, [, to an-
other concept at a different layer, I’ (rather than the model
output). Even though it is well established that deep net-
works learn to build concepts hierarchically as information
flows through the network [39, 54], understanding the hier-
archical representations has been under-researched. Indeed,
little is known about the characteristics of this concept hi-
erarchy for today’s models. Questions abound: How many
concepts exist in a network? What are the connections and
weights between concepts? Does the model architecture im-
pact the hierarchical structure of concept abstractions?

In response to these questions, we take inspiration from
the biological notion of a connectome [47], defined as “a
comprehensive structural description of the network of ele-
ments and connections forming a brain.” Analogously, we
present the Visual Concept Connectome (VCC), a compre-
hensive structural description of a deep pretrained network
model in terms of human-interpretable concepts and their
relationships that form the internal representation main-
tained by the model; Fig. | shows an example. Notably,
VCC generation works in the open-world setting, i.e. the
concepts and interlayer connections are discovered without
the need for any predefined concept dictionary.
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Figure 1. A Visual Concept Connectome (VCC). At each layer the visual concepts learned by a deep model for a given class are revealed
as are the learned interlayer concept connections. For each concept, up to four exemplars are shown as unmasked regions in a 2 X 2
image. Interlayer concept connections are shown as lines with darker lines indicating larger contributions. Shown is a VCC for every
convolutional layer of a VGG16 model [49] trained on ImageNet [15] targeting recognition of class “Tow Truck”. A closer visualization of
VCC subgraphs reveals interesting compositions occurring at different levels of abstraction corresponding at different depths of the model.
At early layers (bottom left), we observe oriented patterns (C1,1) and brown color (C1,2) composing the concept of green and brown
orientation (C-,1). Middle layers (right) show the concept of ‘wheel on the road’ (Cy,1) being composed of wheels (Cs,1) and regions of
asphalt (Cg 2). The final layer concepts (top left) show that both foreground objects, e.g. tow trucks (C13,1), and background regions, e.g.
road, trees, humans, or car being towed (C'13,2), concepts highly influence the final category (C'rowTruck)-

2. Related research

While a number of intrinsically interpretable networks have
appeared (e.g. [0, 12, 31, 45, 56, 57]), we focus on work
that, like ours, endeavours to interpret black-box models.

Concept-based interpretability. Closed-world concept
interpretability considers cases where a labelled dataset de-
fines the concepts of interest for post-hoc analysis; ap-
proaches include Network Dissection [3] and Testing with
Concept Activation Vectors (TCAV) [29]. However, a desir-
able property for concept-based interpretability is not to be
restricted to a set of predefined classes (i.e. closed-world),
but to support discovery of new and previously unlabelled
concepts (i.e. open-world). Approaches to open-world con-
cept interpretabilty include Automatic Concept Explana-
tions (ACE) [23], SegDiscover [27], ConceptSHAP [53],
Invertible Concept Explanations [58] and CRAFT [20].
These approaches are limited to single layer analysis and
do not explain interlayer relationships.

Activation maximization [19, 36, 38, 54] visualizes the
input that most activates a model component (e.g. filter,
layer or logit) or how same layer units combine informa-
tion [40]. These approaches do not capture interlayer rela-
tions and place a heavy burden on the user to interpret what
concepts appear in their output where there may be no clear
resemblance to natural concepts. Class Activation Maps

(CAMs) and extensions visualize an input image’s local re-
gion that contributes to a model’s output [9, 46, 59]. Layer-
wise Relevance Propagation [5] (LRP) generates pixel con-
tribution heatmaps by assuming conservation of informa-
tion is propagated through each neuron. These approaches
interpret single images (not classes), are purely qualitative,
and are sensitive to small input perturbations [22, 30], yet
insensitive to model changes [2]. Less related are directions
interpreting generative models, e.g. [4, 34].

Interpretability via decomposition. Most closely re-
lated to our work are those that decompose a model’s pre-
diction into interpretable components. CRAFT [20] ex-
tracts concepts from the last layer of a convolutional neu-
ral network (CNN), but also searches earlier layers for sub-
concepts for the maximally activating images of a given
concept, but do not provide any way to quantify the contri-
bution of sub-concepts to concepts. Another approach com-
bined CAMs of multiple concepts to explain the final pre-
diction [60]; however, it is limited to labelled data (so can-
not discover concepts outside training) and only explains
a final output, not intermediate relations. Other work in-
terprets CNNs by distilling them into a graph [55]; how-
ever, it applies only to individual filters conceived as cap-
turing object parts (i.e. not concepts other than objects and
their parts, e.g. textures, colors or grouping), does not con-
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sider the fact that representations are encoded via superpo-
sition [7, 17, 40] (i.e. more than one concept can be cap-
tured per-channel), does not yield meaningful edge weights
and is only for CNNs. Yet other work extends Grad-CAM
or LRP to perform intra-layer visualizations [1, 13]. While
these approaches capture concepts other than object parts,
they still ignore the core problem of superposition (and dis-
tributed representations) and do not yield interpretation for
an entire class, just single images.

Contributions. In the light of previous work, our con-
tributions are fourfold. (i) We introduce and formalize the
notion of a Visual Concept Connectome (VCC) for deep
network models. The VCC reveals concepts represented at
any given layer of a network as well as their interlayer con-
nectivity. (ii) We present a method for extracting a VCC
from any pretrained deep network in an unsupervised, open
world setting, with a focus on classification. (iii) We vali-
date our approach with quantitative and qualitative experi-
ments wherein we examine various standard models to yield
insights into model architectures and training tasks. (iv) We
apply VCCs to explaining failure modes in deep models.

3. Visual Concept Connectomes (VCCs)

A VCC is a directed acyclic graph, G(Q, E), created by dis-
tilling a pretrained deep network. The graph is topologically
sorted based on the layer order found in the original network
and has n+1 layers, consisting of n network layers to be an-
alyzed (i.e. any subset of layers that a user selects, including
all layers at the extreme) plus the final prediction (e.g. the
object category for object recognition). The graph’s nodes,
Q, are vectors (cluster centroids) representing interpretable
concepts and its edges, E, are scalars representing the con-
tribution of one concept to the existence of another.

To construct a VCC, three inputs are required: (i) a
set of I images representative of a given task (e.g. ex-
emplar images of an object category for object recogni-
tion), T = {Z',..., 77}, 7" € R">wxc with h,w and c
the image height, width and channel dimension (e.g. three
for RGB), respectively, (ii) an N layer network, F'(-) =
{f1(),..., fx(-)}, with f; denoting feature extraction at
layer j, and (iii) a set of n selected layers (a subset of F',
possibly improper), which are to be studied.

A VCC is constructed in three main steps. (i) Image seg-
ments are extracted in the model’s feature space via divisive
clustering to produce semantically meaningful image re-
gions for each selected layer (Sec. 3.1). (ii) Layer-wise con-
cepts, i.e. the nodes of the graph, are discovered in an open
world fashion (i.e. no labelled data is required) via a sec-
ond round of clustering over the dataset of image regions,
independently for each layer (Sec. 3.2). (iii) Edges are cal-
culated that indicate the contribution of concepts from ear-
lier to deeper layers via an approach we introduce, Inter-
layer Testing with Concept Activation Vectors (ITCAVs)

(Sec. 3.3). We use object recognition for the explanation
of the approach; nevertheless, it could be extended to other
tasks in a straightforward way (e.g. semantic segmentation).
An overview of these steps is provided in Fig. 2.

3.1. Feature space image segments

For each selected layer, we produce a set of image regions
that plausibly belong to a concept encoded by the model
at that layer. Previous work produces concept segments
in RGB space, i.e. superpixels or random crops [20, 23];
however, segmentation based on features different from
those over which concepts are to be discovered, i.e. the
model’s deep features, results in the support for the dis-
covery process being divorced from the process that gen-
erated the support. Therefore, our segmentation uses the
same deep features to be used subsequently for concept dis-
covery. Our divisive clustering approach is presented visu-
ally in Fig. 2 (A). We pass the entire set of I input images,
Z, for a given class through the model, F', to get features,
7!, € Rhnxwnxen at each selected layer, n according to

Zow = {fu(TY), ..., fu(TH} = {2}, ..., 2L }. (1)

To extract image segments at layer n for concept discov-
ery (Sec. 3.2), we cluster the image activations, Z,,, con-
ditioned on the clusters (i.e. masks) generated at the next
higher layer, n + 1. Let p = (x,y) index spatial coordi-
nates and B (p;~y) be a binary mask for cluster ~y such that
B! (p;7) =1 <= =z (p) € v; otherwise, B}, (p; ) = 0.

We calculate a set of such masks by applying a clustering
algorithm, C{*7(+), that returns binary support masks for I'
clusters on its argument. Let I',,; be the number of seg-
ments at layern + 1 and 1 < g < I',4+; index a particular
segment, g. For each g we calculate segments at layer n as

{BL(pin},_, = G (7(p) © Blyi(pig)), ()

where ]~3; 41 1s B 11 upsampled to the resolution of layer
n and © indicates spatial element-wise masking applied to
the individual image activations. The element-wise mask-
ing ensures clustering is done on the masked area of z,.
Thus, the support of the concept discovery at layer n comes
from the support of concepts at layer n + 1. Notably, we let
T" vary with g; so, different segments, g, at layer n + 1 can
yield a different number of segments, I', at layer n.

The top-down conditional clustering, (2), is repeated re-
cursively for all image segments in all selected layers. To
initiate the recursion, (2), at the top layer, n;,,, all the fea-
tures are used by setting the number of clusters to be one,
and having ﬁ;,m,,-s-l(p; 1) = 1 for all images.

At each layer, n, we construct a set of RGB segmenta-
tions, M, for use in concept discovery (Sec. 3.2) by apply-
ing upsampled masks, B/, (p;7), to a given image, Z*, via

M., (p;7) =Z'(p) © BL, (p; V), 3)
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Figure 2. The three steps in building a Visual Concept Connectome (VCC). (A) For a given image, Z* € Z, model, F, and layer, n, we
produce a set of image segments, M, € M,,, based on a recursive spatial clustering, C*¢9 (2), of the features z, conditioned on the
clusters from the layer above, n + 1. We then use (3) to generate a set of masked RGB image segments for each layer, M ;. (B) For a given
layer, j, we pass the image segments from all images, M;, through f; and cluster, C°°" (4), these features across the dataset to produce

my; concept centroids, {q;, . ..

,q;-nj }. (C) To measure the contribution of an earlier layer concept, q;-nj , to a later layer concept, q;"!, we

employ our Interlayer Testing with CAV (ITCAV) approach (Sec. 3.3), which uses the Concept Activation Vector (CAV) [29] of the earlier
concept, qu]‘ (that points away from random examples, Z,.,4, but toward concept exemplars, qu ;), and the deeper layer concept, q; .
i j

where M (p;7y) € {0, ..., 255} >wn  with {0, ..., 255}
specifying RGB value. We follow by defining M, as the set
of all RGB image segments at layer n (with each segment
given in terms of (3)), and letting M = {My, ..., M, }.

We instantiate the clustering, C*¢Y, via maskSLIC [28],
an extension of k-means, with an [y norm, that clusters fea-
tures while respecting a mask and automate selection of the
number of clusters via the silhouette method [43].

3.2. Layer-wise concept discovery

Given the dataset of masked image segments for each layer,
M = {My,...,M,}, we follow [23] and bilinearly inter-
polate the segments to the input image size and then pass
the segments through the model to get pre-segmented acti-
vations Zng; = f;(M,) from the layer where the segments
were found in the divisive clustering step (Sec. 3.1). We
pass the image segments (as opposed to using the image ac-
tivations) through the model to remove any contextual infor-
mation before we discover concepts (the segments are set to
zero everywhere outside of the segment boundary). Other-
wise, M; could mix information from outside the segment.

The layer-wise concept discovery step is presented visu-
ally in Fig. 2 (B). With the pre-segmented activations, Zyy,,
calculated for all layers, j, we cluster over the dataset of
segment features for each individual layer to produce clus-
ter centroids (i.e. concepts) according to

Q= {d...

where m; is the number of concepts discovered at layer 7,

L[} = COM(GAP(Zn,)), (@)

GAP is spatial global average pooling and Cﬁ,‘[? is a cluster-
ing algorithm that returns m; cluster centroids. Following
previous work [23], we instantiate C;;’J’_L in terms of standard
k-means, using the /5 norm, and then use a large number of
clusters with subsequent pruning to remove noisy clusters;
see the supplement for details. The output of this stage re-
sults in discovered concepts (i.e. cluster centroids and as-
sociated segments) for all layers as Q = {Qy,...,Q,,} for
the centroids and Mqr_nj their associated RGB segments.
J

3.3. Interlayer concept connectivity

Our approach to quantifying the contribution of discovered
concepts between two layers, Interlayer Testing with Con-
cept Activation Vectors (ITCAV), generalizes TCAV [29].
Specifically, while TCAV calculates the contribution of a
single mid-layer concept to the class logit using a dataset of
labelled concept images, we generalize to operate between
any two layers and without a dataset of labelled concept im-
ages. Without loss of generality, we consider a single pair
of concepts at two layers, which need not be adjacent.

The ITCAV method is presented visually in Fig. 2 (C).
We seek to measure the degree to which a concept at an
earlier layer contributes to a deeper layer. To do so, we con-
struct two vectors: (i) a vector that represents the concept at
the earlier layer, 7, and (ii) a vector that represents a posi-
tive contribution (i.e. gradient) of a concept at a later layer,
l. The closer the alignment of these two vectors, the larger
the contribution of the concept at layer j to the concept at
layer [. Let q;-nj and Mq;nj be the cluster centroid and as-
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Figure 3. Valld(azlon of the three VCC method components. (a) Validation of segment proposals. The relative (Rel.) concept segment
size compared to entire image for a given layer is plotted against the receptive field (RF) width/height of the same layer. (b) Validation of
discovered concepts. For 50 randomly selected ImageNet classes, we discover concepts in four layers of the model. During inference, one
randomly selected concept at each layer is suppressed by a factor of €. (c, d) Validation of interlayer concept weights. The unnormalized
logit sum (LS) scores, (8), for the target class are plotted against the average path strength (APS) scores, (7). A positive correlation implies
that the ITCAV edge weights connecting a concept to the class are predictive of the model output having a higher probability for that class.

sociated RGB image segments in layer j, and let q;" and
Mqlml be the cluster centroid and associated RGB image
segments in a deeper layer [, i.e. [ > j.

We proceed by constructing the vector that represents the
concept in the feature space of the earlier layer, j. To do so,
we employ the Concept Activation Vector (CAV) [29] for
the earlier concept, q’jnj, by training a linear classifier, h(-),
on the features of layer j between positive concept inputs,

fj(M_m; ), and random images, f;(Z,nq). The orthogonal
vector to the hyperplane defined by h(-), denoted as Vyris

is the CAV for concept q;-nj and points in the direction of
concept q;nj in the feature space of layer j.

Next, we construct the vector in the feature space of layer
7 that points in the direction of positive contribution of con-
cept q;,"'. To do so, we calculate V f;(f;(-)), i.e. the gradi-
ent of the deeper concept, ;"' at layer [, with respect to the
earlier layer, j. Our approach to measuring the sensitivity
between the two concepts is then

Sq;nj ’qzﬂl (‘T) = v(”fl(f](‘r)) - 7””2) ’ qu'nj’

where z € M ™ The sensitivity score should be positive

because when the feature at layer j is perturbed in the di-
rection of concept q , i.e. in the direction V el then the

®)

feature vector in deeper layer, [, will be pushed closer to
concept ;"' Following TCAV [29], the final ITCAV edge
weight, e M € E, is the ratio of positive sensitivities,

i o

e m;
7.q

q) ;nl = ‘.Z‘ € Mqlml, : Sq;"j 7qlml (x) > 0’/|Mq;"1 | (6)

Key to our sensitivity score, (5), is the /5 distance be-
tween the output, f;(f;(x)), and cluster centroid, q;", be-
fore taking the gradient, ¢f. CAV [29]. This choice serves
two goals: (i) The subset of dimensions of individual image
features, f;(x), that are not well aligned with the cluster
centroid, q;", will be penalized. This penalty will suppress
the impact of noisy dimensions from individual samples on
ITCAV. We use the l; norm because the employed cluster-
ing approach used during concept discovery, k-means, uses

lo; see Sec. 3.2. (ii) Collapsing the tensor to a scalar (i.e.
a concept similarity score) makes the gradient calculation
computationally feasible compared to the full Jacobian.

4. Experiments
4.1. Implementation details

For evaluation we use ResNet50 [25], VGG16 [48], Mo-
bileNetv3 [26], ViT-b [51] and MViT [18] to sample a broad
range of popular architectures. The exact layers selected are
in the supplement, but always include the last feature layer
before the fully connected layer to probe concepts closest
to the model output. Following previous work [23, 29],
we perform a two-sided t-test on ITCAV scores for mul-
tiple runs of the same concept vs. different random sets of
images to remove statistically insignificant scores and ran-
domly sample from the Broden dataset [3] to get the images,
Z,naq (Sec. 3.3), used in statistical testing and CAV training.
On average, four and all-layer VCCs take 15 minutes and 36
hours, resp., to generate on an NVIDIA Quadro RTX 6000
GPU. The supplement has more details and VCCs for other
layers, models and datasets [52].

4.2. VCC component validation

Segment proposal validation. Our approach segments
concepts based on the feature space of a given layer to allow
us to capture concepts across multiple layers (Sec. 3.1). So,
the spatial support of valid segments at a layer should fol-
low the receptive field (RF) of filters at that layer, as the seg-
ments are constrained by the filters from which they are de-
rived. For comparison, we consider ACE [23], which does
segmentation with a layer independent feature (color), lim-
ited to the input image to discover concepts at a single layer
for a single model. Being directly related to the features at a
layer, our approach should produce concepts that better re-
spect the RF at that layer compared to the baseline, whose
features are layer independent (e.g. at CNN early layers the
RF is small; so, intuitively the patch proposals should be
smaller as well and conversely for the later layers).
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Figure 4. A VCC for three selected layers of a GooglLeNet
model [49] targeting recognition of class ‘Jay’. Darker lines de-
note stronger connection weights.

Figure 3 (a) shows the average concept size (in terms
of the ratio of segment pixels to the entire image) vs. the
RF at the corresponding layer for three different models: (i)
ResNet50 [25], (i1)) VGG16 [48] and (iii) ViT-b [16] (note
we use mean attention distance instead of receptive field for
ViT-b). While the baseline [23] produces segments with
sizes invariant to the layer analyzed, our approach produces
segments with image sizes that scale with the RF. Addi-
tional results with other models (including more transform-
ers) are given in the supplement, which further support this
observation. Overall, it is expected by design and we find
that our segment proposals follow RFs at each layer.

Concept fidelity. Concept fidelity measures the mean-
ingfulness of discovered concepts with respect to the target
model. While other work focuses on single layer concept
fidelity [20, 23, 29], we measure the effect on a model’s
output when suppressing the encoding of concepts as the in-
formation propagates through the model. The expectation is
that suppressing the discovered concepts should result in a
quicker decrease in performance compared to a non-concept
direction (e.g. a randomly selected direction) as the amount
of suppression gets larger. For a given model and category,
we compute the concepts at various layers using our method
(Sec. 3.2). We perform concept suppression for a given im-
age, Ii at a given layer, j, for concept q;, according to
zj = z —€q; / ||a;||2, where € controls the degree of pertur-
batlon If the concepts discovered are meaningful, then the
accuracy for the model’s target class should decrease faster
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Figure 5. Graph metrics on four layer VCCs comparing CNN vs.

transformer architectures and training objectives.
compared to random perturbations, g, 4, as € increases.

Figure 3 (b) has concept suppression results averaged
over 50 randomly selected ImageNet [15] classes (docu-
mented in the supplement), where a concept is randomly
chosen to be suppressed at each layer. Note that the € val-
ues required to reduce the model accuracy to zero differs
by model; so, we scale the € values to [0, 1] for visualiza-
tion purposes. For all models, it is seen that perturbing in
the opposite direction of a recovered concept more severely
impacts the accuracy than a random perturbation.

ITCAV validation. If the interlayer concept connection
weights are meaningful, then the accumulated weights from
earlier to later layer concepts should be correlated with their
probability of predicting the target class. We use this intu-
ition to validate our ITCAV approach to recovering inter-
layer concept weights as follows. We define the average
path strength (APS), a scalar value between zero and one
representing the average strength of the connection between
a concept and the class logit. Given concept q; at layer j,
let there be L layers in the VCC between the concept and
the logit layer; thus, each path from the concept to the logit
consists of L edge weights. We consider all possible paths
in the VCC from this concept to the class logit. Let eq (1, p)
be the edge weight (i.e. ITCAV score) of the p™ path (from
concept q; to the class concept) for VCC layer [. To calcu-
late the APS score for a given concept, we average over all
paths, P, and edge weights in each path to get

L
APS(q;) = Z Zeq]_(l, )] (7)
l:l

p:l
Next, we calculate the logit sum (LS) score for a given con-
cept, q;, by passing all of the corresponding masked seg-
ments, qu , through the model, F'(-). We then sum up the
logit scores for the target class, c, to yield

Mg, |

> FOV e ®)

i=1

LS(‘lj) =

where MZ denotes the i segment mask, and F(-)|. de-
notes the c‘h logit score. If the ITCAV edge weights are
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Figure 6. Graph metrics of all layer VCCs for three diverse ar-
chitectures. Layer number normalized to allow for comparison of
models with different numbers of layers.

meaningful, then there should be positive correlation be-
tween the APS and LS scores, i.e. APS(q) o< LS(q).

Figure 3 (c, d) shows the LS scores plotted vs. the APS
scores for VGG16 [25] and ViT-b [51]. A positive corre-
lation is found between the APS and LS scores for both
architectures. These results suggest that the combination of
ITCAV scores is predictive of whether a concept is repre-
sentative of the target class. The supplement has more LS
vs. APS plots for more models that support these findings.

4.3. Understanding models with VCCs

To demonstrate VCC’s unique ability to interpret models
at different resolutions, we present model analyses in three
parts: (i) qualitative analyses of VCCs generated for a sub-
set of layers as well as at all layers, (ii) quantitative analysis
of VCCs generated for a subset of four layers, (iii) a broad-
ened quantitative analysis to encompass all model layers.

Visualizing concept hierarchies. Figure 4 shows a three
layer VCC for GoogLeNet [49] targeting the class “Jay”.
Notice how the inceptionSb ‘bird’ concepts (c51, c52) form
as selective weighting of inceptiondc concepts background
(c41), bird part (c42, c44) and tree branch (cy3), while the in-
ceptionSb background concepts (cs3, c54) form differently
from weighting of solely inception4c background part con-
cepts (e.g. tree branch (c43) and green leaves (c41)). No-
tably, the network separates subspecies of Jay in the final
layer (e.g. Blue Jay (cs52) and other types (c51)). The con-
cepts found in inception4c are composed from varying com-
binations of colors and parts found in conv3 (e.g. various
bird parts (cs1, c33) contribute to the bird concepts at incep-
tion4c). In the end, both scene and object contribute with
strong weights to the final category.

An all layer VGG-16 VCC visualization was presented
in Fig. 1. As discussed in the caption, hierarchical con-
cept assemblies again are revealed, with both target object
as well as its background contributing to the final classifi-
cation. While both the few layer and all layer visualizations
reveal the concept representations of the models under anal-
ysis, they afford different levels of granularity: Few layer
visualization provides a concise summary with a focus on

ResNet50

Late Layer

Figure 7. VCCs for a CNN (ResNet50) and transformer (MViT)
for the class “Tow Truck’. Shown are only the last two layers with
the class output.

specific layers, while all layer provides very detailed study.

Subset VCC analysis. We begin our quantitative analy-
sis on four-layer VCCs generated for the CNNs and trans-
formers listed in Sec. 4.1. Layers are selected approxi-
mately uniformly (see supplement for exact layers) across
a model to capture concepts at different abstractions. We
use standard metrics for analyzing tree-like data structures
in a per-layer fashion: branching factor (extent to which the
representation is distributed), number of nodes (how many
concepts the model uses to encode a particular class), edge
weights (strength of connection between concepts) and edge
weight variance (variability of connection strength). We
calculate averages over 50 VCCs for 50 randomly selected
ImageNet classes. Results are shown in Fig. 5.

Patterns are apparent in concept numbers and edge
weights: more, but weaker, concepts in early layers vs.
fewer, but stronger, concepts in later layers. These pat-
terns reflect the shared low-level features (e.g. colors, tex-
tures) across classes and more specific features near the
end, which yield larger ITCAV values. Also, CNNs show
a decreasing branching factor, while transformers maintain
a consistent number until the final layer, where all mod-
els converge to about two concepts, typically of an Ima-
geNet class’s foreground-background structure. Transform-
ers have higher final layer edge weight variance compared
to CNN:ss, indicating their ability to better differentiate ear-
lier concepts’ importance in forming later concepts, poten-
tially explaining their superior classification performance
(i.e. all information is not equally valuable). We also com-
pare models (ResNet50 and VGG16) when trained with
self-supervision [11] (SimCLR) or for adversarial robust-
ness, i.e. on Stylized ImageNet [21] (ADV). We observe
that robust and self-supervised models have fewer low-level
concepts and compositionality than the originals, likely as
their training yields less reliance on texture (stylization per-
turbs texture) and color (SimCLR training jitters color).

To examine these patterns further, VCC visualizations
for a CNN and transformer are shown in Fig. 7. Here, we
limit to two (diverse) models and two later layers with class
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Rickshaw VCC
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Tricycle predicted as Rickshaw

Tricycle VCC

Iy

Figure 8. Debugging model failure modes with VCCs. We show an image of a tricycle incorrectly predicted by a ResNet50 as a rickshaw
(middle) as well as the top-down segmentation of the image (Sec. 3.1). We also show the incorrect (left) and correct (right) VCCs.
Following the hierarchy of concepts reveals that the model incorrectly focused heavily on the collapsible hood, starting at Layer 2.

output for space. The connection diversity in the last layer
is indeed observed to be larger for the transformer vs. the
CNN. Notably, over half of the concepts in the CNN cap-
ture background centric concepts, while the transformer has
only a single background centric concept.

All layer VCCs. We present quantitative analyses on all
layer VCCs for three diverse models: (i) a standard CNN,
VGG-16, (ii) an efficient model, MobileNetv3 and (iii) a
transformer, MViT. Averages are taken over 10 VCCs for
10 random ImageNet classes. Results are shown in Fig. 6.
Common trends appear in all models. Concept composition
is non-linear across layers, with branching factor ranging
from 5-15 and converging to approximately two near the
last layers. The peak number of concepts, around 20, is
consistently at 30-40% of network depth and, as in the four-
layer analysis, also converges to two in the final layer.

Edge weights and variances are in accord with the main
findings of the four-layer analysis, but also reveal other in-
sights into the compositional nature of the models. At fine
grained, all layer analysis, each model more readily dis-
plays unique edge weight characteristics: VGG16’s aver-
age weights decrease in later layers, MobileNetv3’s drop
greatly before the final layer and MViT maintains consistent
values. Still, overall these results indicate that penultimate
concepts differ between CNNs vs. transformers, as sup-
ported by our four-layer VCC analysis; see Fig. 5. Higher
variances in initial layers suggest a diverse combination of
concepts, whereas deeper layers indicate a more uniform
composition. Transformers, however, show a variance in-
crease in the final layer, indicating greater compositionality.

In summary, the four and all-layer VCC analyses consis-
tently highlight key aspects of deep networks: (i) Early and
mid-layers use more concepts compared to deeper layers.
(ii) Concept interactions, e.g. ITCAV values and variances,
differ greatly between adjacent layers, as opposed to across
multiple layers. (iii) CNNs and transformers compose con-
cepts differently, especially at the final layers.

5. Application: Diagnosing failure predictions

To show the VCC'’s practical utility, we consider applica-
tion to model failure analysis. Contrasting failure analy-
sis methods that do not explain how errors are made com-
positionally [46] or only offer explanations of single neu-
ron heatmaps [13], VCCs provide insights on compositional
concepts across layers and distributed representations.

Figure 8 shows a ‘Tricycle’ incorrectly classified as a
‘Rickshaw’ by a ResNet50 model, and the corresponding
incorrect VCC (‘Rickshaw’, left) and correct VCC (‘Tricy-
cle’, right). As the image is decomposed using our top-
down segmentation (Sec. 3.1), it is revealed that the major-
ity of pooled segments are closer, in terms of [ distance,
to concepts in the Rickshaw VCC (red outlines) than the
tricycle VCC (green outlines). While the model correctly
encoded the wheel and handlebar portions of the images as
tricycle concepts, the background and collapsible hood con-
cepts are composed from layers two through four as rick-
shaw concepts, which may cause the error. We also note the
lack of other tricycle-specific concepts (e.g. children).

6. Discussion and conclusion

The Visual Concept Connectome (VCC) is a method for dis-
covering human interpretable concepts and their interlayer
connections in a fully unsupervised way. VCCs allow for
the interpretation of deep models at multiple resolutions,
revealing interesting properties via application to a range of
networks. When comparing architecture types, CNNs were
found to rely heavily on final layer concepts for prediction,
while transformers were found to have more diverse con-
nection strengths in the final layer and a more complex as-
sembly of later concepts from earlier ones. We also applied
VCCs to model debugging and showed how the hierarchi-
cal concept representation can indicate how mistakes arise.
Given VCCs generality, our methodology should be appli-
cable to additional networks, tasks and applications.
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