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Figure 1. Illustration of the concept of multi-label atomic activity recognition and our proposed Action-slot. In the scene, three atomic
activities are presented and depicted by colored arrows. For example, the red arrow represents the Z1-Z4: C+ atomic activity, indicating a
group of vehicles turning left. Atomic activities are defined based on road user’s type and their motion patterns grounded in the underlying
road structure. We introduce Action-slot to learn visual action-centric representations that enable decomposing multiple atomic activities
in videos. We demonstrate that our framework can effectively recognize multiple atomic activities via learned representations.

Abstract

In this paper, we study multi-label atomic activity recog-
nition. Despite the notable progress in action recogni-
tion, it is still challenging to recognize atomic activities due
to a deficiency in holistic understanding of both multiple
road users’ motions and their contextual information. In
this paper, we introduce Action-slot, a slot attention-based
approach that learns visual action-centric representations,
capturing both motion and contextual information. Our key
idea is to design action slots that are capable of paying at-
tention to regions where atomic activities occur, without the
need for explicit perception guidance. To further enhance
slot attention, we introduce a background slot that competes
with action slots, aiding the training process in avoiding un-
necessary focus on background regions devoid of activities.
Yet, the imbalanced class distribution in the existing dataset
hampers the assessment of rare activities. To address the
limitation, we collect a synthetic dataset called TACO,
which is four times larger than OATS and features a bal-
anced distribution of atomic activities. To validate the effec-
tiveness of our method, we conduct comprehensive experi-

ments and ablation studies against various action recogni-
tion baselines. We also show that the performance of multi-
label atomic activity recognition on real-world datasets can
be improved by pretraining representations on TACO. Our
source code, dataset, and visualization videos are available
at https://hcis-lab.github.io/Action-slot/

1. Introduction

There has been a noteworthy rise of community interest
in activity recognition within traffic scenes [3, 13, 40, 43,
46, 47, 53]. Recognizing activities of road users is essen-
tial for advancing the development of intelligent driving
systems, as it enables various applications, such as intent
prediction [30, 40, 61], scenario retrieval [39, 45, 51, 55],
scenario-based assessment [1, 62], and safety-critical sce-
nario generation [10, 48, 49, 62].

In this paper, we focus on multi-label atomic activity
recognition, a new task proposed by the OATS dataset for
interactive traffic scenario understanding [3]. An atomic ac-
tivity is a higher-level semantic motion pattern rooted in the
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Figure 2. The distribution of atomic activity classes in our TACO dataset compared to the OATS dataset. Please note that, for space
considerations, we omit the road topology notations of corner (C) and roadway (Z) on the x-axis of the figure.

underlying road topology. For instance, a group of vehi-
cles turning left is described as Z1-Z4: C+, as shown in
Figure 1. The notions ZI and Z4 are roadways within an
intersection. The left-turn motion pattern is represented as
71-7Z4. We use C+ to denote a group of vehicles. The com-
bination of such motion patterns and road user types can
compose 64 classes of atomic activities. This task presents
distinctive challenges as it demands a comprehensive un-
derstanding of contextual information and motions of road
users. Moreover, it requires the ability to break down activi-
ties within crowded and intricate traffic scenes from videos.

We identify the limitations of current action recognition
models, showing less desirable performance in the OATS
benchmark [3]. We argue that video-level representations,
simply employing 3D ConvNet [12, 23, 24, 57] or trans-
formers [22, 56] models, pose a challenge for classifiers
in distinguishing individual atomic activities within traffic
scenes due to the complicated structure of traffic scenes. On
the other hand, object-aware representations [3, 6, 60] using
object features [28] struggle to associate the relationship be-
tween the road structures and motions of objects. Then the
question we like to answer in this paper: Can we learn vi-
sual representations that decompose multiple atomic activ-
ities from videos, without using object proposals?

To this end, we propose Action-slot, a slot attention-
based framework, inspired by the recent success of slot
attention for unsupervised object discovery [41]. Action-
slot incorporates four crucial design choices that allow the
model to decompose multiple atomic activities from videos
and represent them without relying on object proposals.
First, we allocate a fixed number of action slots, assign-
ing each action slot to focus on regions where a specific
atomic activity occurs, such as C2-C1: P. Second, we intro-
duce an additional background slot and attention guidance
to enforce the slot paying attention to regions without active
atomic activities. Third, we discourage action slots allo-
cated with negative classes (i.e., those activities not present
in a video), from attending to any regions. Fourth, we mod-
ify the slot updating strategy used in [5, 20, 34] to a parallel
updating approach that integrates spatial-temporal informa-
tion at the video level into a slot.

In our experiments, we demonstrate the effectiveness of

Action-slot in accurately identifying a variety of atomic ac-
tivities annotated in the OATS dataset [3]. Furthermore, we
conduct thorough experiments, comparing various action
recognition baselines and presenting ablation studies that
validate the design of Action-slot. Moreover, we provide
qualitative evidence demonstrating that the learned action-
centric representations can reliably identify distinct atomic
activities in the visual domain, even without the need for
supervision signals such as object locations [20]. How-
ever, due to imbalanced class distribution within the dataset,
OATS only uses 35 out of 64 atomic activity classes for
training and evaluation. Specifically, there are no activities
associated with group two-wheelers (K+). This observation
extends to nearly half of the activity classes, impeding the
evaluation of rare classes.

To address this limitation, we introduce the Traffic Ac-
tivity Recognition (TACO) dataset, an extensive dataset for
atomic activity recognition. We utilize the CARLA sim-
ulator [18] to gather instances of all conceivable activity
classes, ensuring a well-balanced distribution, as illustrated
in Figure 2. We again benchmark all methods on TACO and
show that Action-slot outperforms all baselines by a large
margin.

Beyond comprehensive performance analysis, we
demonstrate that TACO can enhance the efficacy of atomic
activity recognition on real-world datasets through pretrain-
ing feature representations on TACO. Then we finetune the
pretrained model on both the OATS dataset and a newly an-
notated nuScenes dataset [9]. We present significant im-
provements in all experiments through TACO pre-training,
underscoring the robust real-world transferability of TACO.
Our main contributions are as follows:

1. We introduce Action-slot: an action-centric slot
attention-based framework that decomposes multiple
atomic activities from videos.

2. We present the TACO dataset, an extensive and balanced
dataset for multi-label atomic activity recognition, facil-
itating comprehensive performance analysis.

3. We conduct extensive evaluations and ablation studies
across multiple datasets to justify the effectiveness and
generalization of Action-slot.

4. We provide qualitative evidence demonstrating that the
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learned action-centric representations can reliably iden-
tify distinct atomic activities in the visual domain with-
out perception modules.

2. Related Work

Traffic Scenario Understanding Datasets. The develop-
ment of intelligent driving systems, such as scene analy-
sis [40, 46, 61], scenario retrieval [39, 45, 51, 55], and
safety-critical scenario generation [10, 48, 49, 62], heav-
ily relies on traffic activity understanding. While previous
efforts have designed datasets [13, 38, 43, 46] by labeling
high-level actions (e.g., left turn) for traffic pattern recog-
nition, they fall short in supporting fine-grained scenario
analysis. For instance, high-level actions cannot differen-
tiate “left turns” that start from different locations, such as
the ego lane versus the oncoming lane. To address this lim-
itation, both Inner-City [13] and ROAD [53] datasets aug-
ment high-level action labels (e.g., turning left) with loca-
tion labels (e.g., on the oncoming lane or on our side of
the road). Recently, OATS [3] propose a topology-aware
traffic activity description language to unify the action and
location labels via the topology-aware pattern description.
Specifically, the language decomposes an interactive sce-
nario into a set of atomic activities, that are defined based
on the types of road users and the corresponding motion
patterns grounded in road structures. Nevertheless, some
real-world instances of traffic atomic activities are scarce,
presenting a challenge in forming a well-balanced category
distribution and impeding the evaluation of rare classes.
In response, we construct the TACO dataset utilizing the
CARLA simulator [18] to gather instances of all conceiv-
able activity classes, ensuring a well-balanced distribution.

Video Action Recognition. Substantial improvements in
spatial-temporal modeling via 3D ConvNet [12, 23, 24, 57]
and transformer [4, 7, 22, 56] have been observed because
of the Kinetics human action dataset [33] that facilitates
model pre-training. The pre-trained models can further be
finetuned on other action recognition datasets such as the
HMDB [36], THUMOS [31], and Charades [52] datasets.
Meanwhile, the community also explores multi-label action
recognition and establishes benchmarking datasets, such as
MultiTHUMOS [64], Charades [52], and AVA [26]. The
most relevant task to multi-label atomic activity recognition
is group activity recognition [16, 29], where multiple play-
ers engage in distinct actions. In contrast, atomic activity
recognition in traffic scenes demands a comprehensive un-
derstanding of objects and their motion patterns within the
underlying topology. In addition, a noteworthy distinction
is that the majority of objects in traffic scenes do not exhibit
any activity, constituting a negative class, a concept absent
in group activity recognition datasets.

Slot Attention for Representation Learning. Locatello
et al., [41] propose slot attention as a new perspective
for learning object-centric representations in an unsuper-
vised manner. They have successfully stimulated the com-
munity to explore strategies to bootstrap slot attention
from synthetic datasets [32] to real-world dynamic visual
scenes with moving cameras such as the Waymo [54] and
KITTI [25] datasets. Particularly, they utilize auxiliary
information such as optical flow [34], motion segmenta-
tion [5], object initial locations [20], and depth [20] to fa-
cilitate object-centric representation learning in challenging
real-world applications.

Multi-label atomic activity recognition poses three chal-
lenges for existing slot attention methods. First, the slots are
permutation invariant. This property is designed to discover
arbitrary objects [5, 8, 20, 34, 41, 50, 65] but is not suit-
able for a classification task with fixed-length classes. Sec-
ond, current slot attention architectures used in videos, such
as SAVi [34] and Slot-VPS [65], are designed for object-
centric tasks, such as tracking. Specifically, they update a
slot for each frame in a recurrent manner, which is not suit-
able for action recognition that requires a holistic temporal
understanding. Third, to enable slot attention in complex
scenes, they leverage additional object signals to guide the
attention during training, such as flow [34], depth [20], or
motion segmentation [5]. Object signals may lead to mis-
interpretations in atomic activity recognition since not all
objects participate in activities (e.g., pedestrians strolling
on the sidewalk and vehicles waiting at traffic lights). In
this work, we propose a novel action-centric slot attention-
based framework and demonstrate the effectiveness of the
framework on multiple datasets.

3. Method

In this section, we first introduce the background of slot
attention. Then, we provide an overview of the problem
definition in multi-label atomic activity recognition and the
proposed method. Finally, we explain the specific modifi-
cations we make to the slot attention for our task.

3.1. Preliminary: Slot Attention

The Slot Attention module [41] can be viewed as a cluster-
ing algorithm that maps image patches input to a set of K
output slots S € RE*Dsiee where Dy, is the dimension
of each slot. Specifically, the slots S are first initialized by
randomly sampling K vectors from a Gaussian distribution,
where the parameter K is usually defined as the maximum
number of objects in an image. An input frame, i.e., image
features ' € R¥*WxDin with size H x W and dimension
Di,, is first flattened to patch tokens F € RV* P where
N = H x W. Then the tokens are mapped to the slots us-
ing the dot product attention module. That is, the attention

weight can be calculated as A = %k(F/) -q(S) € RNVXE,
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Figure 3. The top of the figure illustrates the proposed framework. Action-slot takes video as input and uses a CNN encoder to extract
feature patches. All patches are then processed with individual slots simultaneously to find the most relevant spatial-temporal patches
corresponding to each action slot. The updated action slots are fed into a fully connected layer to predict the probability of the corresponding
action class, excluding the background slot. The bottom of the figure depicts the attention maps of action and background slots. We propose
to incorporate a background mask My to supervise the background slot. The design facilitates other action slots to capture action signals.
Furthermore, we design a regularization for slots allocated to negative classes (e.g., Z3-Z4: C) using an all-zero mask Mpeg.

and ¢ and k are linear transformations that map the input F'
and slots S to a common dimension D.

We obtain the updated values for slots through U =
AT y(F ') € RE*P where A is the normalized attention
weight calculated via the softmax operation and v is a lin-
ear transformation. Finally, the slots are updated via a GRU:
S' = GRU(S, U) [15]. To refine the slots, the updating pro-
cess repeats M iterations [20, 34, 41]. Note that, the key
difference between classical attention [58] and slot attention
is that the attention weights A are normalized with the soft-
max operation slot-wise instead of token-wise. This differ-
ence enables slots to compete with each other so that each
slot attends to different relevant regions of input. To extend
slot attention to video tasks, the previous works [5, 20, 34]
propagate slots recurrently, i.e., S* = GRU(S*~1,U).

3.2. Overview of Proposed Method

Problem Formulation. Given a video clip V; with T" im-
age frames {I;}1_,, our goal is to recognize whether there
are any atomic activities Y presenting in the video. The
ground truth of Y for video V; is a binary multi-label vec-
tor, i.e., Y? = {y.} 2, where y. is 1 if the corresponding
activity appears and vice versa, and N.; denotes the total
number of possible activities. Note that, we do not con-
strain when a certain activity appears, e.g., y. can happen in
any image frames of {1} }1_,, or may appear multiple times
in one video.

Overview of Action-slot. We propose Action-slot, an
action-centric slot-attention-based framework to decom-
pose multiple atomic activities from videos. Our idea is
to assign each slot to learn specific action-centric repre-
sentations for the corresponding atomic activity. Figure 3

presents the overview of Action-slot. Different from exist-
ing slot attention algorithms designed for unsupervised ob-
ject discovery and tracking [5, 20, 34], we make the follow-
ing three modifications. First, we allocate a fixed number
of slots K, which is equal to the number of atomic activ-
ities N.;. We supervise the prediction of each action slot
with the corresponding ground truth label ., i.e., whether
the atomic activity c appears. Second, we introduce a back-
ground slot to focus on the regions that are not possible to
present an activity, so that the other action slots can compete
with this background slot. In other words, the design forces
other action slots to pay attention to the important regions.
Third, we discourage action slots associated with negative
classes (i.e., those activities not present in a video), from
attending to any regions. Lastly, we update all action slots
in a parallel fashion by considering all the image frames to-
gether, instead of recurrently updating slots along the tem-
poral domain utilized in [5, 20, 34].

3.3. Action-slot

In this section, we describe the details of our design for
learning action-centric representations. We follow [5] to
use learnable parameters for slot initializations. We extract
image features F' € RT>*HXWxDin from the convolution-
based encoder [12, 23, 24, 27] for each frame in a video clip
and then flatten them to F' € RYXDPin_where N = T'x H x
W. We add learnable 3D spatial-temporal positional em-
beddings E € RT*H*W (o the tokens F [4, 5, 7, 22, 56].
Allocated slot. We then define a set of slots {Sx}< |,
where K = N, representing the number of action slots
(i.e., number of activity classes). In contrast to the previous
slot attention works [20, 34, 41, 65] where they do not spec-
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(a) Action-slot: Parallel

(b) Prior work: Recurrent

Figure 4. (a) Our parallel scheme considers updating slots based
on the spatial-temporal features for all the frames. (b) The slots
are updated recurrently along the temporal dimension, where each
time the slot only considers a frame-wise feature.

ify a task to each slot and use a Hungarian matcher for bi-
partite matching with objects, we instead allocate each slot
a class of activity, namely, action slots. Each action slot is
processed with an independent binary classifier to output a
prediction . for each class ¢, where a binary cross entropy
(BCE) function is used as the objective for each data sam-
ple: Loy = Zi\[:ll BCE(9c, yc)-

Parallel updating. We update slots across image frames
in a parallel manner, as shown in Figure 4 (a). Specifi-
cally, we calculate normalized attention weight A € RV*XK
while considering temporal dimension at the same time, i.e.,
N =T x H x W. We then update the K slots with atten-
tion weights A in a single pass. This is different from the
previous works [5, 20, 34] where they update slots across
frames recurrently, namely, using the previous state of slots
and current feature maps to update the current state of slots
for T iterations, as shown in Figure 4 (b).

Background slot and attention guidance. It is non-
trivial to provide guidance for positive classes as the ob-
jects are not necessarily involved in activities all the time,
and not all objects are involved in activities. Therefore, we
propose to use a background slot that is not supervised by
any activity classes. By the softmax operation in slot atten-
tion, this background slot would attend regions that are not
relevant to any activities and force other action slots to fo-
cus on other regions, as shown in the bottom of Figure 3. To
further enhance the effectiveness of the background slot, we
provide an attention mask Mg as the supervision, directly
guiding the background slot where to pay attention. The
mask is generated by excluding pixels with the classes of
vehicles, pedestrians, drivable areas, crosswalks, and side-
walks. We guide the background attention via the loss func-
tion: Lypg = BCE(Abg, M), where flbg is the normalized
attention from the background slot.

Regularization for action slots. Instead of providing at-
tention guidance for positive classes, which is non-trivial
as explained previously, we introduce a regularization term
to discourage action slots associated with negative classes
(i.e., those activities not present in a video), from attend-
ing to any regions. We construct an attention mask M;eg
wherein all element values are set to 0. We design a loss
function: Lueg = D (.10} BCE(A, Myeg), where A, is

the normalized attention output of slot .S, for negative class
c. By regularizing the action slots with negative classes, the
competition mechanism makes slots with positive classes
more competitive in the important regions. Note that the
regularization does not require additional annotations. Fi-
nally, the full objective function of Action-slot is:

L1 = Lace + wbngg + wnegLneg

, where wyg and wyeg are the weights to balance two terms
(set as 0.5 and 1, respectively in this paper).

4. Experiments
4.1. Datasets

OATS [3]. The dataset was collected in San Francisco with
an instrumented vehicle and comprises 1026 labeled clips
and is divided into 3 splits for cross-validation. OATS la-
bels 59 traffic atomic activity classes. We follow the same
experimental protocol to train and evaluate the 35 classes.
The dimensions of an image are 1200 x 1920 pixels. We
downsample the image size to 224 x 224, as in [3].
TACO. We construct the TACO dataset in the CARLA sim-
ulator [18] to attain a balanced distribution encompassing
64 classes of traffic atomic activities. We leverage three
approaches to collect data: auto-pilot, scenario-runner [2],
and automatic scenario generation [37]. The TACO dataset
comprises 5178 clips. Among them, 1148 are used for test-
ing. We collect image and instance segmentation data with
a size of 512 x 1536 pixels, and subsequently downsample
each frame to 256 x 768 as input to the models.

nuScenes [9]. We annotate the train_val set of nuScenes
dataset with atomic activities. The train_val set comprises
850 videos. Our annotation protocol yields a total of 426
short clips, each comprising 16 frames. The annotated
nuScenes encompasses 42 classes of atomic activity. Please
refer to the supplementary material for additional details on
the dataset construction and annotation.

4.2. Baselines

Video-level models. We implement our baselines using the
PyTorchVideo [21] library to construct different video-level
architectures, including I3D [12], X3D [23], CSN [57],
SlowFast [24], MViT [22], and VideoMAE [56]. Note that
we modify the models to perform multi-label prediction
with one linear layer that outputs /N class channels.

Object-aware models. The models [3, 6, 60] first extract
object features via the Rol-Align [28] and learn the rela-
tions between objects. ORN [6], ARG [60], and OATS [3]
uses MLP, Graph Convolutional Network (GCN) [35], and
spatical-temporal GCN [44] to enhance object features.
OATS also uses an additional graph branch to encode low-
level object trajectories. We use Deep OC-SORT [42] to ex-
tract trajectories of objects. We follow OATS by setting the
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number of tracklets as 20 for the input of the models. To en-
courage the object-aware models [6, 60] to learn the context
information, we concatenate object features with the global
features, which are obtained by convolving X3D [23] fea-
tures with a 3D kernel size of 1. These models then output
multi-class predictions for each proposal by a linear layer
with a channel number of N.; plus one negative class. Note
that we do not implement the model proposed in OATS [3]
due to the absence of source code.

Slot-based models. The models take features from the last
ConvBlock of the encoders [23, 27] as input. Note that
we remove the last projection layer of X3D, which makes
the size of some slot-based models slightly smaller than
X3D. We re-implement existing slot-attention-based meth-
ods for videos [5, 20, 34, 65] to use the proposed “allocated
slots” for multi-label atomic activity recognition. Specifi-
cally, SAVi [34] randomly initialize slots for each forward
pass from a learned distribution, while MO [5] and Slot-
VPS [65] treat slots as learnable queries [11]. For the slot
update mechanism, SAVi and MO recurrently update slots
in time, while Slot-VPS uses an extra self-attention [58] to
update slots across frames. We then use their slots in the
last frame as the input to the classifier.

Table 1. Quantitative results on the OATS dataset. “Seq” de-
notes the input sequence length. The symbol i denotes the re-
implementation of slot-based methods, where each slot is allocated
to a specific atomic activity class. SI, S2, and S3 represents the
three defined splits in the OATS dataset.

Method Backbone  Seq Pretrain S1 S2  S3 mAP

CSN [3, 57] ResNet152 32 1G65M 12.1 126 129 12.5
TPN [3, 63] ResNet50 32 ImageNet 11.6 133 129 12.6
SlowOnly [3,24]  ResNet50 32 ImageNet 112 147 129 13.0
SlowFast [3,24]  ResNet50 32 None 10.8 15.1 145 | 135
I3D(NL) [3,59]  ResNet50 32 ImageNet 119 155 14.0 | 13.8

13D [3, 12] ResNet50 32 ImageNet 11.8 143 16.8 | 143
ORN [3, 6] ResNet50 32 ImageNet 16.8 134 18.1 | 16.1
ARG [3, 60] Inceptionv3d 32 ImageNet 202 21.3 193 | 203
OATS [3] Inceptionv3d 32 ImageNet 243 28.6 27.2 | 26.7
SAVif [20, 34] ResNet50 32 ImageNet 21.1 224 225 | 220
MOf [5] ResNet50 32 ImageNet 143 15.6 18.2 16.0

Slot-VPST [65] ResNet50 32 ImageNet 157 17.8 17.2 | 169

Action-slot (Ours) ResNet50 32 ImageNet 26.6 28.6 30.8 | 28.6

13D [12] ResNet50 8 | Kinetics-400 21.7 24.6 244 | 23.6
X3D [23] N/A 16 | Kinetics-400 30.4 332 30.6 | 31.4

CSN [57] ResNet101 32 |Kinetics-400 43.1 47.1 443 | 44.8
SlowFast [24] ResNet50 16 |Kinetics-400 36.1 36.6 342 | 35.6
ORN [6] X3D 16 |Kinetics-400 19.3 22.5 23.6 | 21.8
ARG [60] X3D 16 | Kinetics-400 24.8 259 293 | 26.7
SAVit [20, 34] X3D 16 |Kinetics-400 19.0 22.1 21.6 | 209
MOt [5] X3D 16 |Kinetics-400 25.3 25.0 242 | 24.8
Slot-VPST [65] X3D 16 |Kinetics-400 24.7 24.6 255 | 249
Action-slot (Ours) X3D 16 | Kinetics-400 48.1 47.7 48.8 | 48.2

Pretraining and backbone choice. We first follow the
setting of OATS and implement Action-slot and slot-based
baselines with ResNet50 [27] pretrained on ImageNet [17].
To further study the effect of pre-trained models, we train
models with state-of-the-art 3D bakcbones [12, 23, 24], pre-

Table 2. Quantitative results on the TACO dataset. “Seq” denotes
the input sequence length. C, K, P, C+, K+, and P+ denote ac-
tivities involved with different types of road users. The symbol
denotes the re-implementation of slot-based methods, where each
slot is allocated to a specific atomic activity class.

Method Para. (M)  Seq C K P C+ K+ P+ mAP
13D [12] 27.3 8 27.319.430.5 34.6 33.6 34.8 | 29.7
X3D [23] 3.0 16 | 37.520.334.6 563 51.5 38.8 | 383
CSN [57] 21.4 32 | 43.535.543.0 52.5 46.1 43.4 | 44.0
SlowFast [24] 33.7 16 | 33.919.736.7 399 426 41.0| 352
MVIT [22] 36.6 16 | 21.413.826.3 43.7 30.0 33.8| 279
VideoMAE [22] 57.9 16 | 30.6 18.627.1 51.6 33.0 37.4 | 33.1
ORN [6] 4.8 16 | 25.515.824.6 31.6 198 139 | 222
ARG [60] 12.2 16 | 27.815.027.2 35.6 13.7 20.0 | 232
SAVii [20, 34] 2.3 16 | 19.213.627.5 23.3 259 359 233
MOf [5] 2.3 16 | 342249392 383 394 37.7| 353

Slot-VPS{ [65] 35 16
Action-slot (Ours) 23 16

31.921.332.0 51.9 447 31.3| 36.0
48.141.249.2 70.1 62.6 52.8 | 54.4

trained on Kinetics-400 [33], for the experiments on both
OATS and TACO datasets. Specifically, we use X3D [23]
as the backbone by default because of the compact model
size. Please refer to the supplementary material for the ad-
ditional implementation details.

4.3. Implementation Details

Background masks. We extract background masks from
the instance segmentation collected in TACO. For OATS
and nuScenes, we use an off-the-shelf DeepLabV3+ [14].
Metrics. We follow the common practice in multi-label ac-
tion recognition [3, 26, 52, 64] to report mean average pre-
cision (mAP).

Visualization. We visualize attention maps of each atomic
activity according to the allocated action slots to validate if
Action-slot learns action-centric representations. We keep
pixels with an attention score greater than 0.5 on OATS and
0.2 on TACO.

4.4. Main Results

OATS. In Table 1, we show experimental comparisons
with video-level-based, object-aware, and slot-attention-
based methods. In the top group, we use the ImageNet
pre-trained ResNet50, following the evaluation protocol de-
signed in OATS [3]. We further compare all methods
with advanced visual backbones pretrained from Kinetics-
400 [33] and report the corresponding results in the bot-
tom group. In both ImageNet and Kinetics pretrained set-
tings, Action-slot achieves state-of-the-art performance on
the OATS dataset. Specifically, Action-slot improves the
performance of atomic activity recognition by identifying
the region of interest via the proposed slot attention mecha-
nism, without explicit perception guidance.

TACO. We establish a new benchmark on the proposed
TACO dataset to validate the effectiveness of Action-slot
for a wide range of atomic activities, which is challeng-
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Table 3. Ablation study of Action-slot. The reported re-
sults are the average of the 3 splits in the OATS dataset.

ID Allocated Update BG Slot Lyg Lyeg mAP

Table 4. Comparisons of Action-slot and
object-level guidance on TACO across
different numbers of road users (denoted
as N) present in a video. BG and Neg de- mAP

Table 5. Results of vari-
ous backbones for Action-
slot on TACO.

ing for the OATS dataset [3] due to its imbalanced distri-
bution. In the top group of Table 2, we evaluate two re-
cent transformer-based models, i.e., MViT [22] and Video-
MAE [56]. The models show worse performance compared
to other video-level methods, which could be attributed to
their data-hungry nature [19].

Object-aware models [3, 6, 60] show suboptimal perfor-
mance, particularly for atomic activities related to grouped
road users, as reported in the middle group. The findings in-
dicate that the relation modeling of objects learned from the
MLP and GCN [35] is not effective for the task because it
requires a holistic understanding of contextual information
and motions of objects.

In the bottom group of Table 2, we re-implement the
object-centric slot-based models with allocated slots (de-
noted by I). Action-slot outperforms all models by a large
margin on activities with all types of road users because of
our parallel architecture design and the proposed attention
guidance. Particularly, Action-slot excels in activities in-
volved with grouped road users. It is worth noting that the
Action-slot is powerful yet efficient in terms of model size.
The results validate the effectiveness of action-centric rep-
resentations over the existing action recognition models and
object-centric representations.

4.5. Ablation Study

We conduct ablation studies in Table 3 to understand the
effect of our designed components.

Non-Allocated vs. Allocated. We show that adding allo-
cated slots significantly improves the performance of Non-
Allocated by 31.9% (ID 1 vs. 3). The results suggest the
need to revisit the design of slot attention for our task.
Recurrent vs. Parallel. We demonstrate that updating ac-
tion slots in a parallel fashion obtains a 17.9% performance
gain (ID 2 vs. 3), compared to conventional methods using
a recurrent manner.

Background slot and attention guidance L,,. We find
that simply adding a non-allocated background slot with-
out mask supervision slightly harms the performance (ID 3
vs. 4), which is different from the observation in previous
slot attention literature [5, 65]. Our insight is that the non-
allocated slot may distract the action slots’ attention. With
the background mask supervision Ly, the model shows ad-

1 parallel 10.8 note background slot and regularization
13D 29.7

2 v recurrent 24.8 . thod ;
3 v parallel 0.7 1n our method. Action-slot 37.6 (+7.9)
4 v parallel v 40.8 X3D [23] 37.8

< < oL :
5 v parallel v 43.6 NS5 S<N=L N-oD Action-slot  54.4 (+16.6)
6 v parallel v v | 430 object  49.4 417 435
7 v parallel v v 48.2 BG+Neg 55.2 50.9 46.3 SlowFast [24] 35.2

. : . Action-slot  46.7 (+11.5)

ditional performance gain compared to the one only using
the allocated slot (ID 3 vs. 5).
Action slots regularization L,.;. We regularize action
slots with the L.z term to discourage action slots allocated
to negative classes from attending any regions in spatial-
temporal features. This design enhances the likelihood of
other action slots allocated to positive classes identifying
the region of interest more effectively. We demonstrate that
the inclusion of the regularization term Lp.g further im-
proves the one only using the allocated slot (ID 3 vs. 6).
The final model (ID 7 in Table 3) that incorporates al-
located slots, parallel updating, background slot with atten-
tion guidance, and action slot regularization, performs the
best on OATS, which validates the efficacy of Action-slot.

5. More Analysis and Discussions

Action-slot vs. Object-level guidance. We conduct exper-
iments on the TACO dataset to evaluate the impact of differ-
ent numbers of road users in videos with respect to differ-
ent attention guidance mechanisms in our Actio-slot frame-
work. Specifically, we compare the two attention guidance
mechanisms discussed in Section 3.3 and the object-level
guidance. For object-level guidance, we use instance seg-
mentation collected in TACO to obtain masks for vehicles
and pedestrians. Hungarian matcher is used to assign ob-
ject masks to slots, following MO [5]. Table 4 shows that
Action-slot with strong ground truth object-level supervi-
sions performs worse, compared to the proposed attention
guidance. The observation indicates that only considering
object cues may not effectively tackle our task because not
every object is always involved in the same atomic activity.

Action-slot with different backbones. Table 5 reports the
performance of Action-slot using different backbone. We
choose I3D [12], X3D [23], and SlowFast [24] for exper-
iments. Action-slot significantly improves all 3D CNN
methods, showing great generalization ability. Among
them, X3D achieves the most improvement. We hypothe-
size that this is because X3D’s features retain the original
temporal dimension, affording Action-slot greater spatial-
temporal information to analyze atomic activities. In con-
trast, other backbone encoders downsample the temporal di-
mension; for instance, SlowFast takes a video sequence of
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Figure 5. Visualization of attention maps learned from OATS. Colored masks represent the attention of the activity slots Z4-7Z3:C and
(C2-C1:P+. Note that, while MO successfully predicts the activity C2-C1:P+, the corresponding attention scores are very low.
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Figure 6. Visualization of attention maps learned from TACO. Colored masks are from the allocated slots of activity Z4-7Z1:K and Z1-
72:K+. Note that Z4-71:K appears twice in the 1st and 5th frames independently.

Table 6. Effectiveness of using our TACO dataset for represen-
tation pretraining and then finetuning on real-world OATS and
nuScenes datasets. Kinetics denotes finetuning from the Kinetics-
400 pretrained weights.

OATS nuScenes
Kinetics +TACO Kinetics +TACO
X3D [23] 314 34.9 (+3.5) 19.8 27.8 (+8.0)
ARG [60] 26.7 31.3 (+4.6) 12.2 17.0 (+4.8)
Action-slot 48.2 59.5 (+11.3) 23.6 32.3 (+8.7)

length 16 as input and reduces the temporal dimension to 4.

Representation pretraining on TACO. We demonstrate
that the proposed TACO dataset can enhance the effi-
cacy of atomic activity recognition on real-world datasets
through representation pretraining. Specifically, we first
pretrain the model on TACO and then fine-tune it on real-
world datasets, including OATS [3] and a newly annotated
nuScenes dataset [9]. We report the average mAP of the
three splits in the OATS dataset in Table 6. Due to the large-
scale and balanced distribution of TACO, all models show a
significant improvement on both real-world datasets when
pretrained on TACO. Notably, Action-slot outperforms all
baselines, showcasing its robustness and generalizability.

Qualitative Results. We visualize the attention maps
learned using the re-implemented MO [5] and Action-slot
on the OATS and TACO datasets in Figure 5 and Figure 6,
respectively. Action-slot demonstrates the capability to de-
compose multiple atomic activities from intricate scenes in
both datasets. In Figure 5, Action-slot localizes the group
activity C2-C1:P+, while MO [5] fails to attend any rele-
vant regions. Moreover, Action-slot recognizes two inde-
pendent Z4-Z1:K activities, instead of predicting them as a

group activity, i.e., Z4-Z1:K+ in Figure 6. The evidence
justifies the capability of Action-slot that learns action-
centric representations. More interestingly, Action-slot at-
tends to relevant regions when road users initiate an action
and cease attention once the action is completed, as seen in
the case of the bicyclists in the fourth frame of Figure 6.

6. Conclusions

We present Action-slot, a slot attention-based approach that
learns visual action-centric representations, capturing both
motion and contextual information. We introduce several
crucial designs in slot attentions that enable decomposing
multiple atomic activities in videos, without the need for
explicit perception guidance. We conduct comprehensive
experiments to validate the proposed method on both OATS
and our TACO dataset, comparing it against various action
recognition baseline methods. In addition, we demonstrate
that Action-slot learns meaningful attention maps, identi-
fying objects in actions without explicit object-level guid-
ance. Lastly, we show that the TACO dataset enhances the
efficacy of multi-label atomic activity recognition on real-
world datasets through representation pretraining.
Limitation. Although Action-slot demonstrates favorable
quantitative and qualitative performance, we observe that it
is still challenging to handle cases when two activities oc-
clude with each other. In these cases, the corresponding
action slots may confuse where they should attend. This
observation is closely relevant to the tracking task under oc-
clusion, where frequent ID switches are often observed. We
hope our findings can encourage the community to explore
more advanced designs for action-centric representations.
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