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Abstract

Stereo rectification is widely considered “solved” due to
the abundance of traditional approaches to perform recti-
fication. However, autonomous vehicles and robots in-the-
wild require constant re-calibration due to exposure to var-
ious environmental factors, including vibration, and struc-
tural stress, when cameras are arranged in a wide-baseline
configuration. Conventional rectification methods fail in
these challenging scenarios: especially for larger vehicles,
such as autonomous freight trucks and semi-trucks, the re-
sulting incorrect rectification severely affects the quality of
downstream tasks that use stereo/multi-view data. To tackle
these challenges, we propose an online rectification ap-
proach that operates at real-time rates while achieving high
accuracy. We propose a novel learning-based online cal-
ibration approach that utilizes stereo correlation volumes
built from a feature representation obtained from cross-
image attention. Our model is trained to minimize vertical
optical flow as proxy rectification constraint, and predicts
the relative rotation between the stereo pair. The method is
real-time and even outperforms conventional methods used
for offline calibration, and substantially improves down-
stream stereo depth, post-rectification. We release two
public datasets (https://light.princeton.edu/online-stereo-
recification/), a synthetic and experimental wide baseline
dataset, to foster further research.

1. Introduction

Wide baseline stereo methods with cameras separated me-
ters apart have been proposed as a low-cost depth sens-
ing method [5, 40, 41, 49] that allows, with double-digit
megapixel resolutions, even long distance depth measure-
ments beyond 100 meters range. Employed in autonomous
trucks and large construction, farming robots, or UAVs
[23], the mounted cameras experience significant vibrations
which propagate to the stereo sensors leading to large de-
viations from offline calibration. Therefore, accurate on-
line stereo calibration is essential for the functionality of
these sensor systems as part of the autonomous decision-
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Figure 1. Wide Baseline Stereo Online Calibration. We address
online calibration in wide baseline stereo setups mounted above
the cab of a semi-truck with 2 meters baseline (top). Due to vibra-
tions in a trucking scenario, the offline calibrations can be incor-
rect during a drive. We overlay rectified stereo pairs (middle) and
the corresponding depth inferred by HITNet [51] (bottom), each
column pair is an individual example. The proposed flow-guided
online calibration allows for accurate stereo depth estimation in
such a wide baseline setup. Please zoom in for details.

making stack, especially for large long-haul vehicles where
the mounting structures for large baselines can stretch and
twist due to temperature and stress gradients. The quality
of the calibration, addressed by the proposed method (see
Fig. 1), is essential to downstream tasks that aim to under-
stand the environment around the vehicle, including stereo
depth estimation, 3D object detection, semantic segmenta-
tion, and SLAM.

Since images exist in 2D space, stereo co-planarity en-
ables efficient stereo matching and stereo depth estimation
by nullifying the disparity in one of the axes, thereby reduc-
ing the matching search space to 1D. While perfect stereo
co-planarity is difficult to achieve and maintain, stereo rec-
tification aims to project a pair of images onto a common
image plane such that there is no vertical disparity between
corresponding pixels across the images.

Existing calibration and rectification methods typically
rely on keypoint extraction and description methods [12,
53] using hand-crafted [4, 7, 30, 31, 35, 46, 47] and
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learning-based [43, 48, 50] features. Stereo rectification can
be addressed using such traditional calibration approaches.
A line of work [2, 17, 20–22, 37] formulates the rectifi-
cation constraint using epipolar geometry, and they rely
on existing optimization techniques like Gradient Descent
and Levenberg-Marquardt to arrive at a rectified stereo pair.
Other approaches [19, 32, 34, 57] focus on improving fea-
ture extraction and matching techniques, fundamental ma-
trix computation and extrinsics estimation. The majority of
these methods [42] are not computationally permissive to
deploy in an online setting due to expensive optimization
and intermediary steps. Those that can be deployed online
compromise on accuracy resulting in significantly deterio-
rated downstream performance. Dang et al. [13] extensively
analyzes the error propagation from poor extrinsic to down-
stream tasks like 3D reconstruction.

As a result of these limitations, today’s accurate stereo
calibration methods require a separate calibration step that
uses visual patterns with known geometry to determine the
intrinsics and extrinsics of the setup. These approaches
mandate calibration in an offline setting, and it ignores en-
vironmental effects experienced by the sensors when in use.
During inference in the wild, this significantly reduces ac-
curacy and performance for downstream tasks.

In our work, we propose an online rectification process,
that can periodically re-rectify the sensors to address the
poor calibration quality. To this end, we propose an online
stereo pose estimation model that utilizes a correlation vol-
ume to determine relative pose between two cameras. We
use a transformer encoder to produce strong feature repre-
sentations built from global context and cross-view context.
Our model is trained with weak supervision and a proxy rec-
tification constraint which is computed in a self-supervised
fashion. We use vertical optical flow to interpret the de-
gree of vertical disparity and train the model to minimize it.
Additionally, we find a 40% improvement in SIFT[35] and
SuperGlue[48] keypoint-offset metric, when our novel self-
supervised vertical flow constraint is employed. We further
validate the method by measuring the effect of rectification
quality on state-of-the-art stereo depth estimation models
(DLNR [60], HITNet [51]). We improve MAE by 63% and
51% for depth estimation downstream using DLNR [60]
and HITNet [51], when evaluated on our real-world Semi-
Truck Highway dataset and KITTI dataset[18], respectively.
We also validate the effectiveness of the method on a syn-
thetic Carla dataset with artificially induced severe pertur-
bations that rarely occur in real-world captures. We make
the following contributions.
• We provide a Semi-truck Highway driving dataset and a

Carla dataset that capture calibration deterioration in real
and synthetic settings, respectively.

• We propose a novel learning-based stereo calibration
model that utilizes stereo correlation volume to infer rel-

ative pose between a stereo pair.
• We introduce a self-supervised vertical optical flow loss

to train our model without the need for high-quality of-
fline extrinsics.

• The proposed approach outperforms all tested existing
methods in the keypoint-offset metric and on downstream
stereo depth estimation on real data while deployable in
an online real-time setting.

2. Related Work
Traditional Stereo Rectification Traditional approaches
to stereo rectification usually focus on computing rectifica-
tion homographies without prior knowledge of the extrin-
sics of the cameras [2]. The homographies are directly com-
puted by optimizing on a formulation of the rectification
constraint [21, 22, 37]. Although computationally costly,
Rehder et al. [42] target bundle adjustment as a strategy to
refine existing rectification quality. Hartley [22] propose to
determine an arbitrary homography matrix for one of the
cameras such that its epipole is pushed to infinity. Gluck-
man et al. [20] propose an optimization strategy that mini-
mizes undersampling/oversampling of pixels after rectifica-
tion. Fusiello et al. [17] optimizes for rectification homo-
graphies by minimizing the first-order approximation of the
reprojection error termed Sampson error. Several methods
[32, 34, 57] investigate decomposing the intermediate ex-
trinsics and homographies into simpler transformations to
optimize them individually.

A parallel direction focuses on the steps leading up to
rectification, such as better establishing correspondences
between views or improvements to fundamental matrix or
extrinsics computation [55]. Georgiev et al. [19] remove
erroneous or noisy matches using various filters, and Zilly
et al. [61] break down the computation of the fundamen-
tal matrix into its Taylor-series expansion. Finally, Dang
et al. [13] explore continuous online calibration for wide
baseline scenarios and evaluate the effect of poor calibra-
tion on downstream tasks. While accurate, all of the above
methods are computationally expensive and prohibit real-
time calibration. The proposed method is real-time while
even reducing error of offline calibration methods.

Learning-based Stereo Rectification Recently, learned
methods attempt to circumvent errors in rectification. Li et
al. [29] propose a strategy of both 1D search and 2D kernel-
based search for depth estimation from stereo images and
Luo et al. [36] address stereo rectification in laparoscopic
images by introducing an intermediate vertical correction
module to provide pixel-wise vertical corrections. Ji et al.
[25] use a rectification network to predict rectification ho-
mographies for the task of view synthesis. Zhang et al.
[59] employ a 4-point parametrization of the rectification
homography, which is estimated by a dedicated subnetwork
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and for downstream stereo matching. Wang et al. [56] focus
solely on rectification alone using learned feature extrac-
tors. All of these methods propose refinement approaches to
rectification instead of directly predicting rectification. We
hope that the datasets introduced in this work can facilitate
research towards rectification as a standalone task.

Learning-based Camera Pose Estimation Stereo recti-
fication is also tangentially related to relative pose estima-
tion between multi-view images. Given two overlapping
views, learning to estimate the relative rotation and transla-
tion between the views results in us knowing the extrinsics
between the two views. PoseNet [27] was one of the earliest
attempts to perform end-to-end camera pose estimation us-
ing CNNs. Several works build on PoseNet [16, 26, 28, 38]
by introducing elements to balance the losses from trans-
lation and rotation and architecture variations. Recently,
DirectionNet [10] explores optimizing quaternions as con-
tinuous representations for rotations. Other works incorpo-
rate flow to refine pose estimates from a coarse initialization
[37, 39]. These methods warp source images onto the tar-
get frame, while we directly optimize vertical flow which
implicitly captures the rectification quality.

Several methods explore incorporating learned com-
ponents into existing traditional approaches, for example
DSAC [6] is a differentiable RANSAC method. Similarly
Ling et al. [32] proposes a learned model to estimate the
fundamental matrix given feature matches and descriptors
from SuperGlue [48]. Rockwell et al. [44] propose using
ViT [15] to estimate cross attention weights between stereo
image patches and then finally regress pose by directly es-
timating the orthonormal bases obtained from SVD decom-
position of the Essential Matrix. Roessle et al. [45] propose
a graph model that builds features correspondences across
multi-view images inspired by SuperGlue [48] followed by
a coarse pose estimation using the 8-point algorithm which
is further refined using a bundle adjustment step. Arnold et
al. [1] also explore using 2D-2D, 3D-3D correspondences
in loop with learned depth estimation models and cost-
volume based approaches for pose estimation. These exist-
ing pose estimation methods do not optimize the rectifica-
tion constraint but rather optimize with 3D pose or epipolar
constraints. We find that applying pose estimations methods
to rectification results in poor performance, see Sec. 5.

3. Flow-Guided Online Rectification
In this section, we present the online rectification model
and flow-guided training approach. Local feature-based
pose estimation methods can perform poorly due to rolling-
shutter effects coupled with mechanical vibrations on high-
way trucking scenarios. To address these challenges, we
predict pose directly from a stereo pair utilizing cross-
attentional image features and stereo cost volume to opti-

mize for pose. Furthermore, for real data we are only able to
perform static offline calibration which does not hold under
highway driving scenarios due to strong vibration. To this
end, we rely on self-supervised vertical flow loss and use of-
fline calibration as a semi-supervised rotation loss. As poor
rotation can have a high impact on downstream tasks [13]
and the stereo baseline is fixed, our model learns to estimate
the relative rotation from a stereo pair.

Fig.2 shows the model architecture and training process.
The model operates on a pair of images which are fed
to a shared CNN (Fig.2a) to extract shift-equivariant fea-
tures. The features are then rectified using a prior pose es-
timate which can either be from previous estimation or set
to identity. This is followed by our feature enhancement
step (Fig.2b), which comprises of a positional embedding
step and a transformer encoder. The transformer encoder
captures global information across both views using self-
attention and cross-attention. Next, we employ a correlation
volume, Fig.2(c), to establish matches based on the features
extracted from the transformer encoder. The volume repre-
sents a match distribution for every pixel in the feature map.
The correlation volume is then processed by a decoder to
implicitly learn to discern noisy matches and predict a sim-
plified rotation estimate, which undergoes further process-
ing to produce the final relative rotation prediction. Given
our rotation prediction, we rectify the input images and es-
timate the optical flow. With this flow estimate in hand, we
minimize the vertical flow, Fig.2(e).

3.1. Feature Extraction

Given a set of stereo pairs Il and Ir ∈ RH×W×3, we en-
code these images using a weight-shared CNN backbone.
The backbone comprises of 3 residual convolution blocks,
resulting in a pair of feature maps fl, fr ∈ Rh×w×c. These
features are limited in capturing globally discriminative fea-
tures, ultimately, due to the fact that convolution operations
are local in nature. While global representations are im-
portant to reduce ambiguous matches, lower dimensional
feature representations lend to compute and memory advan-
tages in the following stages. The proposed method extracts
global features while offering real-time runtime.

3.2. Positional Feature Enhancement

We take inspiration from transformer models [54], and em-
ploy positional encoding, specifically the 2D sine and co-
sine positional encoding (same as DETR [8]). The posi-
tional encoding is directly added to the CNN feature maps
fl, fr, adding an extra layer of spatial information in addi-
tion to feature similarity during matching. This helps the
model match features more consistently to estimate relative
pose which is after all a spatial mapping of these features.
We encode

pencoding = [sin(pos/C2k/d), cos(pos/C2k/d)] (1)
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Figure 2. Flow-Guided Online Rectification. In Section 3 we go over the motivation and implementation of these sub-modules in our
model. (a) Feature Extraction in Section 3.1, (b) Feature Enhancement in Section 3.2, and (c) Correlation Volume, Decoder and (d) Loss
calculation in Section 3.5, 3.6. (e) The overlays are a simple illustration to understand the rectification quality, this is generated by a
weighted addition of the stereo pairs.

f
′

l2k
= fl2k + pencoding, f

′

r2k
= fr2k + pencoding, (2)

where C = 10000, d = 64, pos ∈ w×h, k ∈ c. Following,
we apply a feature enhancement transformer. The encoder
comprises of 6 self-attention blocks and 6 cross-attention
blocks and a feed-forward network [54]. The keys, queries
and values come from the same feature map in self-attention
phase, while the cross-attention maps are estimated across
the two features specifically keeping the key-value pairs
from one set of features and querying from the other feature
map [58]. We further enforce fine-grained global match-
ing by computing the attention maps across the entire fea-
ture map as opposed to the windowed approach [58] using
SWIN transformers [33],

Fl = T (K = f
′

l , V = f
′

l , Q = f
′

r), (3)

Fr = T (K = f
′

r, V = f
′

r, Q = f
′

l ). (4)

Here, T is the transformer encoder and K,V,Q correspond
to the Key, Value and Query inputs. The enhanced features
Fl, Fr are used for the steps discussed in Section 3.4.

We perform the positional feature enhancement men-
tioned above after an initial rectification step, Rinit, i.e.,

flinit , frinit = DRectify(f
′

l , f
′

r, P = [Rinit|t]) (5)

Here, Rinit can either be identity (as used in our experi-
ments) or rotation from previous estimation. Subsequently,
Fl, Fr are computed from flinit , frinit following the steps
described in this section. This enables us to standardize the
variation in pose to a certain extent, and further allows us to
formulate the model predictions as a correction applied to
Rinit as discussed in Section 3.5

3.3. Differentiable Rectification

A crucial component in our model is the differentiable rec-
tification module DRectify, enabling us to train end-to-end

while inferring rectified images from the model pose pre-
dictions, which, in turn, enables us to add rectification con-
straints to the model during training. To define this operator,
we assume two images I1, I2 ∈ RH×W×3 and the relative
pose between the sensors as P = [R|t] ∈ SE(3) and in-
trinsics K1,K2 ∈ R3×3, and we aim to project I1, I2 onto
a common image plane using rectification rotations R1, R2

resulting in images I1rect , I2rect . We divide this as follows,
Estimating Rectification Rotations. Given relative

pose information P this step involves computing rotations
R1, R2 for each image I1, I2 using the horizontal baseline
assumption [22].

Rectifying Images. Given rectification rotation R1, R2

for I1, I2, we reproject the image using these rotations and
use differentiable grid-sampling [24] to sample the location
of the new pixels resulting in I1rect , I2rect .

Detailed mathematical formulations for these two steps
are described in our Supplementary Material.

3.4. Correlation Volume

We use a correlation volume to allow for global feature
matching across the enhanced feature maps. We flatten both
feature maps Fl, Fr ∈ RH×W×C along H × W . We then
compute the correlation as follows [58],

Mvol = Fl(Fr)
T /

√
C,∈ RH×W×H×W . (6)

This correlation volume computed across the flattened fea-
ture maps implicitly represents the matches across Fl and
Fr. To further simplify this representation we apply a soft-
max along the last two dimensions of Mvol,

Mmatch = softmax(Mvol). (7)

Mmatch represents the likelihood of a match for a specific
location in Fl to all locations in Fr. We let the model
learn reliable and un-reliable matches by further processing
Mmatch in the decoder as follows.
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3.5. Decoder and Final Rectification

The decoder layers are comprised of a combination of 6x
3D Convolution and Average Pooling layers, the result,
Mreduced ∈ RH×W , representing the most likely matches
from the distribution encoded into Mmatch. We then flat-
ten Mreduced to produce Mflatten which is sent to our fi-
nal linear layer to predict the relative rotation, rpred. Since
our model attempts to directly predict elements in the ro-
tation matrix, the Tanh operator helps keep the predictions
bounded [−1, 1] and therefore stable. We have,

rcorrection = Tanh(Linear(Mflatten)) ∈ R6×1. (8)

Borrowing from the extensive analysis from Chen et
al. [10], we choose to use the 6D representation which fo-
cuses on predicting the x and y columns of the rotation ma-
trix. This step is followed by Gram-Schmidt orthogonaliza-
tion. Given the x and y columns as rx, ry ,

rxnorm
=

rx
||rx||

, rz = rxnorm
× ry, (9)

rznorm
=

rz
||rz||

, ry = rznorm
× rxnorm

, (10)

RGS = [rxnorm , ry, rznorm ] ∈ SO(3). (11)

Next, we extract the x and y columns from Rinit as
rinit ∈ R6×1 and find that

rpred = rinit + rcorrection (12)

Rpred = GramSchmidt(rpredx , rpredy ) (13)

is a valid rotation matrix, which can be used to rectify our
input stereo pair Il, Ir as

Ilrect , Irrect = DRectify(Il, Ir, [Rpred|t]), (14)

where t is reused from ground truth pose information.

3.6. Training

Next, we describe the two main loss functions used to train
our model. We carry over the notation from the previous
section for convenience. The complete loss function is

L = λ1Lrot + λ2Lflow, (15)

where λ1, λ2 = 10, 0.1 are scalar weights. Here Lrot is a
pose loss supervised on ground truth calibration data, and
Lflow is the self-supervised vertical-flow loss.

Self-supervised Vertical Flow Loss. Given our rectified
image pairs, we use RAFT [52] pre-trained on KITTI [18]
to infer the flow in the x-axis and y-axis. This loss function
is self-supervised and is stable given the model predicts sta-
ble/valid rotation estimates. Since optical flow is an indirect

method to establish dense correspondences across images,
we are able to leverage this flow to implicitly add a rectifi-
cation constraint. Since the goal of rectification is to nullify
the disparity along the vertical axes, the vertical flow com-
ponent contains information about the presence of vertical
disparity. Hence our loss function component is designed
as follows.

Lflow =
1

N

N∑
i=1

|flowy|, (16)

with flowy = RAFT (Ilrect , Irrect) and N is the total
number of pixels in the image. Interestingly, this loss func-
tion is applicable to rectify vertical stereo setups as well,
here the goal would be to minimize flowx rather than
flowy .

Rotation Loss. We also employ a second supervised loss
using a ground truth estimate of the rotation matrix Rgt. We
use an ℓ1 loss, yielding

Lrot = ∥Rgt −Rpred∥1 (17)

The loss plays a crucial role in the early stages of training,
allowing the model to narrow down the possible rotation
estimates in the early training stages until reasonably sta-
ble rotation predictions are obtained and the self-supervised
flow loss from above dominates.

3.7. Implementation

We implement our model on the PyTorch framework includ-
ing DRectify(). The models are trained for 80-140 epochs
depending on the dataset and the degree of misalignment
between the images. We use the Adam Optimizer with
a LR of 1e−4 coupled with exponential decay. We ap-
ply brightness, contrast, and color perturbations to the data
as augmentations and interchange the left-right stereo pairs
as an additional augmentation. We train on two NVIDIA-
A40 GPUs with a batch size of 16. Our input resolution is
1024x512 pixels, while the main model is trained on one
GPU we run flow estimation on the second GPU which is
running inference on images of resolution 512x256. All in-
ference time benchmarks in Table 3 are preformed on the
NVIDIA-A40 GPU with a batch size of 1.

4. Stereo Rectification Datasets
The following section describes the real-world and syn-
thetic datasets we use to train and evaluate the method. We
note the high scene diversity and the task difficulty associ-
ated with both datasets, see Supplemental Document for de-
tails. Fig. 3 reports samples of the dataset and Table 1 lists
the train-test splits. Both datasets contain samples of data
from different sequences/recordings, which in turn means
every frame in the dataset is a unique frame.
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Figure 3. Rectification Dataset Examples. We introduce two new datasets. A first Semi-Truck Highway dataset (top three rows) is a
wide baseline dataset captured on US highways. We also experiment with a synthetic Carla dataset, with rare and more extreme pose
variations than even observed in typical truck drives (bottom three rows).

4.1. Semi-Truck Highway Dataset (Real)

Setup: The stereo setup is mounted on a large semi-truck
at approximately 3m from the ground. The cameras are
mounted on a rigid bar using an adjustable custom-made
mount and calibrations are performed at the beginning and
end of the drives to ensure correctness. Our main sensor
used in this dataset is the OnSemi AR0820 cameras which
are built around a 1/2-inch CMOS sensor recording raw data
in the RCCB format. Our setup consists of 4 synchronized
AR0820s in a 2m wide baseline arrangement, with the base-
line varying between 0.6m and 0.7m. The cameras record
images at 15Hz at a resolution of 3848× 2168 pixels.

Scene Diversity: The dataset consists of recordings
from geographically diverse locations in New Mexico and
Virginia. The dataset comprises of diverse scenes from
Highway and Urban areas, note given our capture vehicle
is a semi-truck we do not collect samples from dense urban
scenes. In addition, we also provide data with diverse natu-
ral lighting conditions ranging from afternoon, evening and
night scenarios as well.

The dataset consists of 50,029 unique stereo pairs. We
capture with 4 cameras and offline calibration parameters
for each camera. The 4 camera setup allowing one to use
up to 6 different combinations of stereo pairs, or even 3
or 4 cameras simultaneously. This is also essential for the
rectification task considering the error in relative pose (from
calibration) between any two cameras is unique. The data is
sampled from scenarios where downstream stereo tasks per-
formed inadequately due to poor rectification quality. The
collected data validates the need for online rectification ap-
proaches due in long-haul journeys.

4.2. Carla Dataset (Synthetic)

Setup: We rely on the Carla driving simulator [14] to sim-
ulate a further synthetic dataset with known ground truth

Dataset Training Set Test Set Synthetic

Semi-Truck Highway 40,007 10,022 N
KITTI [18] 6,587 3,252 N
Carla 6,949 773 Y

Table 1. Dataset Statistics. We list here the the train/test splits we
use for our novel pose datasets and KITTI[18].

pose information, and perhaps more importantly, the abil-
ity to simulate extreme pose deviations that are rare in real
captures. Our sensor setup here consists of 3 RGB Cameras,
separated by a baseline of 0.8m each mounted on a regular
traffic vehicle. Each camera records at 30hz capturing im-
ages of resolution 2560× 1440.

Scene Diversity: We simulate in a largely urban scene
with traffic and some additional highway scenes. In order
to add diversity we take advantage of lighting and weather
controls in Carla, to generate random scenes with a wide
range of environmental effects. Similar to the trucking
dataset we capture scenes with a variety of natural con-
ditions such as dawn, morning, afternoon, dusk. We also
add random weather such as fog, rain, overcast and sunny
scenes. Since the scenario remains unchanged throughout
the recording, this results in highly similar scenes with dif-
ferent illumination and weather conditions.
This dataset consists of 7,722 stereo pairs, although smaller
in comparison to the Trucking dataset we introduce signif-
icant perturbations, in the range of [-1, 1]°, to the camera
extrinsics in all three axes of rotation. This makes it more
challenging to evaluate on, and useful to indicate robust-
ness (or lack thereof) in most rectification approaches. It
is important to note no perturbations are introduced to the
translation components. As above, the multi-camera setup
enables us to sample different pairs for stereo rectification.
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Dataset Method MAE
SIFT
Offset
(pixels)

SuperGlue
Offset
(pixels)

Vertical
Flow

(pixels)

Unrectified 0.23 8.21 3.01 3.25
GT (Offline Calibration) - 2.91 0.77 1.34
SIFT + LO-RANSAC [11, 35] 0.26 21.10 17.61 18.11
SuperGlue + MAGSAC [3, 48] 0.15 14.97 11.96 12.10

(a) Semi-Truck LOFTR + MAGSAC [3, 50] 0.15 14.94 11.87 11.95
Highway RPNet [16] 0.18 12.10 9.19 9.39

DirectionNet [10] 0.28 8.41 6.10 6.44
ViTPose [44] 0.07 4.53 2.37 2.83
Ours (w/o OF) 0.023 3.13 0.97 1.43
Ours (w/ OF) 0.015 2.67 0.59 1.05

Unrectified 0.31 16.55 8.25 9.6
GT - 1.65 0.43 0.33
SIFT + LO-RANSAC [11, 35] 0.08 1.82 0.63 0.61
SuperGlue + MAGSAC [3, 48] 0.06 2.85 1.67 1.69

(b) KITTI[18] LOFTR + MAGSAC [3, 50] 0.04 2.14 0.97 0.96
RPNet [16] 0.06 1.74 0.59 0.52
DirectionNet [10] 0.06 2.13 0.94 0.94
ViTPose [44] 0.03 1.95 0.71 0.73
Ours (w/o OF) 0.015 1.73 0.53 0.51
Ours (w/ OF) 0.011 1.44 0.36 0.28

Unrectified 0.27 13.32 13.76 14.17
GT - 3.22 0.45 0.49
SIFT + LO-RANSAC [11, 35] 0.11 3.6 0.82 1.23
SuperGlue + MAGSAC [3, 48] 0.071 5.77 2.96 3.21

(c) Carla LOFTR + MAGSAC [3, 50] 0.075 7.29 4.53 4.52
RPNet [16] 0.13 7.72 5.52 5.53
DirectionNet [10] 0.133 13.47 10.64 11.12
ViTPose [44] 0.06 4.34 1.45 1.72
Ours (w/o OF) 0.13 7.68 5.53 5.67
Ours (w/ OF) 0.05 3.55 0.64 1.003

Table 2. Quantitative Evaluation on the (a) Semi-Truck Highway,
(b) KITTI [18] and (c) Carla Datasets. Evaluation on unrectified
images and ground truth images are included, and we evaluate
the proposed method when trained without optical flow (OF) self-
supervision.

5. Experiments

In the following, we validate the proposed method by evalu-
ating on the test sets defined above and comparing baseline
approaches. We also confirm the effectiveness of the design
choices with ablation experiments.

Baselines. We compare our models to traditional ap-
proaches and learned approaches to camera pose estima-
tion. The learned components are incorporated in two ways.
First, we employ at keypoint-based approaches based on
hand-crafted [35] and learned [48, 50] features coupled
with robust estimators such as ℓ0-RANSAC and MAGSAC
[3, 11]. Second, we compare our method to existing state-
of-the-art end-to-end pose estimation models, including En
et al. [16] (RPNet), Chen et al. [10] (DirectionNet) and
Rockwell et al. [44] (we dub this approach ViTPose). We
find that all methods perform well on existing pose esti-
mation datasets, e.g., MatterPort3D [9], but struggle when
evaluated on the wide baseline data.

Metrics. To evaluate the rectification quality, we intro-
duce a key-point offset metric in Table 2. The metric first
finds keypoints using existing methods followed by match-
ing across the stereo images. We then compute the average
offset along the y-axis of the keypoint matches for two key-
point types, SIFT [35] and Superglue [48]. We also evaluate
the rectification with Mean Absolute Error (MAE) between
the Ground Truth rectified images and the rectified images
from each method. Finally, we report vertical flow offset
measurements (which our method is trained to minimize).
We also report angular errors rotation estimates in the Sup-

Method Inference time (msec)

SIFT + LO-RANSAC [11, 35] 338
SuperGlue + MAGSAC [3, 48] 106
LOFTR + MAGSAC [3, 50] 173
RPNet [16] 577
DirectionNet [10] 556
ViTPose [44] 88
Ours 86

Table 3. Inference Time. We measure inference time for our
method and competing approaches on GPU hardware, see text.
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Figure 4. MAE of depth from HITNet [51] and DLNR [60] across
the depth range, with inputs obtained from stereo images rectified
by with several rectification methods alongside the proposed.

plementary Material.
Additionally, we evaluate downstream depth estimation

models for insight into the correlation between rectification
quality and stereo depth estimation. We include the Mean
Absolute Error (MAE) computed between ground truth
depth and depth estimated from different rectification
methods. Further discussion on the downstream evaluation
is listed in the Supplementary Material.

5.1. Quantitative Analysis and Ablation Studies

We report the evaluation results in Table 2. The KITTI[18]
evaluations, all with a narrow baseline and little pose vari-
ation, reveal our method outperforms other approaches de-
spite these approaches showing competitive results. Fur-
thermore, our method is favorable, even outperforming
Ground Truth (offline calibration) as well. Our evaluations
on the Carla dataset and Semi-Truck Highway dataset with
severe pose variations capture robustness (or lack thereof)
in all the methods. The proposed approach fares best in
all metrics overall, outperforming Ground Truth (offline
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SuperGlue + MAGSAC [3, 47] RPNet [16] ViTPose [43] Proposed GTLOFTR + MAGSAC [3, 49]
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Figure 5. Qualitative Assessment. We overlay here the rectified left-right stereo pairs. Each column represents a different rectification
method. To visually evaluate the rectification quality, focus on an object in the scene and compare the vertical disparity. Every row is
accompanied by the corresponding depth inferred from HITNet [51]. This grid contains samples from (Top) Semi-Truck Highway dataset,
(Middle) KITTI [18] and (Bottom) Carla dataset. As seen above, our method is robust to different scenes and pose variations and our
quantitative results (Table 2) supports this further.

calibration) in Semi-Truck Highway and comparable to
Ground Truth (simulation calibration) in Carla. Addition-
ally, the evaluations validate the importance of the novel
self-supervised vertical flow loss (Ours (w/o OF)).

5.2. Effect on Downstream Depth Estimation

We evaluate the effect of improved rectification on down-
stream task performance and pass the rectified images us-
ing different approaches to two SOTA stereo models (HIT-
Net [51] and DLNR [60]). Fig. 4 shows quantitative com-
parisons of MAE over different distances (note this MAE
metric is different from Table 2 as it is computed against
Ground Truth Depth) and Fig. 5 shows qualitative compar-
isons of rectification and resulting stereo depth. We observe
a general trend of poor depth estimates at larger distances,
which can be attributed to the model itself rather than the
rectification. With this in mind, when using the proposed
method, we measure a 17% improvement on average over
[0-300]m in MAE on the Carla dataset using DLNR, and
a 10% improvement on average over [0-300]m on HITNet.
On KITTI, we observe the MAE to be similar to other meth-
ods but we do improve on these metrics by 51% over the
[0-300]m range on both SOTA models. Finally, we mea-
sure a large performance gain in MAE on the Semi-Truck

Highway dataset, with over a 63% improvement on average
on [0-300]m range in both models. This validates that the
proposed model performs better in rectification and results
in higher accuracy depth estimates.

6. Conclusion
We propose an online stereo rectification method for wide
baseline stereo setups, which aims to address the calibra-
tion degradation that occurs due to environmental effects
and prolonged exposure. These effects manifest as vibra-
tions, stretch and twist due to temperature and stress gra-
dients. Our method hinges on weak supervision from of-
fline calibration and self-supervision using vertical flow.
We take a stereo correlation volume-based approach to es-
tablish correspondences and estimate relative rotation be-
tween a stereo pair. We train and evaluate the approach on
two novel wide-baseline stereo datasets, one captured with
a semi-truck on highways, and another simulated one with
extreme pose variations. Our method compares favorably to
existing traditional and learned pose estimation and online
calibration methods in terms of calibration accuracy and the
accuracy of downstream stereo depth. Exciting future direc-
tions include multi-scale iterative refinement of calibration
and simultaneous multi-camera rectification.
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