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Abstract
We introduce WildlifeMapper (WM), a flexible model

designed to detect, locate, and identify multiple species
in aerial imagery. It addresses the limitations of tradi-
tional, labor-intensive wildlife population assessments that
are central to advancing environmental conservation efforts
worldwide. While a number of methods exist to automate
this process, they are often limited in their ability to general-
ize to different species or landscapes due to the dominance
of homogeneous backgrounds and/or poorly captured local
image structures. WM introduces two novel modules that
help to capture the local structure and context of objects of
interest to accurately localize and identify them, achieving
a state-of-the-art (SOTA) detection rate of 0.56 mAP. Fur-
ther, we introduce a large aerial imagery dataset with more
than 11k Images and 28k annotations verified by domain
experts. WM also achieves SOTA performance on 3 other
publicly available aerial survey datasets collected across 4
different countries, improving mAP by 42%. Source code
and trained models are available at Github 1.

1. Introduction
This paper introduces WildlifeMapper (WM) - an auto-

mated and scalable method for counting wildlife in aerial
imagery. Aerial wildlife surveys are recognized as a cor-
nerstone of modern conservation biology. By facilitating
large-scale biological monitoring in remote landscapes, this
technique has underpinned the ability to track changes in
the abundance and distribution of wildlife across open land-
scapes for decades. However, traditional survey approaches

1https://github.com/UCSB-VRL/WildlifeMapper
* refers to equal contribution

often rely on manual observers to identify, count, and vali-
date species of interest. This labor-intensive process can be
time-consuming and error-prone, with potential to limit the
utility of final results [27, 35, 38].

Automated approaches offer a promising alternative for
efficient and accurate detection of wildlife in aerial survey
images. Recent work, for example, illustrates how artifi-
cial intelligence has been used to count a variety of species
from the air, including antelope in grasslands [44], whales
in the ocean [11], and seals on the beach [42]. When com-
bined with advancements in low-cost, high-resolution imag-
ing platforms (e.g., UAVs), these case studies underscore
the potential for such data to significantly reduce the ef-
fort and cost of traditional wildlife census methods. How-
ever, the majority of these techniques struggle to general-
ize to new species or landscapes due to the dominance of
homogeneous backgrounds and poorly captured local struc-
tures [7, 12, 18, 39].

WildlifeMapper overcomes these limitations by adapt-
ing a novel application of the segment anything transformer
model [21]. This model combines high frequency compo-
nent correlations and spatial correlations in the image data
to generate a map of potential locations of objects of interest
(i.e., wildlife, livestock). In addition, we address the chal-
lenge of identifying multiple species from a relatively small
footprint in these images.

To demonstrate the WM analysis workflow, we provide
a case study example across the Masai Mara Ecosystem in
southwestern Kenya. Renowned for its rich biological di-
versity, the abundance of large mammals (such as buffalo
(Syncerus caffer), giraffe (Giraffa tippelskirchi), and wilde-
beest (Connochaetes taurinus)) have declined precipitously
over the past few decades [34]. Importantly, our analy-
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Figure 1. Summary of Mara-Wildlife dataset. (a) Satellite view indicating the four flight trajectories, each represented in a different color.
(b, c, d, e, f, g) Annotations of (b) zebra, (c) hartebeest, (d) cattle, (e) shoats (sheep and goats), and (f) zebra. Best viewed in color.

sis incorporated 11, 151 images of size 8400 × 5500 col-
lected from a digital camera affixed to the bellyport of a
Partenavia P68 airplane during Systematic Reconnaissance
Flight (SRF) surveys. Part of these images were annotated
by trained observers with 28, 146 annotations of 21 species
of large mammals (≥ 15kg), providing an unprecedented
opportunity to develop species detection models across a
complex, heterogeneous environment. The dataset was sys-
tematically verified by trained observers as described in
Section 3. Our contributions can be summarized as follows:

1. A novel, single-stage end-to-end approach for animal
detection. The modules, a High Frequency Feature
Generator, a Feature Refiner, and a Query Refiner,
work together to improve upon the traditional meth-
ods of object detection in aerial imagery and enable
generalizability across different habitats. The high fre-
quency features reduce dependence on dominant back-
grounds/landscapes.

2. An input patch embedding layer that is specifically
designed to capture contextual information to help in
identifying individual animal species.

3. The release of a new benchmark dataset via the data
owner (Kenya’s Wildlife Research and Training Insti-
tute - WRTI) once all approvals are in place. An inter-
national user community is already engaged in further
enhancing these data and using the WM through the
BisQue [25] platform.

Community Adoption The practical use of WildlifeMap-
per (WM) extends beyond theoretical and computational
success and is operationalized through BisQue [25]. WM
is made available to users through a series of training mod-
ules that demonstrate how to (i) upload digital imagery, (ii)
create annotations, (iii) apply and/or improve existing mod-
els, (iv) evaluate model fit, (v) improve annotations and re-
fit models, and (vi) generate summary statistics. In the fu-

ture, we envision WM to be of great value to ecologists,
wildlife managers, and government officials, providing ac-
curate information about the state of wildlife populations in
near real-time, facilitating decision-making processes, and
improving the conservation of ecosystems globally.

2. Related Works
Manual Methods: Aerial surveys using Front- and Rear-
Seat Observers (FSO and RSO, respectively) are commonly
used to inventory wildlife populations across open land-
scapes [36]. However, several important biases can impact
these counts, including the experience level and fatigue of
the human observers [28].
Deep Learning Methods: To address these issues, re-
searchers have begun incorporating digital cameras on pi-
loted aircraft and UAVs [18,30,46]. This minimizes the in-
fluence of observer bias while increasing transparency and
reproducibility of results. For example, [26] replaced RSOs
with an oblique camera mount system minimized the influ-
ence of observer bias while producing comparable estimates
of large mammals under partial canopy cover. Similarly,
[44] used a nadir mounted camera to improve the accuracy
and efficiency of manual counts of large antelope in an open
grassland ecosystem.

However, detecting animals in the wild from aerial im-
agery poses many challenges. For example, most publicly
available datasets for aerial object detection are focused
on identifying relatively distinct features such as buildings,
roads, vehicles, and other man-made structures [8, 14, 53].
Animals, tend to blend in with their surroundings [13], can
be occluded by trees, exhibit considerable variation in color
and pattern, or have behavioral adaptations that make them
difficult to detect [7, 20, 39, 48].

[20] proposed a solution for this problem involving a
two-branch CNN model based on AlexNet to perform ani-
mal recognition and localization. [7] evaluated three state-
of-the-art object detection algorithms, including Faster-
RCNN, Libra-RCNN, and RetinaNet on six African wild
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Figure 2. Distribution of (≥ 15kg) mammals identified in digital imagery collected across the Masai Mara Ecosystem, Kenya.

Dataset
# of annot.

images
# of annot.

tiles
# of

species
# of

annotation
Image
size

GSD
(cm) Location

Virunga 739 30069 6 5664 6000x4000 2.4 DRC
Garamba 158 6429 6 1611 6000x4000 2.0 DRC

AED 2067 69387 1 15581 5500x3600 2.4-13.0
Bostwana, Namibia,

South Africa

Mara-Wildlife 1012 77966 21 28146 8256x5504 1.45 Masai Mara
National Reserve

Table 1. Comparison of Mara-Wildlife dataset with other publicly available dataset. Mara-Wildlife dataset has ×3 more unique species
than the total of all other datasets. Each image is significantly larger and higher ground resolution making 77k unique images of size
1024× 1024 with 21 different animal species. GSD: ground sampling distance; DRC: Democratic Republic of Congo.

mammals. All three algorithms, however, showed poor per-
formance in animal detection when animals were grouped
closely together in herds. [12] adopted a segmentation ap-
proach, employing a UNet model to detect livestock from
drone imagery. [48] uses a comparable model to analyze
high-resolution satellite imagery, producing segmentation
masks of wildebeest-sized animals, which are subsequently
utilized for detection and counting.
Transformers: WM adopts a transformer architecture
based on past success in modeling different types of aerial
imagery. Examples include incorporating multispectral im-
agery for change detection [4], landcover classification [16],
greenhouse gas (GHG) emission detection [23,24] and RGB
aerial imagery for object detection [29, 49, 52].

The most effective applications of transformer-based
models have been tailored for standard object detection
tasks [3, 5, 32, 41, 54]. These works leverage the self-
attention to model dependencies among the patches in
an end-to-end fashion, unlike CNN-based models [1, 40].
However, when directly applied to aerial imagery, these
models cannot effectively exploit the local structures as they
divide the image into a sequence of patches. This limits the
detection of small-scale objects in a homogeneous and dom-
inant background.
Dataset: The existing publicly available animal aerial im-
agery datasets are listed in Table 1. The Virunga dataset [7]
was collected in Virunga National Park, Democratic Repub-
lic of Congo (DRC). This dataset contains 897 annotated
images of 6 animal species. The Garamba dataset was col-
lected in Garamba National Park, DRC and contains 7034
images. Only 158 images have been annotated, containing 7
animal species. The aerial elephant dataset (AED) [33] was

collected across a mosaic of woodland, open shrubland, and
grassland habitats in Botswana, Namibia, and South Africa.
Only a single species (i.e., elephant) was targeted during
SRF surveys. See Table 1 for details.

3. Mara-Wildlife Dataset
The Mara-Wildlife dataset is a distinctive dataset that

captures the essence of the Masai Mara ecosystem through
a compilation of 77966 images of size 1024 x 1024. This
habitat is heterogeneous, including woodland, shrubland,
and grassland vegetation with 21 unique animal species.

3.1. Image Collection

Flightline Details: Data collection was in collabora-
tion with the Smithsonian National Zoo and Conservation
Biology Institute (SNZCBI), Kenya’s Wildlife Research
and Training Institute (WRTI), the Kenya Wildlife Trust
(KWT), and the Directorate of Resource Surveys and Re-
mote Sensing (DRSRS). In March 2022, we fitted a Parte-
navia P68 with a Nikon D850 digital camera and collected
high resolution (8256 × 5504) digital images. During data
acquisition, the aircraft adhered to a predetermined flight
trajectory, depicted in Figure 1, at 400 ft above ground level
(agl). This trajectory was optimized to encompass open
grassland areas across the Masai Mara ecosystem, includ-
ing the Masai Mara National Reserve, 22 adjacent private
conservancies, and unprotected peripheral areas.

The aerial survey was conducted during a wet season
period when the Serengeti migratory population of wilde-
beest have moved southward to locate more suitable forage
in Tanzania. Thus, the survey primarily captured resident
species, including wildebeest, zebra, topi, hartebeest, gi-

12596



Figure 3. Overview of WildlifeMapper (WM) architecture. Given an input image of size 1024 × 1024 × 3, the High-Frequency Feature
Generator (HFG) module generates information about potential location of object of interest. The Feature Refiner (FR) takes these
potential location along with contextual features from Patch Embed layer and sent output to Image Encoder. In parallel, the Query Refiner
(QR) incorporates the output of FR to refine learnable queries. Finally these queries are decoded using encoded features from Image
Encoder and predict bounding box and class.

raffe, and other large (≥ 15 kg) antelope. Data collection
was conducted in the early mornings (prior to 10:00 EAT)
and late afternoons (after 15:00 EAT) when lighting condi-
tions were optimal and animals are most active.

The geographical positioning of each image was ac-
quired through a GPS system that recorded the plane’s alti-
tude, speed, and geographical coordinates. These data were
then synchronized with the image using the image capture
timestamps, enabling us to determine the geographic loca-
tion of the centroid of each image. The camera was placed
in the bellyport of the airplane, capturing a nadir view of the
landscape every two seconds along the flight path.

3.2. Image Annotation
Initial bounding box annotations (21796) generated us-

ing AIDE platform [19] were exported in CSV format.
These were then imported into BisQue [25] for further vali-
dation and correction. Finally, these annotations underwent
validation by a single trained observer specializing in ecol-
ogy, resulting in 28146 annotations in total.

3.3. Dataset Statistics
The Mara-Wildlife dataset showcases a detailed assem-

blage of wildlife, inclusive of 21 distinct species classes.
The dataset is composed of approximately 77, 966 tiled im-
ages, derived from 1, 012 original rasters (Table. 1) The
meticulous process of annotation has culminated in label-
ing 28, 146 animals. Species identified include domes-
tic cattle (Bos taurus), white-bearded wildebeest (Con-
nochaetes taurinus), topi (Damaliscus lunatus), shoats (do-
mesticated sheep and goats), kongoni (Alcelaphus busela-
phus), waterbuck (Kobus ellipsiprymnus), impala (Aepyc-
eros melampus), Grant’s gazelle (Nanger granti), Thom-
son’s gazelle (Eudorcas thomsonii), Cape buffalo (Syncerus
caffer), zebra (Equus quagga), ostrich (Struthio camelus),
Masai giraffe (Giraffa tippelskirchi), warthog (Phaco-
choerus africanus), eland (Taurotragus oryx), donkey
(Equus africanus), hyena (Crocuta crocuta), hippopotomus

(Hippopotamus amphibius), lion (Panthera leo), and ele-
phant (Loxodonta africana).

4. WildlifeMapper Architecture

4.1. Technical Overview
WildlifeMapper’s architecture is inspired by the success

of the Segment Anything Model (SAM) [21], created to seg-
ment small/large (all sizes) of objects. Referring to Fig. 3,
WM contains the following main components: (i) A patch
embedding layer designed to capture long-range context,
(ii) a High-Frequency Feature Generator (HFG), (iii) a
Feature Refiner (FR) followed by ViT based image encoder
[21,23,45], and (iv) a Query Refiner (QR) module followed
by a box decoder module. The input image is first processed
through two separate branches, the patch embedding layer
which captures long-range context [9] and HFG which sup-
presses all the low-frequency components in the image and
generates a feature embedding. The HFG (Sec. 4.3) ex-
ploits prior knowledge that aerial images from areas such
as forests, grasslands, and shrublands have a homogeneous
and dominant background representing the dominant low
frequency image content. Fig. 4 shows that on suppressing
the lower frequencies, the object of interest is easy to locate.

The FR (Sec. 4.4) takes the embeddings from each of the
two branches and generates a high quality embedding that
contains information about potential locations of animals
and captures the local context. The QR modules refines a
set of learnable queries using the location information from
FR module. These refined queries are passed to the box
decoder. The box decoder takes the refined queries and en-
coded features image encoder to generate the final detection
box and class of the object.

4.2. Patch Embed
The patch embeddidng layer utilizes a larger kernel

convolution with an increasing dilation rate. This design
rapidly expands the receptive field, allowing explicit extrac-
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tion of features rich in contextual information. This ap-
proach is particularly beneficial for aerial imagery, where
the small sized object makes classification based on appear-
ance alone challenging. Contextual information thus be-
comes crucial for the accurate recognition of these objects.

4.3. High-frequency Feature Generator (HFG)
Along with patch embedding, the input image is pro-

cessed in parallel by the HFG module to generate features
with information about the location of the animal or clus-
ter as shown in Fig. 4. The HFG module is inspired from
the limitation of ViT models [45]. ViT models face chal-
lenges in efficiently utilizing local structures. They segment
an image into patches and apply self-attention to model re-
lationships, but this approach often falls short in capturing
detailed local features [37, 51].

Local features in images are closely linked to high-
frequency components [2, 43]. We hypothesize that sup-
pressing low-frequency components can mitigate the influ-
ence of a dominant homogeneous background. To test this,
we performed a discrete Fourier Transform (DFT) on the
images, filtering out the low-frequency components before
reconstructing the images, as shown in Fig. 4.

For a given input image I ∈ RH×W×C , where C is
channel dimension, we compute Discrete Fourier Trans-
form (DFT ) of I . In next step we suppress the low fre-
quency components with a controlling parameter and con-
struct the image I with inverse DFT (IDFT ).

I ′ = IDFT [hpf(DFT (I)] (1)

where hpf is a high pass filter. Then we reduce the dimen-
sion of the reconstructed image I ′ via an embedding layer
to generate embedding hfcemb and pass them to the FR
module. See supplementary materials for more details.

4.4. Feature Refiner (FR)
Next, the features from the patch embedding layer (fimg)

and HFG (hfcemb) are fed to the FR module. The fimg

are refined with the hfcemb via cross-attention mechanism.
The FR is a simple module with cross-attention and linear
layers [45]. The output contains information about the po-
tential location of the object and the long-range context.

Following the standard architecture of SAM [21], we
pass FR output to our ViT based image encoder supple-
mented with learnable positional embeddings p. The en-
coded feature map is femb:

femb = ViT [FR(fimg, hfcemb), p] (2)

Query Refiner (QR): The QR follows a transformer de-
coder like architecture and takes as input a set of 100 learn-
able queries Q ∈ R100×d and output of FR module. Here
d = 256 is same as channel dimension of femb from image
encoder. The FR output refines the Q via a cross-attention

Figure 4. The sample output visualization from the High-
Frequency Feature Generator (HFG) module. The illustration
shows the effectiveness of the module in suppressing the homo-
geneous and dominant background, while highlighting objects of
interest (i.e., animals). The top image shows bomas, natural struc-
tures constructed to contain livestock, and paths that have been
suppressed. Animals, however, are clearly identified, especially
inside the boma. The bottom image shows a water body (a dam
created for livestock) that has been suppressed by the module. An-
imals can again be highlighted throughout the image.

mechanism. The refined queries narrows the search space
for box decoder module to accurately locate and identify
object of interest. [15, 23].

4.5. Box Decoder
Next, the refined queries are sent to the box decoder

module. We concatenate these queries with the femb and
pass box decoder’s self attention layer as qfemb. This
is inspired from the idea of class token used by Vaswani
et.al. [45] to make decoding process memory efficient. The
transformer network takes 4 input variables, those are posi-
tion embeddings of queries and image embeddings, qfemb,
and femb. Our transformer model uses two-way attention
inspired from [3, 6, 21] and our box decoder uses self-
attention and cross-attention in two directions (queries-to-
image embedding and vice-versa) to update all embeddings.
We keep the box decoder very light weight (two blocks).
The top 100 (equal to number of queries) indexes from the
output of the final block is passed to two separate MLP
blocks to regress the output bounding box prediction and
class of the predicted box.
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4.6. Training and Inference

We’ve trained WM using a single-stage, end-to-end ap-
proach to determine bounding boxes and classify them. The
loss strategy we applied for WM is akin to what’s used in
DETR [3]. Initially, we perform bipartite matching to align
our model’s predictions with the actual bounding box data.
Then, we proceed to compute the loss for these matched
pairs. To achieve the best possible match between our
predictions and the real data, we use the Hungarian algo-
rithm [22]. Once matched, each prediction is paired with
its respective ground truth. We then measure the l1 (L1 dis-
tance) and GIoU loss for the bounding box and the cross
entropy loss for the classification [3].

Inference: The inference pipeline is straightforward and
similar to training code. During inference, we first filter
the detections at 50% threshold and then use non-maximal
suppression to remove any overlapping boxes.

5. Experiments
Train-val-test split: There is no data leak in train-val-test
split. Fig. 1 shows the flight paths with location of each im-
age represented by a circle. Each color coded flight path
represents the train-val-test image set. No images taken
while the airplane was cutting across the transects plus turn-
around points as can be seen there are no circles. We created
a spatial disjoint of 20km distance between the transects
as shown in Fig. 1 and achieved consistent performance
(0.56mAP ).

Evaluation Metrics: We report our performance on mul-
tiple metrics. Following the protocols of standard object
detection, we report the performance in mean average-
precision (mAP) for detection and mean intersection-over-
union (mIOU) for localization of animals. We also report
a commonly used metric by the ecologists on the team, the
class-wise mean absolute error (MAE) indicating the count-
ing accuracy of each species:

MAE =
1

I

I∑
i=1

C∑
c=1

|n̂i,c − ni,c| , (3)

Where I is the number of images, C is the number of
classes, n̂i,c and ni,c are the predicted and ground truth
counts for class c in image i.

Implementation Details: Each image taken from the
drone is 8256× 5506× 3. We create tiles for each image in
the spatial domain, with the size of 1024 × 1024 × 3 with
25% of overlap. The Patch Embed layer uses a single CNN
layer with a large kernel of size 16 × 16 with stride 16. In
the parallel branch, the High-Frequency Feature Generator,
we use DFT to compute the Fourier transform, the mask is

a binary disk with the radius set to 128. The HFC Embed
layer uses 3 CNN layers with ReLU activation with a ker-
nel of size 3 × 3 and a global average pool at the end. The
Feature Refiner (FR) module consists of one cross attention
layer with 1 linear layer. The image encoder is a pre-trained
ViT model [21] with 24 transformer layers and 16 heads.
The Query Refiner (QR) module takes in 100 queries each
of channel dimension 256, those are cross attended with
hfcemb output. The box decoder contains 3 layers of two-
way attention with 8 heads. We train WM with AdamW op-
timizer [31] setting the learning rate to 10−4 for the FR, QR
and box decoder with a weight decay to 10−4. We set the
learning rate for the Patch Embed and HFC Embed layer to
10−5. We load the image encoder with pre-trained weights
from segment anything [21] and keep it frozen.

Data Augmentation: In the train and test datasets, we in-
corporated an equal number of images without any objects
to assess the model’s robustness against empty background
images. We applied multiple data augmentation techniques,
including HSV (hue, saturation, and value) (10%), rotation
(5%), translation (10%), affine transformation (20%), scale
(10%), shear (5%) and mosaic (70%) augmentation [1].
Mosaic augmentation is proven to be the most effective,
with an improvement of 0.07 mAP

Hard Negative Mining: After training for 100 epochs,
we take all the False Positives (FP) predictions having
IOU≤ 0.10 with ground truth box and mark them as back-
ground class. Then fine-tuning for 20 epochs improved the
performance of FP reduction for detecting rocks, dead tress
or other artifacts on ground as animal.

6. Results
6.1. Performance Comparison

We trained WM separately on Mara-Wildlife dataset and
Virunga-Garamba-AED dataset for comparison with exist-
ing works, see Table 2 for a summary of the results on all
of the tested datasets. The mAP values are compared for
IoU of 0.50-0.95 and 0.50. We also provide the average
counting error in animal counting per image. We trained
all the baseline models with the default set of conditions on
Mara-Wildlife dataset. We merged the Virunga, Garamba,
and AED datasets and created the train-val-test split accord-
ing to [7]. The combination of these datasets contains
6 unique animal species and diversity of landscapes such
as woodland, savannahs, open shrubland, and grasslands
across multiple countries – Democratic Republic of Congo
(DRC), Botswana, Namibia, and South Africa. WM out-
performs all methods by a significant margin as shown
in Table 2. We note that in [7] the authors did not make
the code base or trained model public, hence we could not
verify the results. We implemented these methods from
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Methods #epochs mAP mAP50
Counting

Error
Mara Wildlife Dataset

1 Faster-Rcnn [40] 100 0.24 0.58 2.59
2 DETR [3] 200 0.22 0.57 2.75
3 Co-DETR-R50 [55] 100 0.27 0.66 2.72
4 Co-DETR-swingL [55] 100 0.28 0.65 2.60
5 Yolo v5 [10] 100 0.30 0.67 2.12
6 Yolo v8 [17] 100 0.27 0.61 3.97
7 LSKNet [29] 100 0.29 0.66 -
6 DroneDetect [50] 100 0.18 0.48 -
8 WildlifeMapper 120 0.56 0.79 1.9

Virunga-Garamba-AED Datasets
6 Faster-Rcnn 120 0.34 0.65 0.27
7 DETR 200 0.30 0.62 0.45
8 Yolo v5 100 0.48 0.78 0.12
9 Yolo v8 100 0.48 0.77 0.42
10 WildlifeMapper 80 0.68 0.85 0.11

Table 2. Comparison with baseline models. The top section
shows performance on species detection on Mara-wildlife dataset
and low section shows performance on the mixed dataset from
Virunga-Garamba-AED dataset. The overall detection accuracy is
generally higher in Virunga-Garamba-AED dataset because there
are only 6 species and the terrain is quite similar in all images.

HFG FR QR mAP
✗ ✗ * 0.46
✓ ✓ * 0.54
✓ ✗ ✓ 0.49WM

✓ ✓ ✓ 0.56

Table 3. HFG module effectiveness in refining the image features
and queries. “✗” represents not used, “✓” represents used and
“*” represents that random queries are used but there was not
refining with HFG features.

the original public repositories and trained according to the
training strategy detailed in [7]. We attribute the model poor
learning performance due to salient features of the homo-
geneous background being learned more than the object of
interest. The detection of the object of interest is then de-
pendent on the landscape properties instead of object prop-
erties. Hence when used on a slight variations of landscapes
for the same object, the models struggle to detect. This lim-
itation is specifically addressed in the WM, where the HFG
modules suppresses the background and highlights the ob-
ject of interest.

Qualitative results: Fig. 5 shows the quality of detection
by WM in different scenarios. Those include, detection
when animal is partially visible under a tree, or a big clus-
tering. WM makes correct predictions in varying scenarios.

6.2. Ablation Studies

We performed all ablation experiments on Mara-Wildlife
(MW) dataset and validate the design choices.

High-frequency Feature Generator Module: In Ta-
ble 3, we show the effectiveness of the HFG module. We

experimented with HFG’s output in 3 ways: first, we passed
HFG’s output to Feature Refiner (FG) module. It leads to
significant improvement in detection by 0.09 mAP over the
baseline. This demonstrate that providing potential location
candidates features to image encoder module produce better
embeddings. Second, we pass the HFG’s output to Query
Refiner (QR) module only. This leads to an improvement
of 0.03 mAP over baseline. This shows the effectiveness
of guiding queries with location candidates features. In the
third case, we passed the HFG’s output to both FR and QR
modules and achieved an improvement of 0.11 mAP over
the baseline. We hypothesize that this reduces the domi-
nance of features from homogeneous and dominant back-
ground in aerial imagery. The also observed this while test-
ing WM across flightlines different types of terrain such as
green grasslands, dry grasslands, and forest areas.

Feature Refiner Module: We tested hfcemb and fimg

merging by 3 ways: addition, concatenation and cross-
attention. Cross-attention is most effective, because with
addition and concatenation, the hfcemb get lost, while
cross-attention generates better embeddings giving atten-
tion to potential location candidates.

Kernel Size: We observed that a larger kernel size of
31 × 31 results in reduced misclassification. For example,
a topi or warthog cannot be found inside a boma because
only domestic species are kept in bomas. So context helps
in making the right class detection. We observed an im-
provement of 0.02 mAP. Experiments were done in 3 kernel
sizes. 1. 7 × 7: 0.55 mAP, 2. 16 × 16: 0.558 mAP; 3.
32× 32: 0.57 mAP.

Query Refiner Module: We experimented with only pro-
viding random queries and guiding the queries with HFG
module output. We merged them with direct addition or
concatenation and cross-attention. With cross-attention, we
observed an improvement in performance of 0.03mAP.

Geographic generalization: To test the geographic gen-
eralizability of WM across different terrains, we trained
WM only on images from Kenya; and tested on images from
Democratic Republic of Congo, Botswana and Namibia.
The test was done on 4 common species which were present
in both the ecosystems. WM achieved a detection perfor-
mance of 0.48 mAP. This shows the adaptability of WM
across varying landscapes.

Domain generalization: We train-test WM on a different
domain, a bird species tern [47], commonly found on/near
water bodies. Live in huge clusters. WM achieved the ac-
curacy of 0.71 mAP. Showing adaptability of WM across
different domains.
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Figure 5. Qualitative results. The top row highlights examples of crowded and partially occluded scenes. Row-1, Column-1 & Row-3,
Column-3 shows examples where animals are obstructed by shadows. The zoomed-in box in Row-3, Column-3 shows a zebra partially
occluded. The bounding box color is coded according to class names: shoats-“hot pink”, cattle-“deep sky blue”, zebra-“light yellow”.

Figure 6. Failure cases. Left shows an example where animals are
occluded by shadows and are difficult to detect. Right shows an
example of rock detected as an impala, emphasizing the difficulty
in differentiating objects in the image from animals of interest.

Failure Cases: The detections from WM are inaccurate
when animals are clustered in shadows, such as when an-
imals are located inside bomas and the sun angle makes a
strong shadow on the enclosure. These are some of the diffi-
cult cases shown in Fig. 6. Other cases of false positives are
the small rocks or trees that sometimes resemble animals.
Some examples are shown in the supplementary materials.

7. Conclusion
This paper presents WildlifeMapper (WM) - a trans-

former based approach for the detection of animals of vary-
ing densities and sizes across natural backgrounds. The
WM utilizes a high frequency features generator, feature
refiner, and query refiner to accurately locate and classify 8
animal species. WM stands to significantly improve the ef-
ficiency and accuracy of wildlife monitoring and conserva-
tion efforts. Future work will extend this model and dataset
to a larger number of species and habitats.
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