
GeoChat : Grounded Large Vision-Language Model for Remote Sensing

Kartik Kuckreja1, 2* Muhammad Sohail Danish1* Muzammal Naseer1

Abhijit Das2 Salman Khan1, 3 Fahad Shahbaz Khan1, 4

1Mohamed bin Zayed University of AI, 2Birla Institute of Technology & Science, Hyderabad
3Australian National University, 4Linköping University
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Abstract

Recent advancements in Large Vision-Language Mod-
els (VLMs) have shown great promise in natural image do-
mains, allowing users to hold a dialogue about given vi-
sual content. However, such general-domain VLMs perform
poorly for Remote Sensing (RS) scenarios, leading to inac-
curate or fabricated information when presented with RS
domain-specific queries. Such a behavior emerges due to
the unique challenges introduced by RS imagery. For exam-
ple, to handle high-resolution RS imagery with diverse scale
changes across categories and many small objects, region-
level reasoning is necessary alongside holistic scene inter-
pretation. Furthermore, the lack of domain-specific mul-
timodal instruction following data as well as strong back-
bone models for RS make it hard for the models to align
their behavior with user queries. To address these lim-
itations, we propose GeoChat - the first versatile remote
sensing VLM that offers multitask conversational capabil-
ities with high-resolution RS images. Specifically, GeoChat
can not only answer image-level queries but also accepts
region inputs to hold region-specific dialogue. Further-
more, it can visually ground objects in its responses by re-
ferring to their spatial coordinates. To address the lack
of domain-specific datasets, we generate a novel RS mul-
timodal instruction-following dataset by extending image-
text pairs from existing diverse RS datasets. We establish
a comprehensive benchmark for RS multitask conversations
and compare with a number of baseline methods. GeoChat
demonstrates robust zero-shot performance on various RS
tasks, e.g., image and region captioning, visual question
answering, scene classification, visually grounded conver-
sations and referring detection. Our code is available here.

1. Introduction
In the natural image domain, the abundance of aligned
image-text data sourced from web imagery or manual anno-
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Grounded Image Captioning
USER: Describe the image in detail.
ASSISTANT: The image depicts a scene with
multiple buildings, houses, trees, and small
vehicles. There are 10 tennis courts visible in the
image…..

Visual QA
USER: How many
tennis courts are
visible?
ASSISTANT: 10
tennis courts are
present in the image.

Region Based 
Captioning

USER: What is the
object present here?
ASSISTANT: A
white small car.

Multi-turn Conversation
USER: How many tennis courts are there in the image?
ASSISTANT:…………..
USER: Can you describe the surroundings of the tennis courts?
ASSISTANT: The tennis courts are surrounded by multiple
buildings and houses. There are also cars parked nearby.
USER: ……
ASSISTANT:…..

Referring Expression
USER: Tennis court at
the bottom left.
ASSISTANT: Tennis
court at the bottom
left.

Scene Classification
USER: Is this a rural
or an urban area?

ASSISTANT: This
is an aerial view of an
urban area.

Figure 1. GeoChat can accomplish multiple tasks for remote-
sensing (RS) image comprehension in a unified framework. Given
suitable task tokens and user queries, the model can generate visu-
ally grounded responses (text with corresponding object locations
- shown on top), visual question answering on images and regions
(top left and bottom right, respectively) as well as scene classifi-
cation (top right) and normal natural language conversations (bot-
tom). This makes it the first RS VLM with grounding capability.

tations facilitate effective self-supervised vision-language
modeling, as demonstrated by multimodal GPT-4 [23] and
open-source initiatives like LLaVA [19]. These vision-
language models (VLMs), developed through generative
pretraining and instruction-tuning, exhibit robust zero-shot
task completion across various user-oriented multimodal
tasks. The resulting capabilities open the door to the de-
velopment of versatile multimodal conversational assistants
with broad applications in real-world scenarios [12].

However, general-domain VLMs designed for natural
images, exhibit poor performance when presented with re-
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motely sensed visual imagery. The performance disparity
arises primarily from the distinct nature of content found
in remote sensing image-text pairings compared to the pub-
licly available web data. As a result, general-domain VLMs
can provide inaccurate information or hallucinate when pre-
sented with spatial images from RS sensors. Although there
has been significant progress in the field of remote sensing
visual question answering (VQA) [39, 41], earlier meth-
ods have framed the task as a classification problem. Here,
the model chooses answers from predetermined responses
found in the training data. It limits their applicability to
open-ended answer generation and instruction-following.

In this paper, we introduce GeoChat, an attempt to
extend multimodal instruction-tuning to the remote sens-
ing domain for training a multitask conversational assis-
tant. However, remote-sensing domain lacks a multimodal
instruction-tuning conversational dataset. Inspired by re-
cent work in instruction-tuning [14, 19, 29, 42], GeoChat
uses Vicuna-v1.5 [7] and an automated pipeline to generate
diverse remote sensing multimodal instruction-following
data comprising of nearly 318k instructions. We create
the image-text pairs from various existing remote sensing
datasets developed for diverse tasks. These includes LR-
BEN for VQA [20], NWPU-RESISC-45 for scene classifi-
cation [5] and SAMRS for object detection [31].

A crucial capability of GeoChat is the unification of mul-
tiple image and region-level reasoning tasks for RS imagery
within a single pipeline (see Fig. 1). We achieve this via
distinct task tokens that help suitably direct the model’s re-
sponses according to user requirements. In addition, the
model uses spatial location representations in its inputs to
seamlessly reason about local regions and can also generate
object locations in its responses to visually ground objects.
This enables a diverse set of tasks possible with GeoChat
including referring expression detection, image/region cap-
tioning, scene classification, natural language conversations
and VQA, besides visually grounded conversations.

In summary, this work has the following contributions:
• RS multimodal instruction following dataset. We present

a novel data generation pipeline, to leverage existing ob-
ject detection dataset [31] to create short descriptions of
the images, followed by using Vicuna-v1.5 [7] to cre-
ate conversations using the generated text alone. Further,
we add visual question-answering and scene classification
abilities using their corresponding datasets [5, 20]. This
results in a total of 318k instruction pairs for RS domain.

• GeoChat. Leveraging our dataset, we finetune LLaVA-
1.5 [14] to create the remote sensing-domain vision-
language model - GeoChat. Our LoRA [11] fine-tuning is
efficient and avoids forgetting the necessary context em-
bedded in fully-tuned LLaVA model, whose MLP pro-
jection is trained to align images into the word embed-
ding space of the LLM (Vicuna-v1.5 [7]). This allows

GeoChat to retain the conversation and instruction follow-
ing abilities of LLaVA and extend its domain-knowledge
to remote sensing tasks.

• We also address the lack of evaluation benchmarks to as-
sess the capability of existing VLMs on remote-sensing
conversations. To this end, we setup evaluation proto-
cols for conversation grounding in RS, as well as a setup
a suite of tasks to allow comparisons with future efforts
in this direction. We show various supervised as well as
zero-shot evaluations for different remote sensing tasks,
including image captioning, visual question answering
and scene classification to demonstrate the generalisabil-
ity of GeoChat conversational VLM.

2. Related Work
Large Vision-Language Models. The typical architecture
of instruction-following Vision Language Models (VLMs)
consists of utilising a pre-trained visual backbone[9] to en-
code visual data, a large language model [7] for interpreting
user instructions and generating responses, and a vision-
language cross-modal connector, e.g., a linear projection
layer [18, 42] or an MLP [17], for fusing visual information
with language models. The results achieved with VLMs
show great promise; for example, LLaVA [18], Instruct-
BLIP [8], Otter [13] and MiniGPT-4 [42] show remarkable
gains in language instruction following and visual reasoning
ability for natural scenes. More recent studies have shown
that these models can be adapted to other domains such as
videos [22], biomedical [14, 30] and remote sensing [12].
Remote Sensing VLMs. The application of generalized
VLMs in remote sensing is comparatively sparse. The ma-
jority of research so far has neglected the semantic under-
standing of the items and their relationships towards a deep
visual comprehension. Beyond merely identifying the ob-
jects in an image, vision-language models are also capa-
ble of generating natural language descriptions of the im-
age and inferring the connections between the objects. This
makes them more appropriate for tasks like text-based im-
age retrieval, captioning images, and answering visual ques-
tions that call for both visual and linguistic knowledge. Al-
though there has been progress in vision language models
for remote sensing tasks, such as image captioning [43],
zero-shot classification [16] and visual question answering
[3, 39], these models can only perform a specific task they
are trained for, lack conversational capability and do not
possess generic semantic knowledge about the remote sens-
ing images. A major gap exists in the remote sensing do-
main towards developing general-purpose models to solve
all tasks together, while also maintaining conversation abil-
ities. While RSGPT [12] is an initial effort that has shown
good conversation ability along with solving multiple tasks,
it requires finetuning the model for each task separately,
which makes it cumbersome and not generalizable. Fur-
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ther, RSGPT cannot work for region-level reasoning or vi-
sual grounding, which our work aims to address.

3. GeoChat: Grounded Remote Sensing VLM
Visually grounded conversations for remote sensing aim to
generate textual responses interleaved with corresponding
object locations. Further, a user can also provide visual
prompts (e.g., a bounding box) besides natural language
questions, and the model should be able to answer questions
about the specified Region of Interest (RoI). Such seamless
interplay between visual and language modalities necessi-
tate a deep comprehension of linguistic constructions that
denote particular objects or elements in a visual scene.

As mentioned above, GeoChat is the first model capable
of holding visually grounded conversations about remotely
sensed images. By construction, GeoChat can address not
only the challenging task of visually grounded conversa-
tions, but can also perform a spectrum of other spatial rea-
soning tasks that span varying levels of granularity in vi-
sual imagery understanding e.g., image/region captioning,
referring object detection and image/region-level conversa-
tions about remotely sensed images. We formally outline
the tasks possible with GeoChat below.

a) Image-Level Conversation Tasks. In this task,
GeoChat processes an image x and a user text query q with-
out any specific spatial coordinates in its inputs or outputs.
The goal is to perform conversation-based tasks at a holistic
level with image-wide context, such as visual question an-
swering (VQA), scene classification and image captioning.

b) Region-Level Conversation Tasks. This task in-
volves providing spatial box locations b in the input to
GeoChat besides x and q. Region locations b guide the
model’s attention to specific regions within the image, so
that the model can perform tasks such as region-level cap-
tioning, region-specific VQA or multi-turn conversation.

c) Grounded Conversation Tasks. With the use of spe-
cial tokens, termed as task-specification tokens t, GeoChat
can be guided to provide object locations at different gran-
ularities, while maintaining conversation abilities. It helps
in tasks including grounded image captioning/conversation,
object grounding and referring expression detection.

3.1. GeoChat Architecture

GeoChat follows the architecture as of LLaVA-v1.5 [17],
which consists of three core components, i) Global Im-
age encoder, ii) an MLP adaptor (two linear layers) and
iii) LLM. Different to LLaVA, we add specific task prompt
that indicates the type of task desired from the model i.e.,
grounding, image-level or region-level conversations. Ad-
ditionally, we allow spatial positions within both inputs and
outputs, enabling visual prompts as inputs and grounded
objects in GeoChat outputs. Notably, the original LLaVA
model cannot perform object grounding or accept region

Data Size Response formatting prompts

Detailed Description 30k Describe the image in detail.

Multi-Round Conversation 65k -
Complex Questions 10k -

RSVQA-LRBEN[20] 56k Answer the question using a single word or phrase.
NWPU-RESISC-45[5] 31.5k
Floodnet[25] 4k

Grounding Description 25k [grounding] Describe the image in detail.
Region Captioning 40k [identify] {bx left, by top, bx right, by bottom|θ}
Referring Expression 45k [refer] < p > Object < /p >

Table 1. Instruction following data used to train GeoChat. Instruc-
tion types and format are shown. We use a 308k set for training
and a separate 10k instruction-set for testing.

inputs. Further, the original LLaVA can not reason about
remote sensing images which is enabled via our domain-
specific dataset. We describe each component in the archi-
tecture as follows:

Task Token: The unique quality of GeoChat is its abil-
ity to easily switch between different types of remote sens-
ing visual interpretation tasks. To eliminate uncertainty
among tasks, our approach assigns a unique task identifi-
cation to each one. We suggest three distinct task identities,
t ∈{grounding, identify, refer}, each for grounded con-
versations, region captioning and referring expression com-
prehension. As for the case of visual question answering
and scene classification, we directly ask the model to out-
put the answer in a single word or phrase, as shown in Ta-
ble 1. Our approach does not employ any task identifica-
tion tokens for vision-irrelevant commands. This unified
approach is supported by a modular design that efficiently
integrates spatial data, giving the model flexibility in its rea-
soning about visual content.

Spatial Location Representation. Our model must pre-
cisely identify the spatial position of the referenced items
for tasks such as grounded conversations, referring expres-
sion generation, and comprehension. To this end, we repre-
sent the box locations in a textual format to express the ge-
ographical position: b = {bx left, by top, bx right, by bottom|θ}.
Here, bx left, by top denote the top left corner point of box
while the bx right, by bottom represent the bottom right corner
coordinates. The angle θ represents the angle of rotation for
the bounding box, from the lower edge. Numerical values
normalised within the interval [0, 100] are used to represent
the x and y coordinates. Region locations in this format are
used to interact with the model via its inputs and outputs.

Visual Backbone. GeoChat adapts the pretrained vision
backbone of CLIP-ViT(L-14) [28], which has an input res-
olution of 336×336. This results in effectively 576 patches
per image. Since this resolution is not sufficient to un-
derstand details presented in remote sensing imagery (e.g.,
small objects and object details), we interpolate the posi-
tional encoding in the transformer-based CLIP [28] model
to scale with input image sizes of 504×504. Although this

327833



Large Language Model🔥

MLP Adaptor ❄

CLIP-ViT❄

<im_end> [task specific prompts] <im_start>

[USER]: [identify] What is 
present in this area?

[USER]:[refer] Football 
ground on the right side, 

surrounded by trees.

Referring Expression Image DescriptionRegion  captioning Visual QA

Sure!
A basketball 
field at the bottom of the 
image.

[USER]:Can you please 
describe the image in detail?

The image is an aerial view of 
a sports complex, with two
football grounds at the center 
and one basketball ground at 
the bottom. The football 
grounds are surrounded by 
trees…….

[USER]: How many football 
grounds and basketball 
courts are present in the 
image? There are two 

football grounds 
and one 
basketball ground 
present.

<System Message>
A chat between a curious 
human and an artificial 
intelligence assistant. 
The assistant gives 
helpful, detailed, and 
polite answers to the
human's questions..
 

Figure 2. An overview of GeoChat - the first grounded large vision-language model for remote sensing. Given an image input together
with a user query, a visual backbone is first used to encode patch-level tokens at a higher resolution via interpolating positional encodings.
A multi-layer perceptron (MLP) is used to adapt vision-tokens to language space suitable for input to a Large Language Model (Vicuna
1.5). Besides visual inputs, region locations can also be input to the model together with task-specific prompts that specify the desired task
required by the user. Given this context, the LLM can generate natural language responses interleaved with corresponding object locations.
GeoChat can perform multiple tasks as shown on top e.g., scene classification, image/region captioning, VQA and grounded conversations.

leads to an increase in the number of patches to almost dou-
ble (i.e., 1296 per image), this enhanced resolution allows
us to handle larger image sizes and also supports better vi-
sual grounding in high-resolution RS images.

MLP Cross-modal Adaptor. From the frozen CLIP-
ViT[28], we project the output tokens (∈ R1296×1024) with
dimensions 1024 onto the language model space, using an
MLP adaptor with one hidden layer. The adaptor has an
input dimensionality of 1024 and outputs a vector of size
4096, corresponding to the input size of the LLM [7]. A
GeLU [10] is used as the activation function.

Large Language Model. The open source Vicuna-
v1.5(7B) [7] large language model is utilised as the founda-
tion for GeoChat. The language model functions as a single
interface for diverse vision-language inputs in our frame-
work. To accomplish different vision-language tasks, we
directly depend on the Vicuna-v1.5(7B) [7] language to-
kens. We explicitly interact with the language model to
construct textual representations of bounding boxes to ex-
press their spatial coordinates for the visual grounding tasks
that require the production of spatial locations. Similarly,
the safe, aligned and effective behavior of LLM is ensured
via system prompts appended together with given inputs. A

[USER] <im_start> Image Features <im_end> [Task Identifier] [ASSISTANT]

Figure 3. Multi-task instruction template for GeoChat.

Low-Rank Adaptation (LoRA) [11] based strategy is used
for fine-tuning the LLM. While training, instead of finetun-
ing all of the weights that comprise the weight matrix of the
pre-trained Vicuna-v1.5[7], we finetune two smaller matri-
ces in LoRA [11] that approximate the original larger ma-
trix. After that, the fine-tuned adaptor is fed into the pre-
trained model and utilised for inference. The LoRA adap-
tation ensures faster training and avoids forgetting original
knowledge embedded in the LLM trained and fine-tuned on
generic natural language instructions. This is an important
feature since it allows the model to bring in external con-
text about generic object types, landmarks and affordances
in the remote-sensing reasoning framework of GeoChat.

3.2. Training Details

To enhance the effectiveness of our model on general visual
tasks and optimize training efficiency, we employ a strat-
egy that involves initializing the network with pre-trained
weights and fine-tuning specific segments for remote sens-
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MultiTurn Conversation
USER: Where is the white ship
present?
ASSISTANT: White ship is
present at the top left.
USER: What is the color of the
ship anchored at the harbor?
ASSISTANT: The ship anchored
at the harbor is grey in color.

Complex Reasoning
USER: What does the presence of
4 harbors and 2 ships indicate?
ASSISTANT: The presence of 4
harbors and 2 ships constitute a
bustling maritime environment. The
presence of such harbors may
indicate a water area with the
possibility of export /imports of
goods as well as tourism.

Detailed Description
USER: Please Describe the image in
detail.
ASSISTANT: This satellite image
shows depicts a river scene with
multiple ships and harbors present.
There are a total of two ships and
four harbors. The grey ship at the
bottom right is anchored to the
harbor………..

Grounded Description
USER:[grounding] Describe the
image in detail.
ASSISTANT: This satellite image
depicts a grey ship anchored at a
large harbor. There is another
harbor at the top right, which is
adjacent to some trees. There is
another white ship close to a
harbor at the right.

LLM

Object Attributes and Relationships
1. Ship {white,small,top-left}, {grey, small, bottom-right}
2. Harbor {small, right}, {large, bottom-left}, {small, top right}, {small, left}
3. Trees {top-right}.

Referring Expression
1. Small Grey ship anchored at large harbor on bottom-right
2. Some Trees at the top-right.
3. White ship at the top of a small harbor on the right.

Region Captioning
1. Object located at {}.
2. Size of object at. {} is small.

Figure 4. Types of annotations available in the GeoChat instruction-set. Top-row: For a given RS image, we obtain object attribute and
relationship information, referring expressions and region captions along with their corresponding region annotations (shown over the
image). Bottom-row: This structured information is used to create the rich instruction-set with a total of 318k image-instruction pairs.

ing related tasks. We use a pre-trained CLIP-ViT(L-14)
encoder[28],trained on large amounts of textual and visual
data, a pretrained MLP adaptor[17], pretrained on a 558K
subset of the LAION-CC-SBU [26] dataset with BLIP [15]
captions, and Vicuna-v1.5[7] to initialize our model. To
adapt our model to remote sensing images, we subsequently
LoRA [11] fine-tune the LLM , while keeping the MLP
adaptor and the CLIP encoder [28] frozen during training.

4. RS Multimodal Instruction Dataset

By using LLM Vicuna [7], we align the model to follow
a range of instructions by presenting and curating varied
instruction-following data with multi-round conversations
regarding remote sensing imagery (Table 1). We specifi-
cally provide system instructions as prompts that ask Vi-
cuna [7] to generate multi-round question and answer pairs
in a manner as if it could visualize the image (although it
only has access to the text). This is achieved by providing
few-shot in-context examples manually composed within
the prompt to show Vicuna [7] how to build high-quality
instruction-response pairs based on the caption and infor-
mation supplied. Specifically, from our short descriptions
created using the below pipeline, we randomly sample 65k
images to create multi-round conversations, 10k images to
generate complex question answers and 30k images to gen-
erate detailed descriptions for the given short descriptions.

In combination, after conversion to instruction format,

we obtain a total of nearly 308k image-instruction pairs
for training and 10k for testing. Next, we outline the
instruction-set creation process.

Dataset Category # Classes # Images Image Size

DOTA Object Detection 18 17,480 1024 × 1024
DIOR Object Detection 20 23,463 800 × 800
FAIR1M Object Detection 37 64,147 600 × 600
LRBEN(rsvqa) Visual Question Answering - 600 256 × 256
Floodnet Visual Question Answering - 4056 3000 × 4000
NWPU-RESISC-45 Scene Classification 45 31,500 256 × 256

Table 2. List of datasets used to creat our remote-sensing instruc-
tion set for GeoChat VLM training. We include object detection,
visual question answering and scene classification datasets with
varying image sizes and types of classes to ensure diversity.

Constituent Datasets: In the compilation of our in-
struction set, we incorporate three distinct types of datasets,
encompassing the ones designed for object detection,
scene classification, and visual question answering (VQA).
Specifically, we integrate three object detection (DOTA
[35], DIOR [6], and FAIR1M [27] which together form
the SAMRS [31] dataset), one scene classification (NWPU-
RESISC-45 [5]), one VQA (LRBEN[20]), and one flood
detection [25] VQA dataset (see Table 2). The object detec-
tion datasets allow region-level reasoning capability as they
offer segmentation masks along with bounding boxes.

Addition of Missing Classes: Although a wide vari-
ety of object classes are included in the object detection
databases, several essential categories like buildings, roads,
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Give bounding box for the Boeing 
747 at the bottom left.

Sure!

In the satellite image,
there are four baseball
fields located near some
buildings at the center of
the scene. The baseball
fields are arranged in a
close proximity to each
other.

[grounding] Please describe the 
image in detail.

Yes, the road at the center is 
completely flooded.

Is the whole road flooded?

How many buildings are flooded?

Three buildings are flooded and are 
present at the top left.

Figure 5. Qualitative results of GeoChat. (left-right) Results are shown on grounding, referring object detection, and disaster/damage
detection. The user can provide task-specific tokens (e.g., [grounding]) to shape model responses according to the desired behavior. The
model can generate textual responses (right), only visual grounding (center) and both text and object groundings interleaved together (left).
The model can also specify object types, object counts, object attributes and object relationships.

Attribute Example

a1 category (e.g. “plane, ship”)
a2 color (e.g. “gray, white”)
a3 relative size (e.g. “small, large”)
a4 relative location (e.g. “top right, bottom”)
a5 relation (e.g. “parked at, driving through”)

Table 3. List of attributes collected for objects. Attributes are used
to obtain referring expressions e.g., small-sized plane to the left.

Categories Example

Ships and Harbors (e.g. “anchored at, parked at”)
Track Field and Soccer Field (e.g. “Surrounded by, Inside”)
Vehicles, Bridge, Road, Roundabout (e.g. “passing through, passing through”)
Vehicles and Building (e.g. “parked”)
Airport and Plane (e.g. “parked”)
Ship and Helipad (e.g. “on, contains”)

Table 4. Example of relationships between different objects used in
the proposed instruction dataset.

and trees are missing. To address this, we propose to uti-
lize ViTAE-RVSA [32] model, pre-trained on the LoveDA
dataset [33], which encompasses the required important
classes. The model [32] is used to infer these classes on
the SAMRS [31] dataset, yielding pseudo labels. To miti-
gate potential noise in these predictions, we remove the pre-
dictions of ViTAE-RVSA [32] for which we already have
ground truth from the SAMRS [31] dataset to refine the re-
sults.

Attribute extraction: For referring expression annota-
tions, it is important to derive a variety of attributes in RS
images. To this end, we have selected five distinct types of
attributes, as outlined in Table 3. Object category informa-
tion can be directly obtained from the SAMRS dataset. For
color extraction, we use the K-Means clustering algorithm.
Specifically, we extract the object’s pixels from the image
using ground-truth box and cluster them into K groups. The
center of the largest cluster is then selected as the object’s
color. To specify the relative size of the object, we catego-
rize objects into three sizes: small, normal, and large. This
categorization is determined by measuring the area of all in-

stances of a class in the entire dataset and assigning the 80th

percentile as the large label. Similarly, the 20th percentile
is designated as small size, with the remaining falling into
the normal category. To determine the object’s relative po-
sition within the images, we partition the entire image into
a 3×3 grid, defining regions such as Top Right, Top, Top
Left, Left, Center, Right, Bottom Right, Bottom Left, and
Bottom. Based on the object’s center pixel coordinates, we
assign its relative position accordingly.

To define the relation between objects in a given image,
we group different objects based on their distance between
the bounding boxes, and for each sub-graph, we assign dif-
ferent relationships between objects based on their class la-
bels. Table 4 presents various examples of object relation-
ships. To establish relationships like “surrounded by,” we
cross-reference pixel-level coordinates to verify if one ob-
ject is entirely contained within another object.

Expression Generation: To emulate natural language
expressions, we employ predefined textual templates based
on [40]. The phrase template encompasses the attributes
{a1, . . . , a5} from Table 3. The expression for a group of
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Model UCMerced AID

Qwen-VL [1] 62.90 52.60
MiniGPTv2 [4] 4.76 12.90
LLaVA-1.5 [17] 68.00 51.00
GeoChat 84.43 72.03

Table 5. Zero-shot scene classification accuracy comparison on
AID [34] and UCMerced [36] datasets. In comparison to other
generic VLMs, GeoChat performs favorably well.

objects of the same class is formulated as:

”The/A ⟨a3⟩ ⟨a2⟩ a1⟨ in/on the a4⟩ .”

Attributes that may be absent are enclosed in 〈〉, and at-
tributes {a2, a3} can be arranged in any sequence.

Similarly, the sentence template incorporates the rela-
tional attributes a5 to establish connections between two
objects through this structure:

”The/A ⟨ai3⟩ ⟨ai2⟩ ai1 ai5 aj1⟨ in/on the aj4⟩.”

Here, the indicies i and j represent the ith and jth object.
Visual Grounding: Although referring expression

datasets are available in the natural image domain [37, 38],
they lack for the remote sensing domain. To this end, we
use our short descriptions as referring expressions to cre-
ate three different kinds of question answering pairs, i.e.
grounding image description, referring expression, and re-
gion level captioning, as described in Table 1.

5. Experiments
5.1. Implementation Details

We initialize the weights of our model with the pretrained
CLIP-ViT [24], and LLM (Vicuna-v1.5 [7] and apply LoRA
[11] finetuning. Utilizing LoRA, we refine the parameters
Wq and Wv through low-rank adaptation, with a designated
rank r set to 64 in our implementation. The model under-
goes training consistently at an image resolution of 504 ×
504 throughout the whole process. Each training step incor-
porates specifically crafted multi-modal instructional tem-
plates designed for a variety of vision-language tasks during
the training process. We use AdamW [21] optimizer with a
cosine learning rate scheduler to train our model. We keep
the global batch size as 144. We train our model in two
stages, first, we train using all of our datasets for 1 epoch,
correspondingly 2144 steps, followed by stage 2, where we
only train on the grounding dataset for 1600 more steps(at
128 batch size).

5.2. Scene Classification

Datasets for evaluation. For scene classification, we eval-
uate our model using AID [34] and UCMerced [36]. AID

Method Presence Comparison Rural/Urban Avg. Accuracy

LLaVA-1.5[17] 55.46 68.20 59.00 62.77
Qwen-vl-Chat [1] 38.57 67.59 61.00 55.35
MiniGPTv2 [4] 55.16 55.22 39.00 54.96

RSVQA[20] 87.47 81.50 90.00 86.32
EasyToHard[39] 90.66 87.49 91.67 89.94
Bi-Modal[2] 91.06 91.16 92.66 91.63
SHRNet [41] 91.03 90.48 94.00 91.84
RSGPT[12] 91.17 91.70 94.00 92.29

GeoChat 91.09 90.33 94.00 90.70

Table 6. Comparisons with general zero-shot (top) and RS-VQA
specialized (middle) models on RSVQA-LRBEN [20] dataset for
VQA task. [1, 4, 17] are evaluated in zero-shot setting. GeoChat
outperforms other zero-shot models and performs competitively to
SoTA-supervised models like RSGPT which are specifically fine-
tuned on target dataset (while ours is a generic model not specifi-
cally finetuned on target dataset).

[34] is a large-scale aerial image collection compiled from
Google Earth imagery, with 30 classes, such as a river,
dense residential area, etc. The images are labeled by spe-
cialists in the field of remote sensing image interpretation.
In total, the AID [34] dataset has 10,000 images within 30
classes. The images have been taken from different coun-
tries as well as different weather conditions. For evaluation,
we use a 20% split of the AID [34] dataset. UCMerced [36]
is a Land Use scene classification dataset, with 2,100 im-
ages and 21 classes. Each image is of size 256×256. We
use the whole UCMerced [36] dataset as a zero-shot test set.

Results. We prompt the models with all of the
classes and prompt to classify the image using just one
word/phrase. For example, we input a prompt like ”Clas-

sify the image within one of the given classes: dense

residential area, . . . , school. Answer with one

word or short phrase.”. We calculate zero-shot accu-
racy on both AID and UCMerced. GeoChat significantly
outperforms other VLM’s with an accuracy of 84.43% on
UCMerced [36] and 72.03% on AID [34], as presented in
Table 5. Notably, the recent MiniGPT-4-v2[4] fails to fol-
low the instructions provided for this specific task and re-
turns unrelated classes that are not a part of the dataset. It’s
accuracy is close to 5% if we pass the answers from Vicuna-
v1.5 [7] and ask it to check if the output sentence refers to
the ground truth class or not. In comparison, Qwen-VL and
LLaVa-1.5 perform well in instruction following, but fall
short to GeoChat, due to lack of domain knowledge.

5.3. Visual Question Answering

Datasets for evaluation. RSVQA-HRBEN [20] comprises
10,569 high-resolution photos and 1,066,316 question-
answer pairs, with 61.5%, 11.2%, 20.5%, and 6.8% di-
vided into training, validation, test 1, and test 2 sets, re-
spectively. This dataset has three question types: presence,

727837



Model Small Medium Large Single-object grounding Multi-object grounding [refer] [grounding] Overall

MiniGPTv2 [4] 1.7 9.9 21.9 9.1 3.6 8.2 2.6 7.6
GeoChat 2.9 13.6 21.7 16.0 4.3 10.5 11.8 10.6

Table 7. Performance (acc@0.5%) comparison of GeoChat on our benchmark. Small, medium and large refer to the size of the objects
based on the bounding box area. Single/multi-object refer to how many objects the question asks the model to predict. [refer]: object
referenced using one attribute from a2, a3 or a4 in Table 3. [grounding]: objects referenced using a combination of attributes from a1-a5
in Table 3. Overall, GeoChat outperforms the baseline, but there is still significant room for further improvement on this complex task.

Model Presence Comparison Average Accuracy

Qwen-VL[1] 66.44 60.41 63.06
LLaVA-1.5[17] 69.83 67.29 68.40
MiniGPTv2[4] 40.79 50.91 46.46
GeoChat 58.45 83.19 72.30

Table 8. Comparison with other general ZS model’s on RSVQA-
HRBEN [20] dataset for visual qa. All models here have not been
trained on the target dataset. GeoChat performs favorably well
compared to generic VLMs.

comparison, and count. For evaluation, we use the test set-2
for RSVQA-HRBEN [20] with 47k question answer pairs.
RSVQA-LR [20] is made up of 772 low-resolution im-
ages and 77,232 question-answer pairs, with 77.8%, 11.1%,
and 11.1% used for training, validation, and testing, re-
spectively. There are four different categories of questions:
presence, comparison, rural/urban, and count. We omitted
area and count questions during evaluation because the re-
sponses are numerical and quantifiable into numerous cat-
egories. In the RSVQA-LRBEN [20] dataset, for exam-
ple, counting questions are quantified into five categories:
0, between 1 and 10, between 11 and 100, between 101 and
1000, and greater than 1000. For evaluation, we use the test
set of RSVQA-LRBEN [20] with 7k question-answer pairs.

Results. To constrain the answers to a simple yes/no and
for rural/urban question types, we add a suitable prompt at
the end of each question. GeoChat performs close to the
SOTA specialist models on RSVQA-LRBEN test set, which
is RSGPT [12], finetuned on the target dataset for 5 itera-
tions in comparison. For RSVQA-HRBEN, GeoChat out-
performs other VLM’s in zero-shot setting on average ac-
curacy by 3.9%, while beating the Comparison subset by
15.9% on LLaVA-v1.5 [17], as shown in Table 8.

5.4. Visual Grounding

Datasets for evaluation. For the evaluation of grounding
tasks, we propose a new benchmark that contains different
referring and grounding tasks. We use the validation set
from [31] and used the same dataset creation pipeline as in
Sec. 4 to construct the test benchmark. There are a total
of 7593 [refer], 560 [grounding], and 495 grounding de-
scription questions, as well as 2793 for region captioning.
We use accuracy@0.5 as the evaluation metric. Accuracy is
calculated if the predicted box has an overlap of more than

Model acc@0.5 acc@.25 METEOR

MiniGPTv2[4] 10.8 30.9 16.4
GeoChat 11.7 33.9 48.9

Table 9. Results on grounding description task.

Model ROUGE-1 ROUGE-L METEOR

MiniGPTv2[4] 32.1 31.2 10.0
GeoChat 87.3 87.2 83.9

Table 10. Region level captioning performance.

0.5 IoU with the ground-truth box.
Results. Table 7 shows the performance of our method

and MiniGPT-4-v2 [4] on the proposed benchmark. Over-
all, the model performance is low on small objects or when
it has to predict multiple boxes. Compared to MiniGPT-4-
v2[4], our model works better on medium size images. On
the grounding description task, we calculate both, the IoU
for the multiple bounding boxes generated as well as the
text answer generated. Our model provides a better descrip-
tion with slightly better box accuracy than MiniGPT-4-v2
[4] (Table 9). As for region-level captioning, we evaluate
both models based on the text accuracy with ground truth
region-level captions (Table 10). Our model significantly
outperforms MiniGPT-4-v2 in terms of ROUGE and ME-
TEOR score.

6. Conclusion
Although recent advancements in large Vision-Language
Models (VLMs) have shown promise in nature image do-
mains, their performance in Remote Sensing (RS) scenar-
ios is still limited due to the unique domain-specific chal-
lenges. Addressing this gap, we present GeoChat, the
first unified remote sensing VLM that excels in multitask
conversational capabilities with high-resolution RS images.
GeoChat not only answers image-level queries but also en-
gages in region-specific dialogue, grounding responses with
precise spatial coordinates. We create a novel RS mul-
timodal instruction-following dataset comprising of 318k
image-instruction pairs with a diverse multitask format.
GeoChat achieves robust zero-shot performance across var-
ious RS tasks including scene classification, VQA, multi-
turn dialogue, visual grounding and referring object detec-
tion, thus establishing a comprehensive benchmark.
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