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Abstract

The unprecedented capture and application of face im-
ages raise increasing concerns on anonymization to fight
against privacy disclosure. Most existing methods may suf-
fer from the problem of excessive change of the identity-
independent information or insufficient identity protection.
In this paper, we present a new face anonymization ap-
proach by distracting the intrinsic and extrinsic identity at-
tentions. On the one hand, we anonymize the identity in-
formation in the feature space by distracting the intrinsic
identity attention. On the other, we anonymize the visual
clues (i.e. appearance and geometry structure) by distract-
ing the extrinsic identity attention. Our approach allows
for flexible and intuitive manipulation of face appearance
and geometry structure to produce diverse results, and it
can also be used to instruct users to perform personalized
anonymization. We conduct extensive experiments on mul-
tiple datasets and demonstrate that our approach outper-
forms state-of-the-art methods.

1. Introduction
By making full use of face images, modern AI technologies
have enabled us a more convenient life [9, 24, 39]. How-
ever, this may raise a wide social concern on privacy be-
cause face images are easy to capture but cannot be easily
changed. Although some strict constraints (e.g. laws) were
set up in the last few years [37, 56, 63], the privacy disclo-
sure events continue to emerge one after another.

Anonymization has attracted increasing attention, which
usually has two basic requirements. The first one is to en-
sure identity safety by fighting against re-identification. An-
other is to preserve the data utility, such as image quality,
face detectability, expression and user-defined attributes,
which may vary under different scenarios. Besides protect-
ing the original identity, we also take identity intrusion into
consideration to reduce the risk of bringing troubles for the
others. The kind of technology has multiple advantages,
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Figure 1. Demonstration of our approach for face anonymization.

such as: (1) prevent unauthorized users, organizations and
applications from freely collecting and using personal data;
(2) help people to avoid troubles by blocking the relation-
ship disclosure between identity and the other factors, such
as location, action, event and so on; (3) maintain the data
usability in various applications, like autonomous driving
and remote medical system, without worrying about infor-
mation leakage even if the data were attacked or misused.

Traditional methods (e.g. pixelation and blurring [34,
58]), seem simple and effective for privacy protection, but
may easily damage the image content and quality, result-
ing in poor data reusability (e.g. face may become unde-
tectable). Recently, the generative method (e.g. GAN) show
promising performances on supporting realistic face synthe-
sis [13, 20, 23, 44], which makes it possible to improve im-
age quality and utility preservation. On this basis, many ex-
cellent anonymization trials were conducted from different
viewpoints [1, 3, 6, 18, 19, 25, 29, 37, 43, 49, 50, 55, 65].
However, many of them may suffer from the problem of ex-
cessive change of the identity-independent information to
ensure anonymity, or insufficient identity protection in order
to preserve more data utility. The former may lead to perfor-
mance drop on utility preservation, and the latter may lead
to degraded protection against re-identification or identity
intrusion, which would prevent the existing methods from
achieving a good privacy-utility (PU) tradeoff.

To address the above problem, we present a new face
anonymization approach by exploiting the intrinsic and ex-
trinsic face characteristics for identity attention distraction,
where a deep generative model is employed to synthesize
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anonymous face images. To enable flexible control on
anonymization, we divide the input data into two types, in-
cluding intrinsic identity feature and extrinsic visual clues.
Many works intend to embed additional PU tradeoff con-
strains in their model, but this may increase the difficulty
of model optimization. Differently, we propose to perform
data anonymization in ahead and let the deep generative
model only focus on synthesizing high utility images. Since
attention reflects the intrinsic characteristics of the recogni-
tion process [21, 47, 53, 62, 64], we perform identity feature
anonymization (IFA) by distracting the attention of the orig-
inal identity to let the face recognition model make wrong
prediction. Since the extrinsic face characteristics may at-
tract human attention for re-identification, we perform vi-
sual clue anonymization (VCA) by distracting the identity
attention of visual clues (i.e. visual appearance and geom-
etry structure) that may easily lead to privacy disclosure.
Figure 1 briefly demonstrates the idea of our approach.

Notice that, by proper modeling, IFA can achieve a low
loss of identity independent information for utility preser-
vation. In the meanwhile, VCA can enable users more free-
dom in producing diverse results without significant dam-
agement on data utility. For example, it can support fine-
grained adjustment on geometry structure to support more
effective anonymization, which was rarely considered pre-
viously (e.g. [3, 18, 26, 27, 29, 30, 32, 37, 59, 60]). During
the anonymization process, our approach can enable users
to easily spot what kind of changes were made by compar-
ing input and output, which can be used to instruct users on
how to perform personalized anonymization. In summary,
the main contributions of this paper are as follows:
• We propose a new synthetic face anonymization approach

from the viewpoint of identity attention distraction by ex-
ploiting the intrinsic and extrinsic face characteristics.

• We propose an intrinsic identity attention distraction
method for IFA anonymization in the feature space.

• We propose an extrinsic identity attention distraction
method for VCA anonymization in the visual space.

• We demonstrate that the proposed approach can achieve
state-of-the-art performance with the help of extensive
experiments on different public datasets.

2. Related Works
Class Activation Mapping. Interpretability is very impor-
tant for deep learning based AI systems. Visualization of
CNN predictions has received wide attention to interpret
deep networks [5, 21, 36]. The most relevant approach is
CAM [64] which can highlight class-specific discriminative
regions by mapping the predicted class score back to the
last convolutional layer of a face classification network. In
[47], CAM was generalized to gradient CAM that exhibited
excellent ability in providing faithful visual explanations.
In [30], CAM was used to locate and change the identity-

independent regions and attributes which were utilized to
anonymize face images to fool human instead of machine.
But, in our study, the output of gradient CAM is used as
an indicator to find and recast the identity feature to fool
both human and machine, which can enable us to reduce
the information loss during the anonymization process for
achieving a better privacy-utility tradeoff.

Face Synthesis. GAN has already been used in face im-
age synthesis by playing an adversarial game between gen-
erator and discriminator [20, 23, 41]. In [61], a landmark
driven synthesis method was proposed for talking head gen-
eration. In [28], MaskGAN was proposed for interactive
face image manipulation. In [65], DeepFake was used to
perform face swapping to protect medical video data. In
[31], FaceShifter was introduced to perform face swapping
by focusing on identity transformation, which was further
applied in [3] and [55] to support face anonymization.

Face Anonymization. Along with the unprecedented
application of face images, face anonymization becomes in-
creasingly important and lots of interesting methods were
proposed [3, 6, 14, 18, 27, 30, 32, 33, 35, 37, 40, 42, 50,
55, 59, 60]. [18, 25, 50] relied on inpainting to synthesize
anonymous face. [33, 37, 40, 42] adopted attribute edit-
ing, classifier or control vector to support face anonymiza-
tion. [3, 14, 42] studied the reversible face anonymization
methods based on password or attribute vector. [32, 35, 55]
employed disentanglement or identity perturbation to de-
identify face identity. [1, 6, 29, 60] synthesized anonymous
faces in the StyleGAN latent space. [30, 59] only focused
on fooling human eyes by preserving the original identity.
Different from previous works, we present a new solution
from the viewpoint of identity attention distraction.

3. The Proposed Approach
In this section, we elaborate on our proposed approach.
To alleviate developing complicated generative models, we
propose a very simple two-step based anonymization pro-
cess in Figure 2 (a). Given a face image x, we rely on step1
to preprocess it by using IFA and VCA, and their outputs
are used in step2 to synthesize an anonymous face x̂, where
step1 is only responsible for anonymization, step2 is only
responsible for face image synthesis, and model training
only happens in step2. Under this setting, we are able to
reduce the difficulty of model design and optimization for
processing a complicated privacy-utility tradeoff. Next, we
present the details in several sections.

3.1. Identity Feature Anonymization

In this subsection, we present how to perform identity fea-
ture anonymization in the feature space. As shown in Figure
2 (b), a pre-trained classification network Ψ (e.g. FaceNet
[46]) is employed for identity feature anonymization by
conducting intrinsic identity attention distraction at the last
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Figure 2. Overview of our approach: (a) the flowchart, (b) identity feature anonymization (IFA), and (c) visual clue anonymization (VCA).

convolutional layer (its output is denoted as A). First, the
input data flow goes along the red solid lines to find the
identity related feature maps in A on top of the calculated
CAM heatmap H [47]. Then, the data flow switches to the
black lines after performing attention distraction on A, goes
through Â, and finally output the recasted identity feature
fx for anonymization. Â is calculated from A by distract-
ing the identity attention away from H , where the visual
results of H and Ĥ in Figure 2 (b) illustrate the function of
this operation. Note that the identity of x may be new for
Ψ and, thus, the prediction may be incorrect. But, it does
not matter. We simply employ the pre-trained classes as the
codebook to interpret the identity of any input faces regard-
less of whether these identities were trained or not. The final
softmax output is used as the indicator to determine which
pre-trained identities are more related to x.

Let ci denote the top i-th prediction result (i.e. identity
class) of Ψ. The CAM heatmap of any given class ci can be
calculated as the weighted combining of the forward activa-
tion maps by following [47]

H = ReLU(αciA) = ReLU(
∑
j

αci
j Aj), (1)

where αci
j denotes the neuron importance weight of the j-th

activated feature map Aj , which is calculated by average-
pooling the gradients flowing back

αci
j =

1

Z

∑
k

∑
l

∂yci

∂Aj
kl

. (2)

We analyze the importance of facial features on top of H .
Motivated by the existing studies that some attributes are
critical for identification while the others not [9, 30, 47, 51],
we can reasonably suppose that anonymization can be for-
mulated as a min-max optimization problem by suppressing
the identity dependent attributes and preserving the identity-
independent ones. We model this as an attention distraction
problem by using the identity correlated CAM heatmaps
and enforcing Hci → 0. Then, we have

Â = A+ ξ, s.t. αciÂ = 0 (3)

where ξ is a modulation item. It is an invalid solution by di-
rectly using ξ = −A because the resulting distracted feature
map Â would become meaningless for identity representa-
tion. To solve it, we introduce an assistant matrix Φci to dis-
tract the attention of the identity correlated CAM heatmaps

and define ξ = (αci)TΦci by taking the importance of the
activated feature map into consideration. By substituting ξ
back to Equ. (3), we obtain

Φci = − αciA

αci(αci)T
. (4)

To enhance anonymization, we propose to jointly distract
the top K predictions of Ψ because they may be closely
related to identity representation. We redefine Equ. (3) as

Â = A+

K∑
i=1

wi(α
ci)TΦci , (5)

where wi denotes the contribution of the i-th item.

3.2. Visual Clue Anonymization

In this subsection, we present how to perform visual clue
anonymization by extrinsic identity attention distraction us-
ing both the visual appearance and the geometry structure
in the visual space. One may think of directly replace the
original data q with a completely (or predefined) different
delegate q̂ (e.g. from white skin to black skin) so that no
one can re-identify it, but this may easily damage data util-
ity (e.g. ethnic and expression preservation [18, 29, 37]). A
possible better choice is to sample some q̂ based on q so that
they share more identity independent information than iden-
tity dependent information in a random manner. As shown
in Figure 2 (c), we first introduce an instance-level proba-
bilistic delegate (IPD) sampling method and then use it to
anonymize the visual clues.

IPD Sampling. Given data q, we build a candidate set
Mq by finding its top k-nearest neighbors in the feature
space (e.g. Arcface [8]). For each candidate Xi∈Mq , we
rely on the simple random sampling to obtain a delegate
q̂=Xk∈Mq according to the probability set {P (Xi), 1 ≤
i ≤ size(Mq)|

∑
i P (Xi) = 1}, where P (Xi) is defined by

following the idea of differential privacy (DP) [10, 11, 38]

P (Xi) =
e[ϵu(q,Xi)/(2∆u)]∑

Xj∈Mq
e[ϵu(q,Xj)/(2∆u)]

, (6)

where ϵ is the privacy budget, u is the utility function and
∆u is its ℓ1 sensitivity. Notice that DP received increasing
attention in face anonymization since it can provide a theo-
retically sound privacy protection by adding random pertur-
bation. In previous works, DP is usually used with low-level
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or middle-level data (e.g. pixels [7, 12] and identity features
[6, 32, 55]) by adding Laplace noise. Differently, we gen-
eralize it to perform instance-level data sampling to reduce
the disclosure risk of the identity information.

Visual Appearance Anonymization (VAA). Since the
visual appearance may be correlated with some useful at-
tributes, such as ethnic and age, the significant change of it
may easily damage the data utility. To solve the problem, as
shown in Figure 2 (c), we rely on IPD to sample a delegate
face Za by using the following utility function (i.e. u = ua)

ua(x,Xi) =
maxj d(x,Xj)− d(x,Xi)

maxj d(x,Xj)−minj d(x,Xj)
(7)

so that Za and x would have a high probability to share the
same set of data utility, where d(x,Xj) is the ℓ2 distance
between the features of x and Xj .

Geometry Structure Anonymization (GSA). The de-
tected landmarks [2] are used to describe the facial geome-
try structure Sx of x. Instead of directly modifying the land-
marks (which is a complicated task to make the result look
real), we prefer to perform instance-level anonymization by
replacing Sx with another realistic delegate. As shown in
Figure 2 (c), the process consists of two steps. We first rely
on IPD to sample a delegate S̄x that has the same pose as
Sx by using the following utility function (i.e. u = ug)

ug(Sx, Xi) =
d(Sx, Xi)−minj d(Sx, Xj)

maxj d(Sx, Xj)−minj d(Sx, Xj)
(8)

that tends to sample a more distinct geometry structure.
Since this may violate the original pose and expression, we
then recover them by adjusting the contour and mouth of S̄x

according to Sx and preserving the thickness of the upper
and lower lips of S̄x, resulting in Ŝx. To recover the origi-
nal background, we fuse Ŝx and the background xb of x as
the geometry input Zg . Note that Ŝx is not the same as S̄x,
which would reduce the probability of identity intrusion.

3.3. Conditional Face Synthesis

This subsection focuses on face synthesis. As shown in the
step2 of Figure 2 (a), our generator G takes appearance im-
age Za, identity feature Zid and geometry input Zg as input,
goes through the appearance encoder E and the conditional
translator T to produce a realistic face image x̂.

Appearance Encoder E is adopted to process Za to ob-
tain an appearance feature fa. We realize it by stacking
six ResBlocks [15] and a SumPooling layer [61]. Seman-
tic segmentation [57] is used to obtain the foreground face
image of Za as input, when it is not available, we can ap-
proximately use the detected landmarks to realize this.

Conditional Translator T aims at translating Zg and the
condition input Zc to a realistic face image x̂. We employ
a U-Net like structure to build T by following [20, 45, 61]
via downsampling and upsampling with ResBlocks, where

adaptive instance normalization (AdaIN) [17] is employed
to fuse the identity and appearance information encoded in
Zc which is defined as the fusion of Zid and fa by using
a concatenation (Concat) layer and a fully connected (FC)
layer: Zc=FC(Concat(Zid, fa)). Note that, if the out con-
tour were changed, T would adaptively inpaint the back-
ground so that the generated face could smoothly dissolve
into the original background. Users can realize personalized
anonymization by manipulating Zid, Za and Zg under dif-
ferent scenarios. For example, one can simply use the facial
region of x to preserve the original appearance or attributes.

3.4. Training and Optimization

Let {x, y} be a set of randomly sampled face images, x acts
as the image to be anonymized and y acts as the identity
provider, we present a 1:1 alternative reconstruction and cy-
cle swap-reconstruction strategy for network training. For
the former, x̂ is reconstructed from x, denoted as Zid = fx.
For the latter, we change the identity from x to y and back to
x in a loop, denoted as Zid = fy . The following multi-task
loss function is used to optimize our generator

LAll = λ1L1 + λ2L2 + λ3L3 + λ4L4 + λ5L5 + λ6L6, (9)

where L1 is the adversarial loss, L2 is the feature matching
loss borrowed from [54] to stabilize the training process by
matching the multi-layer features of discriminator D for the
input and output images, L3 is the perceptual loss, L4 is
the appearance loss, L5 is the identity loss, L6 = E[|xb −
gb|1] is the ℓ1 between the background images of x and the
generated image g, and λ1 ∼ λ6 are parameters.

The adversarial loss L1 is defined as

L1 =


LG(x, x̂) + LD(x̂), Zid = fx

β1(LG(x, ŷ) + LD(ŷ))+

LG(ŷ, x̄) + LD(x̄), Zid = fy,

(10)

where LG(x, x̂) = E[max(0, 1+D(x̂, Sx)) +max(0, 1−
D(x, Sx))] is used to optimize the generator G with the
help of D which takes paired data (image,structure) as
input, LD(x̂) = E[−D(x̂, Sx)] is used to optimize D,
x̂ = G(fx, Za(x), Zg(x)), ŷ = G(fy, Za(x), Zg(x)), x̄ =
G(fx, Za(ŷ), Zg(ŷ)). The perceptual loss L3 is defined as

L3 =


E[
∑
i

ρi(x, x̂)], Zid = fx

E[
∑
i

(β3ρi(x, ŷ) + ρi(x̄, x))], Zid = fy,
(11)

where VGG19 and FaceNet [22, 46, 48] are used to calcu-
late ρ1 and ρ2. The appearance loss L4 is defined as

L4 = E[da(x, x̂)] + E[de(x)], (12)

where da(x, x̂) is the ℓ1 distance between fa(x) and fa(x̂),
de(x)=max(0,cos(fa(x), fx)) discourages E from encod-
ing the identity information. The identity loss is defined as
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Figure 3. Intuitive comparison of our approach with the existing anonymization methods, where the first column presents the original faces.

L5 =

{
E[df (x̂, x)], Zid = fx

E[β2df (x̂, y) + df (x̄, x)], Zid = fy,
(13)

where df (x̂, x) = |fx̂− fx|2 is the ℓ2 distance between the
identity features of x̂ and x.

4. Experiments
In this section, we show the performance of our approach
by carrying out comparative study and user study on public
datasets. We also rely on ablation study to show the influ-
ences of each component of our approach.

4.1. Settings

Dataset. Three popular datasets CelebA-HQ [28], Vg-
gFace2 [4] and LFW [16] are used. CelebA-HQ has 30,000
high quality facial images from 6,217 persons, where 5,000
images are used as the test set. VggFace2 has 3.31 million
images from 9,131 persons, where a subset of 5,000 images
from 1,000 identities are used for systematical analysis and
fair comparison. LFW has 13,233 face images from 5,749
individuals, where 1,680 identities have more than one im-
age and we use a subset of 5,000 images from them.

Implementation Details. For pre-processing, we em-
ploy [2] to detect facial landmarks and BiSeNet [57] to per-
form semantic segmentation. We rely on [20] and [61] to
build G and D by stacking ResBlocks. We train our network
to generate 256×256 images by using the Adam optimizer.
We set λ1∼λ4=1, λ5=λ6=β2=2, β1=0.6, and β3=0.8. Our
approach is trained on CelebA-HQ and evaluated on all.

Evaluation Measures. Our approach is evaluated from
the perspectives of privacy protection (anonymization and
identity intrusion) and data reusability. For anonymization,
we calculate re-identification (ReID) rate (in percentage %).

For identity intrusion, we calculate identity swapping (IDS)
rate (%). The pre-trained FaceNet [46] are ArcFace [8] are
used for face verification. The cosine similarity is used for
ArcFace with two thresholds 0.30 and 0.35, and the ℓ2 dis-
tance is used for FaceNet with three thresholds 0.9, 1.0 and
1.1. Face alignment [2] is used to evaluate face detection
rate (%). LPIPS and SSIM [3] are used to evaluate image
quality. Pre-trained classifiers [15] are used to evaluate at-
tribute preservation (%), including expression, ethnic, gen-
der, age and makeup.

4.2. Main Results

We mainly compare our approach with the following repre-
sentative and state-of-the-art (SOTA) methods: CIAGAN
[37], PIFD [3], DeepPrivacy (DP1) [18], DeepPrivacy2
(DP2) [19], LDFA [25], FALCO [1] and Riddle [29].

Qualitative Results. As shown in Figure 3, the suc-
cess of Blurring and Pixlation can be contributed to the de-
struction of image content, which would tell the observers
that the data is under protection. In contrast, the genera-
tive methods not only show excellent anonymization per-
formance but also show higher probability of making the
results imperceptible to observers. DP1 and DP2 may fail
to retain some facial attributes, like expression. CIAGAN
and LDFA may generate distorted faces. PIFD may bring
some artifacts. FALCO and Riddle may lose the facial de-
tails. Compared with the other methods, our results can not
only look realistic but also preserve more original attributes.

Quantitative Results. Since the image content of Pixe-
lation and Blurring is significantly destroyed, we only com-
pare with the generative methods in Table 1. Ours, Rid-
dle [29] and PIFD [3] outperform the other methods on
ReID across different face recognition backbones, espe-
cially when larger thresholds are used, where DP2 exhibits
competitive results. Besides, it is very important to see if
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Table 1. Results on privacy protection: (ReID, IDS). Lower ReID
and IDS rates indicates better performance.

Method ArcFace↓ FaceNet↓

cos >0.30 cos >0.35 ℓ2 <0.9 ℓ2 <1.0 ℓ2 <1.1

CIAGAN (1.7, 93.3) (0.5, 51.4) (0.5, 87.0) (3.2, 99.9) (11.3, 100)
PIFD (0.0, 79.3) (0.0, 19.1) (0.0, 58.6) (0.0, 99.7) (0.0, 100)
DP1 (0.9, 70.9) (0.2, 19.4) (1.2, 73.5) (4.8, 99.9) (15.0, 100)
DP2 (0.5, 78.5) (0.1, 26.4) (0.6, 67.4) (3.7, 99.8) (7.4, 100)
LDFA (4.9, 81.3) (2.1, 33.6) (4.3, 74.6) (15.9, 99.8) (24.8, 100)
FALCO (6.7, 81.8) (2.7, 37.0) (1.4, 83.7) (1.7, 99.9) (5.4, 100)
Riddle (0.0, 72.9) (0.0, 26.2) (0.6, 77.7) (1.2, 99.8) (2.3, 100)
Ours (0.0, 78.1) (0.0, 19.6) (0.1, 34.9) (0.3, 98.1) (1.0, 100)

Table 2. The ReID and IDS results of using the Adaface model.

CIAGAN PIFD DP1 DP2 FALCO LDFA Riddle Ours

ReID 0.7 0.3 0.8 0.6 8.0 18.3 0.4 0.2
IDS 9.0 7.6 6.3 5.0 17.0 12.7 7.2 5.7

Table 3. Results on preserving facial attributes and image quality.

Method Attribute↑ LPIPS↓ SSIM↑
Express. Ethnic Gender Age Makeup

CIAGAN 78.7 46.7 80.9 81.3 74.7 0.558 0.358
PIFD 82.3 48.5 84.4 82.9 63.7 0.124 0.771
DP1 54.8 52.0 84.7 84.4 66.8 0.192 0.785
DP2 59.1 52.6 84.3 85.3 78.9 0.127 0.779
LDFA 76.1 48.8 77.9 78.8 74.2 0.124 0.733
FALCO 82.6 51.8 84.8 86.3 77.6 0.307 0.475
Riddle 77.9 41.8 81.0 84.4 68.9 0.300 0.530
Ours 84.2 51.5 85.1 83.3 80.1 0.120 0.799

there happens identity intrusion after anonymization. CIA-
GAN suffers from the highest IDS rates. Compared with the
best performed PIFD and DP1, our approach obtains com-
petitive results (e.g. 58.6% vs. 34.9% for PIFD and Ours),
which can be contributed to identity attention distraction.
Also, we test another recent AdaFace model [24] for face
verification. According to Table 2, it is easy to observe that
our approach exhibits similar behavior to that in Table 1.

Utility Preservation. We compare the data utility of dif-
ferent methods in Table 3. DP1 and DP2 performs poor
on expression. PIFD, DP1 and Riddle perform poor on
makeup. All these methods perform poor on ethnic. Com-
pared with the other methods, our approach achieves a much
better balance on all items and performs well on preserving
expression and makeup. We also find that, as with SOTA
methods, our approach can also achieve 100% face detec-
tion rate, which also reveals its high data utility.

Diversity and Controllability. As shown in the first two
rows of Figure 4, our approach can produce diverse results
that look different from each other. Besides, we have tried
to add a similar distraction item to Equ(5) to test the diver-
sity of Â by using the bottom j-th prediction (1 ≤ j ≤ 3).
According to the last row of Figure 4, although we can pro-
duce diverse results, the facial expression has changed from

Figure 4. Demonstration of our diverse anonymous results.

Figure 5. Demonstration of our results on controlling the geometry
structures and visual appearances. Each of the top row shows the
employed geometry structures and visual appearance images.

non-smile to smile, which indicates that adding such diver-
sity may affect the data utility. Our approach can also sup-
port flexible anonymization according to user requirements
and practical applications. For example, in Figure 5, we can
produce different anonymous faces by controlling the ge-
ometry and visual appearance inputs, where the influences
of changing the geometry structure is more significant.

Analysis. According to the above results, it is obvious
that achieving high anonymization performance is relatively
easy but it is somewhat difficult to (a) prevent identity in-
trusion and (b) preserve data utility. The reason why (a) is
hard lies in that it is uneasy to ensure the non-existence of
a synthesized identity in reality. The reason why (b) is hard
lies in that identity is closely related to some critical facial
attributes and the change of identity would inevitably lead
to some variations on facial attributes. In Figure 3, 4 and 5,
we can intuitively observe the attribute changes on the faces
(e.g. eye and nose) and they may vary for different persons.
Most existing methods pay much less attention on this and
anonymization is usually achieved at the cost of damaging
too much useful information. Although our approach can
not perform the best all the time, it has achieved a better
privacy-utility tradeoff. This can be mainly contributed to
our anonymization strategy of minimizing the changes on
identity independent attributes. But, our approach still suf-
fers from the drawbacks of well preserving some facial at-
tributes, such as ethnic and eye gaze direction, which are
left for the follow up works.
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Figure 6. The influential curves of identity attention distraction in
the feature space by increasing K from 1 to 10.

Table 4. Ablation study results by removing the key components.

Method ArcFace↓ FaceNet↓ Attribute↑ LPIPS↓ SSIM↑

w./o. IFA (45.5, 54.0) (67.6, 85.8) 88.0 0.085 0.860
w./o. VAA (0.2, 20.1) (0.2, 36.1) 77.2 0.120 0.800
w./o. GSA (0.2, 22.7) (0.1, 36.6) 78.2 0.121 0.810
Full Model (0.1, 19.6) (0.1, 34.9) 76.8 0.120 0.799

Figure 7. Visualization of the distracted CAM heatmaps results by
increasing K from 1 to 7 in Equation (5).

4.3. Ablation Study

In Figure 6, we plot the influential curves for the top K
predictions of the face classification network. With top 1
distraction, our approach can remove over 75% of iden-
tity information. When increasing K, the ReID and IDS
rates keep decreasing and the trend would slow down when
K ≥ 2. The utility preservation performance would de-
crease slightly along with K (see Attribute and LPIPS).
Most of the curves would become almost flat after K ≥ 4.
Thus, we generally recommend to set K vary from 2 to 4 to
reduce the computational costs and the loss on data utility.

In Figure 7, we qualitatively present some visual com-
parison results. With larger K, the CAM heatmap would
focus much farther from the facial parts, especially the eyes.
By comparing the face images before and after feature dis-
traction, one can find some significant changes on the fa-
cial parts (e.g. the nose may vary from small to big or vice
versa) but they may vary for different persons. The results
also show that the joint distraction in Equation (5) would
push some critical facial features or attributes heading to
the opposite direction to realize identity anonymization, but
this may also lead to some other unexpected changes, such
as the age of the first person in Figure 7. This negative effect
may come from the significant change of the identity related
information in A. These observations show that some facial

Figure 8. Visualization of our results before (left) and after (right)
applying IFA. The colored numbers denote different persons.

Table 5. Quantitative performance study on IFA and GSA.

Method ArcFace↓ FaceNet↓ Attribute↑ LPIPS↓ SSIM↑

IFA-Rand (0.5, 22.8) (1.1, 36.1) 79.7 0.111 0.821
IFA-KFN (0.2, 23.1) (0.1, 37.3) 79.2 0.111 0.821
IFA-Ours (0.2, 21.8) (0.1, 36.3) 79.1 0.112 0.819
GSA-Rand (45.5, 89.7) (47.6, 79.1) 79.9 0.117 0.807
GSA-KFN (30.7, 89.9) (56.7, 81.0) 80.2 0.117 0.808
GSA-Ours (43.9, 90.7) (38.5, 83.2) 86.6 0.083 0.853

parts or attributes are critical because they are correlated to
identity representation, and the change of them may more
or less lead to the performance drop on utility preservation.

In Figure 8, we compare the identity features before and
after IFA by using the classical T-SNE embedding [52].
The intra-class differences would increase after identity fea-
ture distraction, but they still exhibit clustering characteris-
tics regardless of some outliers, which would favor utility
preservation. Note that our results can preserve the person-
alized facial attributes according to the status of each image.
For example, as for the 7-th person, our results can still re-
tain the makeup of each instance.

In Table 4, we present the ablation study results by re-
moving the key components. w./o. IFA means removing the
identity input and only using Za as the conditional input.
w./o. VAA means feeding the original face appearance to
Za. w./o. GSA means feeding the original geometry struc-
ture to Zg . IFA can significantly help to reduce the ReID
and IDS rates, but it suffers from performance drops on at-
tribute preservation and image quality. GSA and VAA can
further help to improve the ReID and IDS performance, but
may lead to some drops on utility preservation. We have
also verified the expression recovery in GSA by removing
it and observed a significant performance drop.

In Table 5, we study the performance of IFA and GSA
by using different strategies. IFA-Rand, IFA-KFN and IFA-
Ours denote using random delegate, k-th farthest neighbor
and our method to anonymize the identity feature, respec-
tively. GSA-Rand, GSA-KFN and GSA-Ours denote using
random delegate, k-farthest neighbor and our IPD method
to anonymize the geometry structure, respectively. It is ob-
vious that IFA-Ours and GSA-Ours have achieved a better
balance between privacy protection and utility preservation.

In Equ.(7) and Equ.(8), ua and ug are determined by
jointly considering anonymity and data utility. According
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Table 6. Quantitative performance study on ua and ug .

Methods ArcFace↓ FaceNet↓ AdaFace↓ Attribute↑ LPIPS↓ SSIM↑

w./o. ua (0.0, 19.1) (0.0, 36.2) (0.1, 6.6) 72.3 0.160 0.750
w./o. ug (0.1, 75.1) (0.1, 36.4) (0.7, 5.5) 77.7 0.128 0.784
Ours (0.0, 19.6) (0.1, 34.9) (0.2, 5.7) 76.8 0.120 0.799

Figure 9. Our results (bottom) on the Vggface2 and LFW datasets.

Table 7. Results on Vggface2 (top) and LFW (bottom) datasets.

ArcFace↓ FaceNet↓ Attribute↑ LPIPS↓ SSIM↑

CIAGAN (0.4, 21.6) (1.7, 53.2) 66.0 0.443 0.419
PIFD (0.0, 10.2) (0.2, 38.3) 68.0 0.520 0.363
DP1 (0.4, 39.1) (0.7,76.4) 74.5 0.082 0.891
DP2 (0.0, 14.1) (0.9, 58.7) 62.2 0.479 0.520
Riddle (0.0, 24.3) (0.0, 77.9) 58.8 0.455 0.502
Ours (0.0, 10.7) (0.1, 27.8) 75.6 0.200 0.838
CIAGAN (0.6, 3.9) (1.5, 27.3) 72.2 0.458 0.397
PIFD (0.0, 4.8) (0.3, 8.0) 66.8 0.591 0.314
DP1 (0.4, 8.7) (10.3, 61.6) 79.2 0.077 0.895
DP2 (0.5, 7.3) (8.3, 56.9) 79.6 0.071 0.804
Riddle (0.0, 8.5) (0.1, 43.9) 61.7 0.460 0.428
Ours (0.0, 4.7) (0.7, 16.1) 80.9 0.074 0.895

to Table 6, ua can help to improve the data utility and ug

can help to improve the protection ability.

4.4. Results on Vggface2 and LFW

We show the generalization ability of our approach on Vg-
gface2 and LFW datasets. According to Table 7, most meth-
ods show quite high privacy protection ability (e.g. 0.0%
ReID rate). Our approach outperforms the contrast meth-
ods on attribute, LPIPS and SSIM, which indicates that our
approach has achieved a better privacy-utility tradeoff. Ac-
cording to Figure 9, one can find that the anonymized faces
on both datasets look realistic and different from their orig-
inal versions. These results are in consistent with the re-
sults reported in the previous subsections, which have again
helped to verify the performance of our approach.

4.5. User Study

We conduct a simple user study to verify the performance of
our approach from the perspectives of human. As shown in
Figure 10, we asked around 30 participants to answer two
kinds of questionnaires: for Q1, each anonymized face is
paired with another image of the original face; for Q2, the
top 5 retrieved results are presented. For each of the contrast
methods, we randomly assign each participant: (1) 20 Q1
to calculate the ReID rate of choosing B and C; (2) 20 Q2

Q1 : Are the two faces from the same person?    A. Yes     B. No     C. Not Sure

Q2 : Choose the same person from the right list or answer ‘not appear’.

Figure 10. The employed questionnaires for user study.
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Figure 11. The human evaluation results on ReID and IDS.

from dataset retrieval to calculate the IDS rate of choosing
’not appear’; (3) 20 Q2 from Google retrieval to calculate
the ReID rate of choosing ’not appear’.

As shown in Figure 11, one can observe that: (1) our
ReID and IDS results closely follow CIAGAN, which work
better than the other methods; (2) the IDS rate of all the gen-
erative methods are high (over 45.0%), which may easily
lead to identity intrusion. Since the image distortion would
prevent the observers from correct recognition, it is easy for
CIAGAN to achieve the best performance. This study show
consistent results with that of machine recognizers.

5. Conclusion
In this paper, we present a distinct face anonymization ap-
proach from another viewpoint based on identity attention
distraction. On top of ablation study, we have showed how
and why our approach works. By performing compara-
tive study and user study, we have validated our approach
for improving the performance of privacy-utility tradeoff.
Our approach allows for flexible manipulation of the fa-
cial appearance and geometry structure for more diverse
anonymization and it has also demonstrated the generaliz-
ability in the other datasets. Future work includes explor-
ing the correspondences between the convolutional feature
maps and facial attributes for more effective anonymization,
and exploring how to retain some more complex signal (e.g.
psychological and physiological) hidden in visual data.
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